Physics
 Marking Scheme
 For SQP - 45
 XII - I Term

Q. 1 Which of the \qquad
Ans. 1 (iii)
As all other statements are correct. In uniform electric field equipotential surfaces are never concentric spheres but are planes \perp to Electric field lines.
Q. 2 Two Point charges \qquad
Ans. 2 (iii)
Let P is the observation point at a distance r from $-2 q$ and at (L+r) from $+8 q$.
Given Now, Net EFI at $\mathrm{P}=0$
$\therefore \overrightarrow{E_{1}}=\mathrm{EFI}$ (Electric Field Intensity) at P due to +8 q

$$
\overrightarrow{E_{2}}=\mathrm{EFI} \text { (Electric Field Intensity) at } \mathrm{P} \text { due to }-2 \mathrm{q}
$$

$\left|\overrightarrow{\mathrm{E}_{1}}\right|=\left|\overrightarrow{\mathrm{E}_{2}}\right|$
$\therefore \quad \frac{\mathrm{k}(8 \mathrm{q})}{(\mathrm{L}+\mathrm{r})^{2}}=\frac{\mathrm{k}(2 \mathrm{q})}{\mathrm{r}^{2}}$
$\therefore \frac{4}{(\mathrm{~L}+\mathrm{r})^{2}}=\frac{1}{(\mathrm{r})^{2}}$
$4 r^{2}=(L+r)^{2}$
$2 \mathrm{r}=\mathrm{L}+\mathrm{r}$
$r=L$
$\therefore \mathrm{P}$ is at $\mathrm{x}=\mathrm{L}+\mathrm{L}=2 \mathrm{~L}$ from origin
\therefore Correct Option is (iii) 2 L
Q3. An electric \qquad
Ans. 2 (ii)

$$
\begin{aligned}
& \mathrm{W}=\mathrm{pE}\left(\cos \theta_{1}-\cos \theta_{2}\right) \\
& \theta_{1}=0^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\theta_{2}=90^{\circ} \\
\mathrm{W}=\mathrm{pE}\left(\cos 0^{\circ}-\cos 90^{\circ}\right) \\
=\mathrm{pE}(1-0)=\mathrm{pE}
\end{gathered}
$$

Q4. Three Capacitors \qquad
Ans.4. (ii)
$\frac{1}{\mathrm{C}_{\text {series }}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}$
$\frac{1}{\mathrm{C}_{\text {series }}}=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
$\frac{3+2+1}{6}=\frac{6}{6}$
Cseries $=1 \mu \mathrm{~F}$
Q5. Two Point Charges \qquad
Ans.5. (i)

Q. $\quad \mathrm{Q}_{2}$ Force in the charges in the air is
$\mathrm{F}^{-}=\frac{1}{4 \pi \varepsilon 0} \frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}$
$=\mathrm{K}$ F
$=5 \mathrm{~F}$
Q6. Which statement is true \qquad
Ans.6. (iv)
All other statements except (iv) are in correct
The electric field over the Gaussian surface remains continuous and uniform at every point.
Q7. A capacitor plates
Ans.7. (iii)

$$
\begin{aligned}
& \underset{+}{+}|/ / /|_{-}^{\mathbf{k}} \\
& +{ }^{+}{ }^{\prime}{ }^{\prime-} \quad \mathrm{Q}=\text { Charge remains context } \\
& \mathrm{C}^{\prime}=\mathrm{KC} \\
& \mathrm{Q}^{\prime}=\mathrm{C}^{\prime} \mathrm{V}^{\prime} \\
& \mathrm{Q}=\mathrm{C}^{\prime} \mathrm{V}^{\prime} \\
& \mathrm{Q}=\mathrm{K} \mathrm{C} \mathrm{~V}^{\prime} \\
& \mathrm{V}^{\prime}=\frac{Q}{K C}=\frac{V}{K}
\end{aligned}
$$

Q.8. The best instrument for \qquad
Ans.8. (i)
Potentiometer
Q9. An electric current \qquad
Ans.9. (iii) 8:27

$$
\begin{aligned}
& \mathrm{R}_{1}=\rho \frac{\mathrm{l}_{1}}{\pi \mathrm{r}_{1}{ }^{2}} \\
& \mathrm{R}_{2}=\rho \frac{\mathrm{l}_{2}}{\pi \mathrm{r}_{2}{ }^{2}}
\end{aligned}
$$

$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{l}_{1}}{\mathrm{l}_{2}} \frac{\pi \mathrm{r}_{2}{ }^{2}}{\pi \mathrm{r}_{1}{ }^{2}}=\frac{\mathrm{l}_{1}}{\mathrm{l}_{2}} \times \frac{\mathrm{r}_{2}{ }^{2}}{\mathrm{r}_{1}{ }^{2}}$
$=\frac{3}{2} \times\left(\frac{3}{2}\right)^{2}=\frac{(3)^{3}}{(2)^{3}}=\frac{27}{8}$
$\therefore \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{V} / \mathrm{R}_{1}}{\mathrm{~V} / \mathrm{R}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=8 / 27$
Q.10. By increasing the temperature

Ans. 10. (iii) Specific resistance of a conductor increases and for a semiconductor decreases with increase in temperature because for a conductor, a temperature.
coefficient of resistivity $\alpha=+$ ve
and for a semiconductor, $\alpha=-$ ve
Q.11. We use alloys \qquad
Ans. 11 (i) Alloys have low temperature coefficient of resistivity and high specific resistance. If $\alpha=$ low , the value of ' R ' with temperature will not change much and specific resistance is high then required length of the wire will be less.
Q.12. A constant Voltage \qquad

Ans. 12. (iii)
$\mathrm{R}=\rho \frac{1}{\mathrm{~A}} \quad \mathrm{R}^{\prime}=\rho \frac{21}{\pi(2 r)^{2}}$
$\mathrm{R}=\rho \frac{1}{\pi \mathrm{r}^{2}} \quad \mathrm{R}^{\prime}=\rho \frac{21}{\pi 4 \mathrm{r}^{2}}$
$H=\frac{V^{2}}{R} t \quad \& \quad H^{\prime}=\frac{V^{2}}{R^{1}} t$ $\because \mathrm{V}=$ constant
$\frac{\mathrm{H}^{\prime}}{\mathrm{H}}=\frac{\mathrm{V}^{2}}{\mathrm{R}^{\prime}} \frac{\mathrm{R}}{\mathrm{V}^{2}} \frac{\mathrm{t}}{\mathrm{t}}$
$=\frac{\mathrm{R}}{\mathrm{R}^{\prime}}=\rho \frac{1}{\pi \mathrm{r}^{2}} \quad \frac{2 \pi \mathrm{r}^{2}}{\rho \mathrm{l}}$
$\frac{\mathrm{H}^{\prime}}{\mathrm{H}}=\frac{2}{1}$
$\mathrm{H}^{\prime}=2 \mathrm{H}$
Correct option is (iii)
Q.13. If the potential diff

Ans.13. We know

$$
\begin{aligned}
\mathrm{V}_{\mathrm{d}} & =\frac{\mathrm{eE}}{\mathrm{ml}} \bar{\tau} \\
& =\mathrm{e} \frac{\mathrm{~V}}{\mathrm{ml}} \bar{\tau}
\end{aligned}
$$

If temperature is kept constant, relaxation time $\bar{\tau}$ - will remain constant, and e, m are also constants.
$\mathrm{V}_{\mathrm{d}} \alpha \mathrm{V}$
$\mathrm{V}_{\mathrm{d}} \propto 2 \mathrm{~V}$
Correct option is (ii)
Q.14. The equivalent resistance \qquad
Ans. 14. (iii)
Redrawing the circuit, we get

$3 \Omega \& 6 \Omega$ are in parallel.

$$
\therefore \mathrm{R}_{1}=\frac{3 \times 6}{3+6}=\frac{18}{9}=2 \Omega
$$

Now R_{1} and 8Ω in series

$$
\therefore \mathrm{R}_{2}=\mathrm{R}_{1}+8=2+8=10 \Omega
$$

Now R_{2} and 30Ω in parallel

$$
\begin{aligned}
\text { Rep } & =\frac{\mathrm{R}_{2} \times 30}{\mathrm{R}_{2}+30}=\frac{10 \times 30}{10+30} \\
& =\frac{300}{40}=\frac{30}{4}=\frac{15}{2} \\
& =7.5 \Omega \quad \text { (iii) correct option }
\end{aligned}
$$

Q.15. The SI unit of magnetic field intensity is \qquad
Ans.15. We know

$$
\mathrm{B}=\frac{\mathrm{F}}{\mathrm{Il} \sin \theta}
$$

SI Unit of $\mathrm{B}=\frac{\mathrm{N}}{\mathrm{Am}}=\mathrm{NA}^{-1} \mathrm{~m}^{-1}$
Correct option is (ii)
Q16. The coil of \qquad
Ans. (iv) Correct Option
The coil of a moving coil galvanometer is wound over metallic frame to provide electromagnetic damping so it becomes dead beat galvanometer.
Q.17. Two wires of \qquad
Ans.17. Correct option (iii)

Area of a Square

$=\mathrm{a}^{2}$
Also here $1=4 \mathrm{a}$

$$
\begin{aligned}
a & =\frac{1}{4} \\
\therefore \text { Area } & =\frac{1^{2}}{16}
\end{aligned}
$$

Area of a Circle

$=\pi r^{2}$
Also here, $2 \pi \mathrm{r}=1$

$$
\begin{gathered}
r=\frac{1}{2 \pi} \\
\text { Now Area }=\pi\left(\frac{1}{2 \pi}\right)^{2}
\end{gathered}
$$

$$
\mathrm{A}_{1}=\frac{1^{2}}{16}
$$

$$
\mathrm{A}_{2}=\frac{1^{2}}{4 \pi}
$$

Now Magnetic moment $=\mathrm{IA}$
$\therefore \mathrm{M}_{1}=\mathrm{IA}, \quad \& \quad \mathrm{M}_{2}=\mathrm{I} \mathrm{A}_{2}$
Since I (current) is same in both
$\therefore \frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{1^{2}}{16}=\frac{4 \pi}{1^{2}}=\frac{\pi}{4}$
$\mathrm{M}_{1} \mathrm{M}_{2}=\pi: 4$
Correct option is (iii)
Q.18. The horizontal comp

Ans.18. Correct option (i)
Target law $\mathrm{B}_{\mathrm{v}}=\mathrm{B}_{\mathrm{H}} \tan \delta$
$\tan \delta=\frac{\mathrm{Bv}_{\mathrm{v}}}{\mathrm{B}_{\mathrm{H}}}$
Given $B_{H}=\sqrt{3} B_{v}$

$$
\begin{aligned}
& \tan \delta=\frac{\mathrm{Bv}}{\sqrt{3} \mathrm{Bv}}=\frac{1}{\sqrt{3}} \\
& \delta=30^{\circ} \text { or } \frac{\pi}{6} \text { radians. }
\end{aligned}
$$

Q.19. The small

Ans. 19. Correct option is Magnetic declination or Angle of declination. It is the small angle between geographic axis \& magnetic axis.
Q.20. Two coils \qquad
Ans.20. Correct option is (ii)
Mutual inductance of a pair of two coils depends on the relative position and orientation of two coils, other statements are incorrect.
Q.21. A conducting \qquad
Ans. 21. Correct option is (iv)
Current induced is $I=\frac{\text { lel }}{R}$
Now lel $=\frac{\mathrm{d} \phi}{\mathrm{dt}}$
But there is no change of flux with time, as $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{A}} \& \theta$ all remain constant with time.
\therefore No current is induced
Q22. The magnetic flux \qquad
Ans. 22.
$\phi=5 \mathrm{t}^{2}+3 \mathrm{t}+16$
$|e|=\frac{\mathrm{d} \phi}{\mathrm{dt}}$
$=\frac{\mathrm{d}}{\mathrm{dt}}\left[5 \mathrm{t}^{2}+3 \mathrm{t}+16\right]$
$=10 t+3$
$|e|_{t=4}=10(4)+3=43 \mathrm{~V}$
$\mathrm{e}=-43 \mathrm{Volts}$
Correct option is (ii)

Q23 Which of the following
Ans.23. Correct option is (iii)

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{c}}} \quad \text { in Pure Capacitor } \\
& =\frac{\mathrm{V}}{\frac{1}{2 \pi \mathrm{fc}}}=\mathrm{V} 2 \pi \mathrm{fc} \\
& \Rightarrow \mathrm{I} \alpha \mathrm{f}
\end{aligned}
$$

other parameters kept cosntant

Q24. A 20 Volt AC
Ans.24. Correct option is (i)

20 VAC
$\mathrm{V}_{\mathrm{R}}=$ Effective Voltage across R
$\therefore \mathrm{V}_{\mathrm{R}}=\mathrm{I}_{\text {eff }} \mathrm{R}$
$\mathrm{V}_{\mathrm{L}}=$ Effective Voltage across L
$\mathrm{V}_{\mathrm{L}}=\mathrm{I}_{\text {eff }} \times \mathrm{L}$
Net $V=\sqrt{V_{R}{ }^{2}+V_{L}{ }^{2}}$
$=\sqrt{\text { Ieff }^{2} \mathrm{R}^{2}+\mathrm{I}_{\text {eff }}{ }^{2} \times \mathrm{L}^{2}}$
$20=\sqrt{(12)^{2}+\mathrm{V}_{\mathrm{L}}{ }^{2}}$
$(20)^{2}=(12)^{2}+V_{L}^{2}$
$400=144+V_{L}^{2}$
$\mathrm{V}_{\mathrm{L}}=\sqrt{400-144}=\sqrt{256}=16$ Volts
Q25. The instantaneous
Ans. 25.
$\mathrm{E}=\mathrm{E}_{0} \sin \omega \mathrm{t}$
$I=I_{0} \sin (\omega t+\pi / 3)$
Correct option is (iv)
as I can lead the Voltage in RC and LCR circuit, so it can be RC or LCR circuit. (iv) is correct option.

Section - B

Q26.

$$
\begin{aligned}
& \text { Correct option is (i) } \\
& \text { Since } \quad-\text { ve electric flux } \\
& \quad=+ \text { ve flux electric flux enclosed with a cylinder } \\
& \text { here } \\
& \therefore \text { Total Electric } \\
& \text { Flux }=0 \text {. }
\end{aligned}
$$

Q27. Two Parallel \qquad
Ans. 27. (iv) Correct option.

Surface Charge density, $\sigma=26.4 \times 10^{-12} \frac{\mathrm{C}}{\mathrm{m}^{2}}$
$\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}}$
$=\frac{2 \sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}$
$=\frac{26.4 \times 10^{-12}}{8.85 \times 10^{-12}} \quad \frac{\mathrm{~N}}{\mathrm{C}}$
$=3 \frac{\mathrm{~N}}{\mathrm{C}}$
Correct option is (iv)
Q28. Consider

Ans. 28.

Equal and Opposite charges appear on the nearby conductor due to induction, but still net charge on the conductor is zero. Correct option (iv)

Q29. Three Charges \qquad
Ans.29.

Net EFI at $\mathrm{G} \neq \mathrm{O}$
Net Potential at G,
$V=\frac{K 2 Q}{r}-\frac{K Q}{r}$
$-\frac{K Q}{r}$
$=0$
Correct option is (iii)
Q30. Two parallel \qquad
Ans. 30 .

$\mathrm{C}_{\mathrm{x}}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}} \quad \mathrm{C}_{\mathrm{y}}=\frac{2 \varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
$\mathrm{U}_{\mathrm{x}}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{\mathrm{x}}} \quad \mathrm{U}_{\mathrm{y}}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}_{\mathrm{y}}}$
$\therefore \frac{\mathrm{U}_{\mathrm{x}}}{\mathrm{U}_{\mathrm{y}}}=\frac{\mathrm{C}_{\mathrm{y}}}{\mathrm{C}_{\mathrm{x}}}=\frac{2 \mathrm{C}_{\mathrm{x}}}{\mathrm{C}_{\mathrm{x}}}=\frac{2}{1}$
Correct Option is (iii)
Q31. Which among \qquad
Ans.31. Correct statement is option (iv) as Primary coil made of Thick Coper wire has very less R. Therefore negligible power loss. Rest all options are reasons for power losses in a transformer. Q32. An alternating Voltage \qquad
Ans. 32.

$\omega \uparrow$
$X_{c}=\frac{1}{2 \pi \mathrm{fc}}=\frac{1}{\omega \mathrm{c}} \downarrow$ i.e. $\mathrm{X}_{\mathrm{c}} \downarrow$
I $\uparrow \quad \therefore$ Brightness of the bulb will \uparrow.
Correct option is (ii)
Q.33. A solid Sphere \qquad
Ans.33. Correct option is (4)
As all other statements seem incorrect in context with the given figure.
Q. 34. A battery is connected

Ans. Correct option is (iv).
Rest all quantities change with area of cross-section of a conductor.
Q. 35. Three resistors......

Ans.

Given

$$
\begin{aligned}
& I=2 \mathrm{~A}, R_{2}=3 \Omega, P_{3}=6 \mathrm{~W} \\
& \text { Power across } R_{3}
\end{aligned}=V_{3} I \quad \begin{aligned}
6 \mathrm{~W} & =I^{2} R_{3} \\
\frac{6}{4} & =R_{3}=\frac{3}{2}=1.5 \Omega \\
V_{3} & =I R_{3}=2(1.5)=3 \mathrm{~V}
\end{aligned}
$$

Correct option is (iii).
Q. 36. A straight line......

Ans. $\quad I=O, V=E, \therefore E=5.6 \mathrm{~V}$

$$
r=\frac{E}{I}=\frac{5.6}{2.0}=2.8 \Omega
$$

Correct option is (i).
Q. 37. A 10 m long potentiometer

Ans. Let PQ is a potentiometer wore of length 10 m ,

$$
\begin{aligned}
& I=\frac{E}{R+R^{\prime}}=\frac{5}{480+20}=\frac{5}{500} \\
& =\frac{1}{100}=0.01 \mathrm{~A} \\
V_{P Q} & =I R_{P Q}=0.01 \times 20 \\
& =0.2 \mathrm{~V}
\end{aligned}
$$

If 10 m potentiometer wire balances $\Rightarrow 0.2 \mathrm{~V}$
Then 1 m potentiometer wire balances $\Rightarrow \frac{0.2}{10} \mathrm{~V}$
Then 6 m potentiometer wire balances $\quad \frac{0.2}{10} \times 6 \mathrm{~V}$

$$
=\frac{1.2}{10}=0.12 \mathrm{~V}
$$

Correct option is (iv).
Q. 38. The current sensitivity......

Ans. Given,

$$
\begin{aligned}
I_{g}^{\prime} & =I_{g}+\frac{20}{100} I_{g} \\
& =\frac{120}{100} I_{g}=1.2 I_{g} \\
R^{\prime} & =R+\frac{25}{100} R=\frac{125}{100} R \\
& =1.25 R \\
V_{g}^{\prime} & =? \\
V_{g}^{\prime} & =\frac{I_{g}^{\prime}}{R^{\prime}}=\frac{1.2 I_{g}}{1.25 R} \\
& =\frac{120}{125} V_{g}=\frac{25}{25} V_{g}
\end{aligned}
$$

$$
\begin{aligned}
\% \text { change } & =\frac{V_{g}^{\prime}-V_{g}}{V_{g}} \times 100 \\
& =\frac{\left(\frac{24}{25} V_{g}-V_{g}\right)}{V_{g}} \times 100 \\
& =\frac{(24-25)}{25} \times 100 \\
& =\frac{-1}{25} \times 100=4 \%
\end{aligned}
$$

Decrease by 4\%. Correct option is (iv).
Q. 39. Three infinitely long parallel

Let F_{1} is force per unit, length between A \& C

$$
\therefore \quad \text { i.e. } F_{1}=\frac{\mu_{0}}{4 \pi} \frac{2 I \times I}{2 r}
$$

And F_{2} is force per unit, length between B \& C

$$
\therefore \quad F_{2}=\frac{\mu_{0}}{4 \pi} \frac{I \times I}{r}
$$

Now net force on ' C ' is per unit length

$$
\begin{aligned}
F_{1}+F_{2} & =\frac{\mu}{4 \pi} \frac{I^{2}}{r}(1+1) \\
& =\frac{2 \mu_{0}}{4 \pi} \frac{I^{2}}{r}=F \text { (given) }
\end{aligned}
$$

$$
\begin{aligned}
F_{1}^{\prime} & =\text { Repulsive force between } \mathrm{A} \& \mathrm{C} \\
& =\frac{\mu_{0}}{4 \pi} \frac{2 I^{2}}{2 r} \\
F_{2}^{\prime}=F_{2} & =\text { A reactive force between } \mathrm{B} \& \mathrm{C}
\end{aligned}
$$

$\therefore \quad$ Net force on ' $\mathrm{C}^{\prime} F_{1}^{\prime}-F_{2}^{\prime}=0$

$$
\because \quad F_{1}^{\prime}=F_{2}^{\prime}=\frac{\mu}{4 \pi} \frac{2 I^{2}}{2 r}
$$

$\therefore \quad$ Net Force on ' C ' is zero.
Correct option is (i).
Q. 40. In a H -atom

Ans. $R=0.5 \mathrm{~A}^{\circ}$

$$
\begin{aligned}
\omega & =10 \mathrm{rps}=10 \times 2 \pi \mathrm{rad} / \mathrm{s} \\
v & =10 \mathrm{~Hz} \\
M & =I A=e v \pi r^{2} \\
& =1.6 \times 10^{-19} \times 10 \times 3.14 \times 0.5 \times 0.5 \times 10^{-10} \times 10^{-10} \\
& =1.256 \times 10^{-38} \mathrm{Am}^{2}
\end{aligned}
$$

Ans. (ii).
Q. 41. An air-cored solenoid

Ans. Magnetic field inside a solenoid

$$
B=\mu_{0} \frac{N}{l} I^{\prime}
$$

Flux linked with ' N ' turns

$$
\text { Initial flux } \quad \phi_{1}=N B A=N \mu_{0} \frac{N}{l} I A
$$

$$
\begin{aligned}
& =\mu_{0} \frac{N^{2}}{l} I A \\
& =\frac{4 \pi \times 10^{-7} \times 800 \times 800 \times 2.5 \times 2.5 \times 10^{-4}}{0.30} \\
& =16.74 \times 10^{-3} \mathrm{~Wb}
\end{aligned}
$$

Final flux $\phi_{2}=0$

$$
\text { Average back emf } \quad \begin{aligned}
|e| & =\frac{d \phi}{d t}=\frac{16.74 \times 10^{-3}-0}{10^{-3}} \\
& =16.74 \mathrm{~V}
\end{aligned}
$$

Correct option is (ii).
Q. 42.

$$
\begin{aligned}
V_{0} & =283 \mathrm{~V}, f=50 \mathrm{~Hz} \\
R & =3 \Omega, L=25.48 \mathrm{mH} \\
C & =796 \mu \mathrm{~F} \\
\left.P\right|_{\text {at resonance }} & =? \\
P & =I^{2} R \\
I & =\frac{I_{0}}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\frac{283}{3}\right) \\
& =66.7 \mathrm{~A} \\
P & =I^{2} R \\
& =(66.7)^{2} 3 \\
& =13.35 \mathrm{~kW}
\end{aligned}
$$

Power dissipated

Correct option is (iii).
Q. 43. A circular loop

Ans. Let flux linked with smaller loop is ϕ_{1} and with bigger loop is ϕ_{2}.

Fig.

Given

$$
R_{2}=0.2 \mathrm{~m}
$$

Correct answer is (iv).
Q. 44. If both the no. of turns.....

Ans.

$$
\begin{aligned}
L & =\mu_{0} \frac{N^{2}}{l} A \\
L^{\prime} & =\mu_{0} \frac{(2 N)^{2}}{2 l} A \\
& =2 \mu_{0} \frac{N^{2}}{l} A=2 L
\end{aligned}
$$

Correct answer is (ii). Doubted.
Q.45. Given below

To increase the range
Ans. 45. Correct option is (iv) as both statements are false. To increase the range of an ammeter, suitable low R (or shunt) should be connected in parallel to it. The ammeter with increased range has low resistance.
Q.46. An electron \qquad
Ans.46. Correct option is (iii)
Statements correct but reason is wrong because electrons move from a region of low potential to high potential.
Q. 47. A magnetic needle \qquad

Ans. The given statement is correct and reason is the correct explanation of the above statement. At poles, magnetic needle orients itself vertically because horizontal components of earth's field is zero there. (correct option is (i))
Q. 48. A proton and an electron,

Ans. we know $\frac{m v^{2}}{r}=B q v \sin \theta=B q v \operatorname{Sin} \theta$
Centripetal force $=$ magnetic Lorentz force
$\sin \theta=\sin 90^{\theta}=1\left(\angle\right.$ between $\left.\vec{V} \& \vec{B}=90^{\circ}\right)$
$\frac{m v^{2}}{r}=B q v$
$\frac{m v}{r}=B q$
$r=\frac{m v}{B q}=\frac{p}{B q}=\frac{\text { linear momentum }}{B q}$
Since $r=\frac{p}{B q}$
Given p, B are same
Also q for proton \& electron is same except its sign
\therefore Radius is same. So statement is correct but
reason is not the correct explanation of the given assertion.
correct option is (ii)
Q. 49. On increasing \qquad
Ans. 49. When we increase current sensitivity by increasing no. of turns, then resistance of coil also increases. So increasing current sensitivity does not necessarily imply that voltage sensitivity will increase because $V_{g}=\frac{I_{g}}{R}$
\therefore if $I_{g} \uparrow \& R \uparrow$ by different amounts, then V_{g} may increase or decrease.
Correct option is (i).
Q.50. A small object.. \qquad
Ans. 50. Ans is (ii)
$\mathrm{F}_{e}=m g \tan \theta$
$q E=m g \tan \theta$
$q=\left(\frac{m g}{E}\right) \tan \theta$
$\tan \theta=\frac{F_{e}}{m g}$

Correct ans. is (ii)
Q. 51. A free electron............

Ans. 51. Correct ans. (ii) i.e. II only
$\because F_{p}=F_{e}$
$\because F=q E$

$$
E=\text { same }
$$

$$
' q \text { ' }=\text { same }
$$

Now, $P \varepsilon=q V(r)$
$(P . \varepsilon)_{p}>(P . \varepsilon)_{e}$
Q. 52. Correct ans is (iv) i.e. step down transformer decreases the ac voltage.
Q.53. correct ans is (i)
i.e. $\frac{N_{s}}{N_{p}}=\frac{E_{S}}{E_{p}}$
i.e. if no. of turns in secondary coil are more than no. of turns in primary, then voltage is increased or stepped up in secondary, so called step up transformer.
Q. 54 Correct ans. is (i).
i.e. current is reduced if voltage is stepped - up so corresponding $I^{2} R$ losses are cut down.
Q. 55. Correct ans is (iii)

Given $E_{i}=2300 \mathrm{~V}$
$E_{o}=230 \mathrm{~V}$
$N_{p}=4000$
$N_{s}=$?
$\frac{E_{i}}{E_{o}}=\frac{N_{p}}{N_{s}}$
$\frac{2300}{230}=\frac{4000}{x}$
$x=400=N_{s}=$ No of turns in secondary coil

