DOLPHIN UNNAL MUDIYUM SCIENCE

www.Trb Tnpsc.Com

100 100

Sand

Edition

 PTA & All Govt Exam Questions & Answers included Practical Manual

DOLPHIN PUBLICATIONS

ூர்டர்களுக்கு மாவட்ட வாரியாக எங்கள் நிர்வாக எண்களை தொடர்பு கொள்ளவும்.

அரியலூர்		ூராமநாதபுரம்	
செங்கல்பட்டு		ராணிப்பேட்டை	
சென்னை		சேலம்	99435 67646
கோயம்புத்தூர்	98653 06197	சிவகங்கை	
கடலூர்	90033 00197	தென்காசி	
தர்மபுரி		தஞ்சாவூர்	
தீண்டுக்கல்		தேனி	
мбји С		தீருவள்ளூர்	
கள்ளக்குறிச்சி		தருவாளுர்	93453 14146
காஞ்சிபுரம்		தூத்துக்குடி	
கரூர்		தருச்சி	
கிருஷ்ணகிரி	89256 77710	தீருநெல்வேலி	
மதுரை	8920077710	தருப்பத்தூர்	
மயிலாடுதுறை		தருப்பூர்	
நாகப்பட்டினம்		தருவண்ணாமலை	
கன்னியாகுமரி	N	நீலகிரி	93453 30937
நாமக்கல்		வேலூர்	
பெரம்பலூர்	99435 67646	விழுப்புரம்	
புதுக்கோட்டை		விருதுநகர்	

எங்களது ஒரே நிறுவனம் டால்பின் பப்ளிகேசன்ஸ் மட்டுமே. எங்களுக்கு வேறு இணை நிறுவனங்கள் எதுவும் கிடையாது என்பதை அன்புடன் தெரிவித்துக்கொள்கிறோம்.

Mail us : dolphin.pub2005@gmail.com | Visit us : www.kalvidolphin.com

© All Copyrights reserved

Price : Rs. 171

Greetings to beloved Teachers and Students,

"Science is a beautiful gift to humanity, we should not distort it."

- Dr. APJ Abdul Kalam

As quoted by Kalam sir, Science is a beautiful gift to us. Students are the future pillars of the nation. We should develop our interest towards science and technology. It will help us think logically.

Dolphin guides – 10th Standard Science has been prepared in order to fulfill the needs of the students in different learning levels. The answers are very precise.

SALIENT FEATURES :

- 1. Answers for All Government Model and Exam Questions.
- 2. Answers for Textual Exercises.
- 3. Additional Questions and Answers for Higher Order Thinking.
- 4. Collection of Formula.
- 5. Practical Manual.

We hope our guide will kindle the scientific urge among the students. It also leads you to score 100/100 in the upcoming SSLC Public Examination.

"Dream is not that you see in sleep, dream is something that does not let you sleep"

> Best Wishes From The Publisher

புத்தகங்களை	ப் பெறுவதற்கு			
மரியாதைக்குரிய தலைமையாசிரியர்கள் / ஆசி வணக்கம். டால்பின் பப்ளிகேஷன்ஸ் நீர பேராதரவிற்கு எங்களின் சிரம்தாழ்ந்த நன்றிகள். தற்பொழுது தாங்கள் தங்களுக்குத் தேவையான ப பின்பற்றி பெற்றுக்கொள்ளலாம்.	நீங்களே எங்களின் வளாச்சியின் அடித்தளம்.			
புத்தகங்களைப் பெற				
	5306197 / 8925677710 / 9943567646			
கட்செவி எண் (Whatsapp No) : 934	5314146			
குறுஞ்செய்தீ (Sms) : 934	5330937			
வலைதளம் (Website) : www	v.kalvidolphin.com			
மின்னஞ்சல் (E-mail ID) : dolp	hin.pub2005@gmail.com			
பணம் செலுத்துவத	நற்கான விவரங்கள்			
கேட்பு வரைவோலை (D.D.) அல்லது கா டால்பின் பப்ளிகேஷன்ஸ் - ஸ்ரீவில்லிபுத் SRIVILLIPUTTUR) என்ற பெயருக்கு எடுத்த	தூர் (DOLPHIN PUBLICATIONS,			
	த விவரங்கள்			
ICICI BANK	CITY UNION BANK			
A/C No : 446005500030	A/C No : 328109000204092			
IFSC CODE : ICIC0004460	IFSC CODE : CIUB0000328			
BRANCH : Srivilliputtur	BRANCH : Srivilliputtur			
TAMILNADU MERCANTILE BANK	KARUR VYSYA BANK			
A/C No : 328150310875103	A/C No : 1804135000006000			
IFSC CODE : TMBL0000328	IFSC CODE : KVBL0001804			
BRANCH : Srivilliputtur	BRANCH : Srivilliputtur			
ССССВИК ССССВИК ПОЛОВИ СОССА ПОЛОВИ СОССА ПОЛОВИ СОССА ПОЛОВИ СОССА ОТОЛОВИСТИКА СОССА ВОДИ ПОЛОВИСАТОВИ СОССА ВОДИ ПОЛОВИСАТОВИ СОССА ВОДИ ПОЛОВИСАТОВИ СОССА ВОДИ ПОЛОВИСА СОССА ОТОЛОВИСА СОССА ВОДИ ПОЛОВИСА СОССА ВОДИ ПОЛОВИСА СОССА ВОДИ ПОЛОВИСА СОССА ВОДИ ПОЛОВИ СО				
	77710, 99435 67646			

- அறிவியல் மனித இனத்துக்கான ஒரு அழகான பரிசு நாம் அதை சிதைத்து விடக்கூடாது.
- நாம் அனைவருக்கும் ஒரே மாதிரி திறமை இல்லாமல் இருக்கலாம். ஆனால் அனைவருக்கும் திறமையை வளர்த்துக்கொள்ள ஒரே மாதிரி வாய்ப்புகள் உள்ளன.
- நீங்கள் சூரியனைப் போலப் பிரகாசிக்க வேண்டுமானால், முதலில் சூரியனைப்போல எரிய வேண்டும்.
- முடியாத விஷயங்கள் குறித்து கனவு காண்பவர்களே அவற்றை வெற்றி கொள்ள முடியும்.
- கஷ்டம் வரும் போது கண்ணை மூடாதே, அது உன்னைக் கொன்றுவிடும். கண்ணைத் திறந்து பார், நீ அதை வென்று விடலாம்

- Dr. A.P.J. அப்துல்கலாம்

Table Of Contents

Unit	Title	Page No.	Month
1.	Laws of Motion	1	June
2.	Optics	12	July
3.	Thermal Physics	21	August
4.	Electricity	28	September
5.	Acoustics	40	October
6.	Nuclear Physics	50	November
7.	Atoms and Molecules	60	June
8.	Periodic Classification of Elements	68	July
9.	Solutions	75	August
10.	Types of Chemical Reactions	82	October
11.	Carbon and its Compounds	91	November
12.	Plant Anatomy and Plant Physiology	98	June

Unit	Title	Page No.	Month
13.	Structural Organisation of Animals	104	June
14.	Transportation in Plants and Circulation in Animals	109	July
15.	Nervous System	118	July
16.	Plant and Animal Hormones	126	August
17.	Reproduction in Plants and Animals	133	August
18.	Genetics	142	September
19.	Origin and Evolution of Life	151	October
20.	Breeding and Biotechnology	157	October
21.	Health and Diseases	165	November
22.	Environmental Management	173	November
23.	Visual Communication	181	December
	Practical	184	
	APRIL - 2024	201	

v

www.Trb Tnpsc.Com

DOLPHIN-10TH Science

UNNAL MUDIYUM

S. No.	Formula			
1.	Linear Momentum	P = m x v	Kg ms ⁻¹	
2.	Torque	$\tau = F x d$	Nm	
3.	Moment of Couple	$\mathbf{M} = \mathbf{F} \mathbf{x} \mathbf{S}$	Nm	
4.	Resultant force parallel forces acting in the same direction	$F_{net} = F_1 + F_2$	Ν	
5.	Resultant force parallel unequal forces acting in the same direction	$\mathbf{F}_{\text{net}} = \mathbf{F}_2 - \mathbf{F}_1$	N	
6.	Force	F = m x a	Ν	
7.	Impulse	J = F x t	Ns	
8.	Acceleration due to gravity	$g = \underline{GM} \\ R^2$	ms ⁻²	
9.	Change in momentum	$\Delta p = P_f - P_i$	Kg ms ⁻¹	
10.	Mass of the Earth	$M = \frac{gR^2}{G}$	kg	

Textbook Evaluation

PAGE-13

I. CHOOSE THE CORRECT ANSWER

- 1. Inertia of a body depends on
- (APR-24)

(PTA-1)

- a) weight of the object
- b) acceleration due to gravity of the planet
- c) mass of the object d) Both a & b
 - Ans: c) mass of the object
- 2. Impulse is equal to
 - a) rate of change of momentum
 - b) rate of force and time
 - c) change of momentum

dolphin.pub2005@gmail.com

d) rate of change of mass

Ans: c) change of momentum

3. Newton's III law is applicable

- a) for a body is at rest
- b) for a body in motion
- c) both a and b
- d) only for bodies with equal masses

Ans: c) both (a) & (b)

www.kalvidolphin.com

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

1

www.Trb Tnpsc.Com

D	DLPHIN-10 TH Scie	nce UN	IT-1			UNNA	AL MUDIYU	Э М
4.	Plotting a graph f	for momentum on the X-	9.	If the E	Earth shr	inks to 50	% of its r	eal
	axis and time on Y-axis. Slope of momentum-			radius i	ts mass	remaining	the same,	the
	time graph gives			weight o	f a body o	on the Eartl	h will	
	a) Impulsive force	b) Acceleration		a) decrea	se by 50%	b) increase	e by 50%	
	c) Force	d) Rate of force		c) decrea	se by 25%	d)increase	by 300%	
		Ans: c) Force					rease by 300	0%
5.	In which of the foll	owing sport the turning of	10.	. To pro	oject the	rockets	whice of	the
	effect of force used			-	•	e(s) is /are		
	a) swimming	b) tennis			5 FF-		EP-21.AUG-	22)
	c) cycling	d) hockey		a) Newto	on's third l	aw of motio)
		Ans: c) cycling		/		f gravitation		
6.	The unit of 'g' is m	s ⁻² . It can be also		· ·			r momentum	L
	expressed as			d) both a	and c	Ans:	d) both a an	d c
	a) cms^{-1}	b) Nkg^{-1}				<u> </u>		
	c) N m ² kg ⁻¹	d) $cm^2 s^{-2}$			TTION	AL QUES	TTONS	
		Ans: b) NKg ⁻¹		ADD		AL QUES	TUNS	
7.	One kilogram force	e equals to	11.				o bodies pla	
	a) 9.8 dyne	b) $9.8 \times 10^4 \text{ N}$	(P)	at a certa	ain distan	ce. If the di	istance betw	een
	c) 98×10^4 dyne	d) 980 dyne		them is c	doubled tl	hen the gra	vitational fo	rce
		Ans: c) 98 × 10 ⁴ dyne	17	F will be		1 > E/2	(PTA-	5)
8.	The mass of a bo	dy is measured on planet		a) 2F c) F/4		b) F/2 d) 4F	Ans: c)	F/4
		en it is taken to a planet of		0)1/4		u) +1	Ans. cj	L'/ T
	0	f the Earth then its value		The fo	rce req	uired to	produce	an
	will be	kg		accelerat	ion of 1cn	n s ⁻² on a be	ody of mass	1 g
	a) 4 M	b) 2M		is			(PTA-	6)
	c) M/4	d) M Ans: d) M		a) 1 N		b) 10 N		
				c) 10^2N		d) 1 dyne	Ans: d) 1 dy	yne
		II. FILL IN T	rhe i	BLANKS				
1	To moduce e dicula						Ange Egy	
1.	To produce a displa			• • • • • • •	1. : . 1 .	T1: 1 .	Ans: For	rce
2.	by	vard when sudden brake is ap	pried	m a movif	ng venicie.		explained	ion
3.		clockwise moments are take	en as		and the			
	taken as						gative, Posit	
4.		to change the speed of car.					Ans: Go	

dolphin.pub2005@gmail.com

2

DC)LPH	HIN-10 TH Scie	nce	UNIT-1	UNNAL MUDIYUM			
I	III. STATE WHETHER THE FOLLOWING STATEMENTS ARE TRUE OR FALSE.							
	C	DRRECT THE	STATE	MENT IF IT IS FALSE				
1.	1. The linear momentum of a system of particles is always conserved.							
	Ans		: False.					
	Cor	rect Statement	: The lin	near momentum of a system of p	particles is always conserved when no			
			extern	al force is applied.				
2.	Арр	arent weight of	f a person	is always equal to his actual wei	ght.			
	Ans		: False.					
	Cor	rect Statement	: Appar	ent weight and actual weight is n	ot equal during upward or downward			
			motior	1.				
3.	Wei	ght of a body is	greater a	at the equator and less at the pol	ar region.			
	Ans		: False.					
	Cor	rect Statement	: Weigh	t of a body is less at the equator a	and greater at the polar region.			
4.	Tur	ning a nut with	a spanne	er having a short handle is so eas	y than one with a long handle.			
	Ans		: False.	Dea				
	Cor	rect Statement	: Turnin	g a nut with a spanner having a l	ong handle is so easy than one with a			
			short]	handle.				
5.	The	re is no gravi	ty in the	orbiting space station around	the Earth. So the astronauts feel			
	weig	ghtlessness.		N'U				
	Ans		: False.					
	Cor	rect Statement	-	-	al acceleration, they are under free fall			
			condit	ion, So the astronaut and space stat	ion are in the state of weightlessness.			
			IV.	MATCH THE FOLLOWING	PTA – 1)			
	S.		1					
	No.	Column	Ι	Column II	Answer			
	1.	Newton's I law		(a) propulsion of a rocket	b) stable equilibrium of a body			
	2.	Newton's II law	1	(b) stable equilibrium of a body	c) law of force			
	3.	Newton's III lav	W	(c) law of force	d) flying nature of bird			
	4.	Law of conserv	vation of	(d) flying nature of bird	a) propulsion of a realist			
	7.	linear momentu	ım		a) propulsion of a rocket			

dolphin.pub2005@gmail.com

DOLPHIN-10TH Science

V. ASSERTION & REASONING

Mark the correct choice as

- a) If both the assertion and the reason are true and the reason is the correct explanation of assertion.
- **b)** If both the assertion and the reason are true, but the reason is not the correct explanation of the assertion.
- c) Assertion is true, but the reason is false.
- d) Assertion is false, but the reason is true.
- 1. Assertion : The sum of the clockwise moments is equal to the sum of the anticlockwise moments.
 - **Reason** : The principle of conservation of momentum is valid if the external force on the system is zero.

Ans : b) If both the assertion and the reason are true, but the reason is not the correct explanation of the assertion

2. Assertion : The value of 'g' decreases as height and depth increases from the surface of the Earth.
Reason : 'g' depends on the mass of the object and the Earth
Ans : c) Assertion is true, but the reason is false

ADDITIONAL QUESTIONS

- 3. Understand the assertion and the reason given and choose the correct choice.
 - Assertion : When a person swims he pushes the water using the hands backward and the water pushes the person in the forward direction
 - **Reason** : For every action there is an equal and opposite reaction
- a) Both the assertion and the reason are true and the reason is the correct explanation of assertion.
- b) Both the assertion and the reason are true, but the reason is not the correct explanation of the assertion.
- c) Assertion is true, but the reason is false.
- d) Both the assertion and the reason are false.

Ans : a) Both the assertion and the reason are true and the reason is the correct explanation of assertion.

VI. ANSWER BRIEFLY

1. Define inertia. Give its classification.

(AUG -22, APR -23)

The inherent property of a body to resist any change in its state of rest (or) the state of uniform motion, unless it is influenced upon by an external unbalanced force is known as Inertia.

Types of Inertia:

- ii) Inertia of rest.
- iii) Inertia of motion.
- iv) Inertia of direction.
- Classify the types of force based on their application. (AUG-22)
 Like parallel forces.
 Unlike parallel forces.

www.kalvidolphin.com

dolphin.pub2005@gmail.com

UNNAL MUDIYUM

www.Trb Tnpsc.Com

(PTA-6) er pushes

UNIT-1

DOLPHIN-10TH Science

UNIT-1

UNNAL MUDIYUM

 If a 5 N and a 15 N forces are acting opposite to one another. Find the resultant force and the direction of action of the resultant force.
 E₁ = 5 N = E₂ = 15 N

$$\frac{F_1 = 5 \text{ N}}{\text{Resultant Force}} = \frac{F_2 - F_1}{15N - 5N}$$
$$= 10N.$$

The direction of action of the resultant force will be in the direction of 15 N.

. Differentiate mass and weight. (MAY-22)						
Sl. No.	Mass	Weight				
1.	Quantity of matter contained in the body.	Gravitational force exerted on a body due to the gravity.				
2.	SI unit is kilogram.	SI unit is Newton.				
3.	It is a Scalar quantity	It is a vector quantity				

5. Define moment of a couple.

Two equal and unlike parallel forces applied simultaneously at two distinct points constitute a couple. The line of action of the two forces does not coincide. It does not produce any translatory motion since the resultant is zero. But, a couple results in causes the rotation of the body. Rotating effect of a couple is known as moment of a couple.

6. State the principle of moments.

When a number of like or unlike parallel forces act on a rigid body and the body is in equilibrium, then the algebraic sum of the moments in the clockwise direction is equal to the algebraic sum of the moments in the anticlockwise direction.

 $\mathbf{F}_1 \times \mathbf{d}_1 = \mathbf{F}_2 \times \mathbf{d}_2$

dolphin.pub2005@gmail.com

7. State Newton's second law. (G.MQ, MAY-22) The force acting on a body is directly proportional to the rate of change of linear momentum of the body and the change in momentum takes place in the direction of the force.

www.Trb Tnpsc.Com

8. Why a spanner with a long handle is preferred to tighten screws in heavy vehicles?

A spanner with a long handle give high tension with less force the turning effect of a body depends upon the distance of the line of action of the applied force from the axis of rotation. So spanner with long handle is preferred.

9. While catching a cricket ball the fielder lowers his hands backwards. Why?

The fielder lowers his hands to increase the interval of time to catch the ball, which resulting in a lesser impulse on his hands.

10. How does an astronaut float in a space shuttle?

Astronauts are not floating but falling freely around the earth due to their huge oribital velocity. Since space shuttle and astronauts have equal acceleration, they are under free fall condition.

ADDITIONAL QUESTIONS

- 11. Use the analogy to the fill the blank (PTA-4)
 - a) opening a door : Moment of force Opening a water tap :_____ Answer: moment of couple
 - b) pushing a bus by a group of people : Like parallel forces

 Tug of war
 : ______

 Answer : unlike parallel forces

5

www.kalvidolphin.com

www.Trb Tnpsc.Com

DOLPHIN-10 TH Science	UNIT-1	UNNAL MUDIYUM
	PTA - 3)	equatorial region. So weight of apples will be more at poles than at equator.
Weight of a body varies from one another place on the Earth since it de the acceleration due to gravity of the which is not the same at all places on Since, weight W = mg, as g varies, th of a body is more at the poles that	the Earth (g),the weight	Write short notes on gears. (SEP-20) A gear is a circular wheel with teeth around its rim. It helps to change the speed of rotation of a wheel by changing the torque and helps to transmit power.
VII. SOL	VE THE GIVE	IN PROBLEMS
1. Two bodies have a mass ratio of 3:4 applied on the bigger mass prod acceleration of 12 ms ⁻² . What could acceleration of the other body, if the force acts on it. $m_1: m_2$ 3:4 $a_2 = 12 ms^{-2}$ $a_1 = ?$ According to Newton's second law off $F_1 = -F_2$ $m_1 x a_1 = -(m_2 x a_2)$ $3 x a_1 = 4 x 12$ $a_1 = \frac{48}{3}$ $a_1 = 16ms^{-2}$ So acceleration due to the same the smaller body $a_1 = 16 ms^{-2}$	duces an d be the the same f motion.	A mechanic unscrew a nut by applying a force of 140 N with a spanner of length 40 cm. What should be the length of the spanner if a force of 40 N is applied to unscrew the same nut? Force $F_1 = 140$ N Length $(I_1) = 40$ cm = 0.4m Force, $F_2 = 40$ N Length, $(I_2) = ?$ ngth of the spanner, $F_1I_1 = F_2I_2$ $140 \ge 0.4 = 40 \ge I_2$ $I_2 = \frac{140 \ge 0.4}{40}$ Length of the spanner $(I_2) = 1.4$ m
2. A ball of mass 1 kg moving with a sp ms-1 rebounds after a perfect elastic		The ratio of masses of two planets is 2:3 and
with the floor. Calculate the change	compton	the ratio of their radii is 4:7. Find the ratio of
momentum of the ball.		their accelerations due to gravity.
Mass of the ball (m) = 1 kg Initial speed (u) = 10 ms^{-1} Final speed (v) = 10 ms^{-1} Change in momentum		Accelerations due to = $\frac{GM}{R^2}$ gravity (g) $\frac{1}{R^2}$ $g_1: g_2 = ?$
$\Delta p = mv - mu$ $\Delta p = 1 (-10) - 1 (1)$	10)	$M_1: M_2 = 2:3$
= -10 - 10 $\Delta p = -20 \text{ kg m s}^{-1}.$		$R_1: R_2 = 4: 7$
dolphin.pub2005@gmail.com	6	www.kalvidolphin.com

www.Trb Tnpsc.Com

DC	DLPHIN-10 TH Science	UNIT-	1 UNNAL MUDIYUM
	$\frac{g_1}{g_2} = \frac{M}{M}$ $= \frac{2}{2}$	$\begin{bmatrix} \frac{1}{4_2} \times \frac{R_2^2}{R_1^2} \\ \frac{2}{2} \times \frac{7^2}{4^2} \\ \frac{8}{8} = \frac{49}{24} \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$	A force of 5 N applied on a body produces and acceleration 5 cm s ⁻² . Calculate the mass of the body. (PTA-5) F = 5 N $a = 5 cm s-2 (0.05 m s-2)$ $F = Ma$ F
	ADDITIONAL QUESTION		$m = \frac{-}{a}$ $m = \frac{5}{0.05}$
5.	mass (m) = 50 k Apparent weight R = m (g	$\begin{array}{c} \begin{array}{c} - \\ n \text{ of mass} \\ \hline \textbf{(PTA-1)} \\ ms^{-2}. \\ \hline ms^{-1} \\ \hline \textbf{cg} \\ \hline \textbf{g-a} \\ \hline \textbf{(9.8 - 1.8)} \end{array}$	m = 100 kg . Calculate the velocity of a moving body of mass 5kg whose linear momentum is 2KGms⁻¹ Linear momentum = 2 kg ms ⁻¹ Mass = 5 Kg Linear momentum = Mass x Velocity Velocity = Linear momentum Mass V = 2/5 = 0.4ms ⁻¹
	Vii	II. ANSWER I	IN DETAIL
1.	What are the types of inertia? example for each type. (PTA-3, AUG-22.		x : When you vigorously shake the branches of a tree, some of the leaves and fruits are detached and they fall down.

II) Inertia of motion:

The resistance of a body to change its state of motion is called inertia of motion.

Ex:An athlete runs some distance before jumping because this will help him jump longer and higher.

III) Inertia of direction:

I) Inertia at rest

I) Inertia at rest:

II) Inertia of motion

III) Inertia of direction

of rest is called inertia of rest.

There are 3 types of Inertia. They are

The resistance of a body to change its state

www.Trb Tnpsc.Com

DOLPHIN-10TH Science

UNIT-1

The resistance of a body to change its direction of motion is called inertia of direction.

Ex:When you make a sharp turn while driving a car, you tend to lean sideways,

2. State Newton's laws of motion?

(SEP-21, AUG-22)

Newton's First Law:

This law states that everybody continues to be in its state of rest or the state of uniform motion along a straight line unless it is acted upon by some external force.

Newton's Second Law:

According to this law, the force acting on a body is directly proportional to the rate of change of linear momentum of the body and the change in momentum takes place in the direction of the force.

Newton's Third Law:

Newton's third law states that for every action, there is an equal and opposite reaction. They always act on two different bodies.

3. Deduce the equation of a force using Newton's second law of motion. (APR - 23)

This law helps us to measure the amount of force. So it is also called as law of force.

Let 'm' be the mass of a moving body, moving along a straight line with an initial speed 'u' after a time interval of 't', the velocity of the body changes to 'v' due to the impact of an unbalanced external force 'F'.

Initial momentum of the body Pi = muFinal momentum of the body $P_f = mv$ Change in momentum $\Delta_p = P_f - P_i$ = mv - mu

By Newton's second law of motion, Force, $F \propto$ rate of change of momentum.

 $F \propto$ change in momentum / time.

 $F \alpha (mv - mu) / t$

F = Km (v-u) / t

Here K is the proportionality constant. K=1 in all systems of units. Hence,

$$F = \frac{m(v-u)}{t}$$

Since, acceleration = change in velocity/time, a = (v-u)/t. Hence, we have

4. State and prove the law of conservation of linear momentum. (G.M.Q)

There is no change in the linear momentum of a system of bodies as long as no net external force acts on them.

Let two bodies A and B having masses m_1 and m_2 move with initial velocity u_1 and u_2 in a straight line. Let the velocity of the first body be higher than that of the second body. i.e, $u_1>u_2$. During an interval of time t second, they tend to have a collision. After the impact, both of them move along the same straight line with a velocity v_1 and v_2 respectively. Force on body B due to A,

$$F_{\rm A} = m_2 (v_2 - u_2)/t$$

Force on body A due to B,

 $F_{\rm B} = m_1 (v_1 - u_1)/t$

By Newton's III law of motion,

Action force = Reaction force

$$F_B = -F_A$$

 $m_1 (v_1-u_1)/t = -m_2 (v_2-u_2)/t$

 $\mathbf{m}_1\mathbf{v}_1 + \mathbf{m}_2\mathbf{v}_2 \quad = \mathbf{m}_1\mathbf{u}_1 + \mathbf{m}_2\mathbf{u}_2$

The above equation confirms in the absence of an external force, the algebraic sum of the momentum after collision is numerically equal to sum of the momentum before collision.

dolphin.pub2005@gmail.com

DOLPHIN-10TH Science

UNIT-1

UNNAL MUDIYUM

5. Describe rocket propulsion.

(PTA – 4, SEP-20, AUG-22)

- i) Propulsion of rockets is based on the law of conservation of linear momentum as well as Newton's third law of motion.
- ii) Rockets are filled with a fuel in the propellant tank.
- iii) When the rocket is fired, this fuel is burnt and a hot gas is ejected with a high speed from the nozzle of the rocket, producing a huge momentum.
- iv) To balance this momentum, an equal and opposite reaction force is produced in the combustion chamber, which makes the rocket project forward.
- v) While in motion, the mass of the rocket gradually decreases, until the fuel is completely burnt out.
- vi) Since, there is no net external force acting on it, the linear momentum of the system is conserved.
- vii) The mass of the rocket decreases with altitude, which results in the gradual increase in velocity of the rocket.
- viii) At one stage, it reaches a velocity, which is sufficient to just escape from the gravitational pull of the Earth. This velocity is called escape velocity.

6. State the universal law of gravitation and derive its mathematical expression (JUNE-23)

This law states that every particle of matter in this universe attracts every other particle with a force. This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between the centers of these masses. The direction of the force acts along the line joining the masses.

Force between the masses is always attractive and it does not depend on the medium where they are placed

Let, m_1 and m_2 be the masses of two bodies A and B placed r metre apart in space Force $F \propto m_1 \times m_2$

$$F \propto \frac{1}{r^2}$$

On combining the above two expressions $F \propto \frac{m_1 \times m_2}{r^2}$

$$F = \frac{Gm_1 m_2}{r^2}$$

Where G is the universal gravitational constant. Its value in SI unit is 6.674×10^{-11} N m² kg⁻².

7. Give the applications of gravitation.

- i) Dimensions of the heavenly bodies can be measured using the gravitation law.
- ii) Mass of the Earth, radius of the Earth, acceleration due to gravity, etc. can be calculated with a higher accuracy.
- iii) Helps in discovering new stars and planets.
- iv) One of the irregularities in the motion of stars is called 'Wobble' lead to the disturbance in the motion of a planet nearby. In this condition the mass of the star can be calculated using the law of gravitation.
- v) Helps to explain germination of roots is due to the property of geotropism which is the property of a root responding to the gravity.
- vi) Helps to predict the path of the astronomical bodies.

ADDITIONAL QUESTIONS

8. i) Shock absorbers are used in luxury buses.why? (PTA -2)

Absorbers are used in luxury buses shock absorbers to reduce jerks while moving on uneven roads.

dolphin.pub2005@gmail.com

UNIT-1

UNNAL MUDIYUM

ii) A weight of a man 686N on the surface of the earth. Calculate the weight of the same person on moon ('g' value of a moon is 1.625 ms⁻²)

W	=	686 N
W	=	mg
m	=	W/g
	=	686 9.8
	=	70 kg

Weight on moon,

W	=	mg
	=	70 x 1.625
		113.75 N

iii) Name the law of motion used in flying of birds. Give another example for the same law Newton's third law of motion.

(E.g) Man swimming and Rocket propulsion.

When a person swims he pushes the water using the hands backwards (Action), and the water pushes the swimmer in the forward direction (Reaction)

9. A body of mass m is initially moving with a velocity u. When a force F acts on the body it picks up velocity v in t second so that the acceleration (a) is produced. Using this data derive the relation between the force, mass and acceleration. (PTA-5)

Let 'm' be the mass of a moving body, moving along a straight line with an initial speed 'u' after a time interval of 't', the velocity of the body changes to 'v' due to the impact of an unbalanced external force 'F'.

Initial momentum of the body $P_i = mu$ Final momentum of the body $P_f = mv$ Change in momentum $\Delta_p = P_f - P_i$ = mv - mu

By Newton's second law of motion,

Force, $F \propto$ rate of change of momentum.

www.Trb Tnpsc.Com

 $F \propto$ change in momentum / time.

 $F \; \alpha \; (mv-mu) \; / \; t$

 $\mathbf{F} = \mathbf{Km} \left(\mathbf{v} \textbf{-} \mathbf{u} \right) / \mathbf{t}$

Here K is the proportionality constant. K=1 in all systems of units. Hence,

$$F = \frac{m(v-u)}{t}$$

Since, acceleration = change in velocity/time,

a = (v-u)/t. Hence, F = $m \times a$

Force = mass × acceleration

- 10. At what height from the centre of the earth surface, the acceleration due to gravity will be 1/4 the of its value on the surface of the earth. (PTA-6)
 The acceleration due to gravity = g

Height from the centre of the Earth, R' = R + h

The acceleration due to gravity at that height,

g' = $\frac{g}{4}$

Ŭ	4			
		g'		$GMm/(R')^2$
				$GMm/(R)^2$
		g g'	=	$\left(\frac{R'}{R}\right)^2$
			=	$\left(\frac{R+h}{R}\right)^2$
			=	$\left(1+\frac{h}{R}\right)^2$
		4	=	$\left(1+\frac{h}{R}\right)^2$
		2	=	$1 + \frac{h}{R}$
		h	=	R
	Since	R'	=	R + h
		h	=	R'
	So]	R'	=	2R

From the centre of the Earth, the object is placed at twice the radius of the earth.

dolphin.pub2005@gmail.com

www.Trb Tnpsc.Com

DOLPHIN-10TH Science

UNIT-1

UNNAL MUDIYUM

IX. HOT QUESTIONS

1. Two blocks of masses 8 kg and 2 kg respectively lie on a smooth horizontal surface in contact with one other. They are pushed by a horizontally applied force of 15 N. Calculate the force exerted on the 2 kg mass.

Mass of block 1, m ₁	=	8
Mass of block 2, m ₂	=	2kg
Force, F ₁	=	15N
Force exerted on 2	_	massXacceleration
kg, F ₂	_	massAacceleration
	=	$\frac{m_2}{m_1 + m_2} \ge F$
	=	$\frac{2}{8+2}$ X 15
	=	3 N
Force exerted on 2	_	3N
kg, F_2	_	210

2. A heavy truck and bike are moving with the same kinetic energy. If the mass of the truck is four times that of the bike, then calculate the ratio of their momenta. (Ratio of momenta = 1:2)

Since K.E are equal

$\frac{1}{2} m_l {v_l}^2$	=	$\frac{1}{2}m_2v_2^2$
$\frac{1}{2} m_1 v_1^2$	-	$\frac{1}{2}(4)(m_1) v_2^2$
v_1^2	=	$4 v_2^2$
v ₁	=	2 v ₂

Ratio of momenta	$= -\frac{m_1v_1}{m_2 v_2}$
	$= \frac{m_1 v_1}{4m_1 \left(\frac{v_1}{2}\right)}$
	$=$ $\frac{2}{4}$
	$=\frac{1}{2}$

The ratio of their momenta = 1:2

- 3. "Wearing helmet and fastening the seat belt is highly recommended for safe journey" Justify your answer using Newton's laws of motion.
 - According to Newton's law of inertia, the passenger in the car are more likely to maintain the same state of motion, which will result in the banging the glass (wind shield) or thrown away in the front by breaking the glass windshield. So wearing seatbelts is highly recommended for a safe journey.
 - ii) According to Newton's third law, an equal and opposite reacting force on the ground is exerted on your body or head. When you do not wear a helmet, this reacting force can cause fatal head injuries.

dolphin.pub2005@gmail.com

www.Trb Tnpsc.Com

DOLPHIN-10TH Science

UNNAL MUDIYUM

S. No.	Formula		
1.	Number of moles	Mass	
1.	Number of moles	Atomic Mass	
2.	Number of moles	Mass	
2.	Number of moles	molecular Mass	
3.	No. of molecules	Mass x Avogadro's Number	
5.	No. of molecules	molecular Mass	
4.	No. of molecules	Mass x Avogadro's Number	
7.	No. of molecules	Atomic Mass	
5.	Relative molecular mass	2 x Vapour density	
6.	Mass percentage of an element	Mass of that element in the compound	
0.	Mass percentage of an element	Molar mass of the compound	
7.	Atomicity	Molecular mass	
/.	Atomicity	Atomic mass	

Textbook Evaluation

PAGE-102

I. CHOOSE THE BEST ANSWER

 1. Which of the following has the smalles mass? a) 6.023 × 10²³ atoms of He 	ta) Glucoseb) Heliumc) Carbon dioxided) HydrogenAns: c) Carbon dioxide
 b) 1 atom of He c) 2 g of He d) 1 mole atoms of He Ans: b) 1 atom of He 	3. The volume occupied by 4.4 g of CO2 at S.T.Pa) 22.4 litreb) 2.24 litrec) 0.24 litred) 0.1 litre
2. Which of the following is a triatomic molecule? (PTA – 1, GMQ)	
dolphin pub2005@gmail.com	wayay kalvidolphin com

dolphin.pub2005@gmail.com

www.kalvidolphin.com

www.Trb Tnpsc.Com

D	DLPHIN-10 TH Science	UNI	Т-7	UNNAL MUDIYUM
4.	Mass of 1 mole of Nitrogen ator	n is	9. The gram n	nolecular mass of oxygen molecule
	a) 28 amu b) 14 amu		is	(AUG-22)
	c) 28 g d) 14 g	Ans: d) 14 g	a) 16 g	b) 18 g
5.	Which of the following represen	nts 1 amu?	$\frac{c) 32 g}{10 c}$	d) 17 g Ans: c) 32 g
	 a) Mass of a C - 12 atom b) Mass of a hydrogen atom c) 1/12th of the mass of a C - 12 a d) Mass of O - 16 atom Ans: c) 1/12th of the mass of 	of a C-12 atom	10. One mole molecules. a) 6.023 × 1 c) 3.0115 ×	· · · · · · · · · · · · · · · · · · ·
6.	incorrect? a) 12 gram of C -12 contain number of atoms.	gas contains ules. gas contains ds for 6.023 × en gas contains	 11. If a molect atoms, then a) mono atom b) hetero atom c) homo atom d) poly atom 12. Analyse the	TIONAL QUESTIONS sule is made of similar kind of it is called (PTA-6) mic molecule mic molecule nic molecule Ans: c) homo atomic molecule e following and choose the correct
7.	The volume occupied by 1 molegas at S.T.P isa) 11.2 litreb) 5.6 litrec) 22.4 litred) 44.8 litreAn		ii) A hetero a different ki	S) (PTA – 4) a has considerable mass atomic molecule is formed from nds of atoms ber and atomic mass of an element
8.	In the nucleus of ₂₀ Ca ⁴⁰ , there a a) 20 protons and 40 neutrons b) 20 protons and 20 neutrons c) 20 protons and 40 electrons d) 40 protons and 20 electrons Ans: b) 20 protons and	7.	a) i, ii and ii b) i and iii a c) Only (ii) d) only (iii)	is correct
		II. FILL IN T	HE BLANKS	
1.	Atoms of different elements havi	ng n	hass number, but	atomic numbers are

1.	Atoms of different elements having	mass number, but	atomic numbers are
	called isobars.		Ans: same, different
2.	Atoms of one element can be transmuted into a	toms of other element b	ру
			Ans: Artifical transmutation
3.	The sum of the numbers of protons and neutron	ns of an atom is called it	s Ans: Mass number
4.	Relative atomic mass is otherwise known as	·	Ans: Standard Atomic Weight
5.	The average atomic mass of hydrogen is	amu. (PTA-6)	Ans: 1.008
6.	If a molecule is made of similar kind of atoms,	then it is called	atomic molecule. (PTA-4)
			Ans: Homo
dol	phin.pub2005@gmail.com	61	www.kalvidolphin.com
		~ -	

www.Trb Tnpsc.Com

DOL	PHIN-10 TH	¹ Scie	ence	UNIT-7	UNNAL MUDIYU.
7. T	The number o	faton	ns present in a m	olecule is called its	Ans: Atomici
8. O	One mole of a	ıny ga	s occupies	ml at S.T.P.	Ans: 2240
			horous is		Ans:
10. A	Atoms of diffe	erent e		DITIONAL QUEST same number of	TIONS _ are called isotones (PTA-4) Ans : neutro
			IV.	MATCH THE FOLLO	DWING
1.					
	S.	No.	Column I	Column II	Answer
		1	8 g of O ₂	4 moles	0.25 moles
		2	4 g of H ₂	0.25 moles	2 moles
		3	52 g of He	2 moles	13 moles
		4	112 g of N ₂	0.5 moles	4 moles
		5	35.5 g of Cl ₂	13 moles	0.5 moles
_					
					CORRECT STATEMENT)
		s som		more than one compo	ound.
A	Ans		: True.	De	<u></u>
2. N	Noble gases a	re Di	atomic.	A	
	Ans		: False.	TEU	
C	Correct State	ement	: Noble gases	are Monoatomic.	
3. T	The gram ato	omic r	nass of an elem	ent has no unit.	
А	Ans		: False.	$\wedge U$	
C	Correct State	ement	: The gram ato	omic mass of an element	t has unit.
4. 1	mole of Gol	ld and	l Silver contain	same number of atoms	ð.
А	Ans		: True.		
5. N	Aolar mass o	of CO	, is 42g.		
	Ans		: False.		
		ement	: Molar mass	of CO₂ is 44 g.	
			V	ASSERTION AND RE	ASON
Answ	ver the follow	wing		the data given below:	
		0	, R explains the	0	
,	A is correct, R		-		
,	A is wrong, R		-		
iv) A	and R are co	orrect	, R doesn't expla	ins A.	
1. A	Assertion :	The R	elative Atomic n	nass of aluminium is 27	
R	Reason : A	An ato	om of aluminium	is 27 times heavier than	n $1/12^{\text{th}}$ of the mass of the C – 12 atom.
					A and R are correct, R doesn't explains
dalal	hin.pub2005	am	ail.com		www.kolvidolphin.com
doipt		wgin	a11.00111	62	www.kalvidolphin.cor

www.Trb Tnpsc.Com

DOLPHIN-10TH Science

UNIT-7

UNNAL MUDIYUM

(PTA – 3)

2. Assertion : The Relative Molecular Mass of Chlorine is 35.5 a.m.u. **Reason** : The natural abundance of Chlorine isotopes are not equal.

Ans: iii) A is wrong, R is correct.

		VI. SHORT AN	SWE	R QUESTIONS
1.	Re ratio bo 1/12th	: Relative atomic mass. (PTA-3, AUG-22, JUNE-23) lative atomic mass of an element is the etween the average mass of its isotopes to part of the mass of a carbon–12 atoms moted as A.	e o	Molecular mass of Ammonia = $14 + 3 = 17$ g. [%] of = Mass of nitrogen Nitrogen = $\frac{Mass of nitrogen}{Molecular mass of Ammonia} \times 100$ = $\frac{14}{17} \times 100$ = 0.8235×100
2.	oxygei	the different types of isotopes of n and its percentage abundance.No.Isotope% abundance1 ${}_{8}O^{16}$ 99.7572 ${}_{8}O^{17}$ 0.0383 ${}_{8}O^{18}$ 0.205	-	% of Nitrogen = 82.35% ADDITIONAL QUESTIONS C. Calculate the relative molecular mass of CO ₂ (SEP-21)
3.	Th	EXAMPLE : Atomicity. (SEP-21, MAY-22, AUG-22, APR-23) e number of atoms present in the ale is called its Atomicity.) A e R	Solution: Atomic masses of C = 12 & O = 16. Relative molar mass of CO ₂ = $(12 \times 1) + (16 \times 2)$ = $12 + 32$
4.	 Give any two examples for heterodiatomic molecules. (AUG-22) i) Hydrogen Chloride ii) Carbon Monoxide 			Relative molar mass of CO2= 44 g.8. Write the applications of Avogadro's law.(SEP-20, APR-23)i) It explains Gay – lussac's law.
5.	On 22400	is Molar volume of a gas? ne mole of any gas occupies 22.4 litre of ml at STP. This volume is called a volume.		 ii) It helps in the determination of atomicity of gases. iii) Molecular formula of gases can be derived from Avogadro's law. iv) It determines the relation between
6.		he percentage of nitrogen in ammonia. (PTA-1) la of Ammonia = NH_3 N = 14, $H = 1$		 v) It determines the relation between molecular mass and vapour density. v) It helps to determine gram molar volume of all gases. (22.4 lit at STP)
9.	Write	the difference between atoms and mol	ecules	s. (MAY-22)
	S.No	Atoms		Molecules
	1	An atom is the smallest particle o element		A molecule is the smallest particle of an element or compound
	2	Atom does not exist in free state exce	pt in	Molecule exists in a free state

			element of compound
	2	Atom does not exist in free state except in	Molecule exists in a free state
		noble gas	
Γ	3	Except some of noble gas, other atoms are	Molecules are less reactive
		highly reactive	
	4	Atom does not have a chemical bond	Atoms in a molecule are held by chemical
			bonds

dolphin.pub2005@gmail.com

DOLPHIN-10TH Science

www.Trb Tnpsc.Com

UNIT-7

UNNAL MUDIYUM

present in one drop of water which weighs 0.18g. (APR-23) Mass of one water = 0.18 g drop Avogadro number = 6.023 × 10 ²³ Molecular Mass of = 18 g water = (2 x 1) + (1 x 16) = 18g No. of water = $\frac{Avogadro number x Given mass}{Gram molecular mass}}$ No. of water = $\frac{Avogadro number x Given mass}{Gram molecular mass}}$ = $\frac{0.18 x 6.023 x 10^{23}}{18}$ = $0.01 x 6.023 x 10^{23}$ No. of water = 0.06023×10^{23} (The atomic mass of nitrogen is 14, and that of hydrogen is 1) 1 mole of nitrogen (_g) + 3 moles of hydrogen (_g) \rightarrow 2 moles of animonia (_g) 1 mole of nitrogen M No and Soft All = $27g$ No. of moles $= \frac{Mass}{Atomic Mass}$ $= \frac{27}{27}$ No. of moles $= \frac{No. of molecules of NH4Cl}{Avogadro's Number}$ = $\frac{1.51 x 10^{23}}{6.023 x 10^{23}}$ Hereby (PTA = 5, SEP-20, APR-24) Modern Atomic Theory: 1 An atom is no longer indivisible ii) Atoms of the same element may have sam atomic masses (Isobars $_{20}Ar^{40}$, $_{20}Ca^{40}$). iv) Atoms of one element can be transmute into atoms of other elements. (artifici transmutation). v) Atom is the smallest particle that take pa in a chemical reaction.	VII. LONG ANS	SWER QUESTIONS
0.18g.(NPR-23)Mass of one water= 0.18 gdropAvogadro numberAvogadro number= 6.023 \times 10^{23}Molecular Mass of= 18 gwater= (2 x 1) + (1 x 16)= 18g= 1 mole of Alwater= (2 x 1) + (1 x 16)= 0.06023 x 10^{23}= 1 mole of Alwater= 0.18 x 6.023 x 10^{23}= 0.18 x 6.023 x 10^{23}= 1 4= 0.18 x 6.023 x 10^{23}= 1 4= 0.06023 x 10^{23}= 1 4water= 0.06023 x 10^{23}molecules= 1 x 14 a 14 g3 moles of hydrogen (_g) +3 moles of hydrogen (_g) +3 moles of hydrogen (_g) +3 moles of hydrogen NH31 mole of nitrogenNH3= (2 x 14) + (2 x 3)28 + 634 g3. Calculate the number of moles inNH3= (2 x 14) + (2 x 3)27 20 Al3. Calculate the number of moles inNH3= (2 x 14) + (2 x 3)27 2728 + 634 g3. Calculate the number of moles in (PTA-5)i) 27g of Alii) 1.51 x 10 ²³ molecules of NH4C1. [APR-24)Solution:	1. Calculate the number of water molecule	Atomic mass of A1 = $27g$
Mass of one water = 0.18 g drop Avogadro number = 6.023 × 10 ²³ Molecular Mass of = 18 g water = (2 x 1) + (1 x 16) = 18g No. of molecules of NH4CI water = (2 x 1) + (1 x 16) = 18g No. of molecules of NH4CI No. of molecules o	present in one drop of water which weighs	Mass of Al = $27g$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.18g. (APR-23)	No of moles - Mass
$\frac{divp}{Avogadro number} = 6.023 \times 10^{23}$ $\frac{Avogadro number}{Molecular Mass of} = 18 g$ $\frac{avogadro number x Given mass}{avater} = \frac{(2 \times 1) + (1 \times 16)}{(2 \times 1) + (1 \times 16)}$ $\frac{avogadro number x Given mass}{Gram molecular mass}$ $\frac{avogadro number of molecular mass}{Gram molecular mass}$ $\frac{avogadro number of moles in PTA = 5$ $\frac{avogadro number of moles in PTA = 5}$ $avogadro number of mole$	Mass of one water $= 0.18 \text{ g}$	Atomic Mass
$ \begin{array}{c} \hline \text{Molecular Mass of} &= 18 \text{ g} \\ \hline \text{water} &= (2 \times 1) + (1 \times 16) \\ \hline &= 18 \text{g} \\ \hline \\ \hline \text{Mo. of} \\ \hline \text{water} &= \frac{1 \text{ mole of Al}}{18} \\ \hline \\ \hline &= 0.18 \times 6.023 \times 10^{23} \\ \hline &= 0.01 \times 6.023 \times 10^{23} \\ \hline &= 0.01 \times 6.023 \times 10^{23} \\ \hline \text{Molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{Molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{Molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \text{No. of} \\ \hline \text{water} &= 0.06023 \times 10^{23} \\ \hline \text{molecules} \\ \hline \text{No. of multices} \\ \hline \text{molecules} \\ \hline \text{No. of molecules of hydrogen (_g) + } \\ \text{3 moles of hydrogen M} \\ \hline \text{3 moles of f mitrogen} &= 1 \times 14 = 14 \text{ g} \\ \hline \text{N} \\ \hline \text{3 moles of hydrogen M} \\ \hline \\ \hline \text{NH}_3 &= (2 \times 14) + (2 \times 3) \\ \hline \text{27 g of Al} \\ \hline \text{in} \text{1.51 \times 10^{23} \text{ molecules of NH_4Cl. (APR-24)} \\ \hline \\ \hline \\ \hline \text{Solution:} \\ \hline \end{array}$	-	
i)i)i)ii)iiii)iiii) <tr< th=""><th>e</th><th>27</th></tr<>	e	27
which= $(2 \times 1) + (1 \times 16)$ $= 18g$ No. ofwater $= 18g$ No. ofwater $= 0.18 \times 6.023 \times 10^{23}$ $= 0.01 \times 6.023 \times 10^{23}$ No. ofwater $= 0.06023 \times 10^{23}$ No. ofwater $= 0.06023 \times 10^{23}$ Modern Atomic Theory:1 mole of nitrogen (g) +3 moles of hydrogen (g) ->2 moles of ammonia (g)1 mole of nitrogen = $1 \times 14 = 14 \text{ g}$ 3 moles of $= 3 \times 1 = 3g$ 2 moles of hydrogen NH3NH32 moles of hydrogen NH3NH32 moles of hydrogen NH33. Calculate the number of moles inNH327g of A1ii) 1.51 × 10^{23} molecules of NH4C1 (APR-24)Solution:	Molecular Mass of $= 18 \text{ g}$	
Image: the second s	water	,
No. of waterAvogadro number x Given mass Gram molecular mass $=$ $\frac{4 \operatorname{vogadro} \operatorname{number x Given mass}}{\operatorname{Gram molecular mass}}$ $=$ $\frac{0.18 \times 6.023 \times 10^{23}}{18}$ $=$ $0.18 \times 6.023 \times 10^{23}$ $=$ $0.01 \times 6.023 \times 10^{23}$ No. of water $=$ 0.06023×10^{23} molecules $=$ 2. $N_2 + 3H_2 \rightarrow 2NH_3$. (The atomic mass of nitrogen is 14, and that of hydrogen (_g) + 3 moles of hydrogen (_g) - 2 moles of ammonia (_g)1 mole of nitrogen $=$ 1 mole of nitrogen $=$ 1 mole of nitrogen $=$ $n = 1 \times 14 = 14 \text{ g}$ $N drogen H$ 3 moles of hydrogen H2 moles of hydrogen MH_3 $MH_3 = (2 \times 14) + (2 \times 3)$ $28 + 6$ 34 g 3. Calculate the number of moles in $1 \cdot 51 \times 10^{23}$ molecules of NH_4Cl. (APR-24)Solution:		No of moles $=$
No. of waterAvogadro number x Given mass Gram molecular mass $= \frac{0.18 \times 6.023 \times 10^{23}}{18}$ $= 0.01 \times 6.023 \times 10^{23}$ $= 0.01 \times 6.023 \times 10^{23}$ No. of waterwater $= 0.06023 \times 10^{23}$ molecules2. N ₂ + 3H ₂ \rightarrow 2NH ₃ . (The atomic mass of nitrogen is 1) 1 mole of nitrogen (g) + 3 moles of hydrogen (g) - 2 moles of hydrogen (g) - 2 moles of hydrogen H1 mole of nitrogen2 moles of hydrogen MH_32 moles of hydrogen MH_32 moles of hydrogen NH_4NH ₃ $28 + 6$ $34 g$ 3. Calculate the number of moles in ii) 1.51 × 10^{23} molecules of NH4CI. (APR-24)Solution:	= 18g	
water = $\frac{\text{Avogadro number x Given mass}}{\text{Gram molecular mass}}$ = $\frac{0.18 \times 6.023 \times 10^{23}}{18}$ = $0.01 \times 6.023 \times 10^{23}$ molecules = 0.06023×10^{23} Modern Atomic Theory: i) An atom is no longer indivisible ii) Atoms of the same element may have san atomic masses (Isotopes $_{17}\text{Cl}^3$ ii) Atoms of other elements. (artifici transmutation). v) Atom is the smallest particle that take pa into atoms of other elements. (artifici transmutation). v) Atom is the smallest particle that take pa in a chemical reaction. vi) The mass of an atom can be converted in energy (E=mc ²). 5. Derive the relationship between Relative molecular mass and Vapour density. (GMQ.PTA = Relative Molecular Mass: The ratio between the Mass of one molecu of gas or vapour to the mass of one atom of 0 as or vapour to the mass of one atom of 0 as or vapour to the mass of one atom of 0 as or vapour to the mass of one atom of 0 as or vapour to the mass of one atom of 0 as or vapour to the mass of one atom of 0 as or vapour to the mass of one atom of 0 and 0 and 0 and 0 and 0 atom of 0 atom of 0 and 0 atom of 0 atom of 0 atom of 0 atom of 0 and 0 atom of 0 atom 0	N ₂ -f	
moleculesGram molecular mass $=$ $0.18 \times 6.023 \times 10^{23}$ $=$ $0.01 \times 6.023 \times 10^{23}$ No. of $=$ water $=$ 0.06023×10^{23} molecules2. $N_2 + 3H_2 \rightarrow 2NH_3$.(The atomic mass of nitrogen is 14, and that of hydrogen is 1)1mole of nitrogen (_g) +2moles of hydrogen (_g) ->2moles of hydrogen (_g) ->2moles of nitrogen =1 $x 14 =$ 1mole of nitrogen (_g) ->2moles of nitrogen =1 $x 14 =$ 1 $x 14 =$ 1 $x 14 =$ 1 $x 14 =$ 2 $x 1 =$ 3 $x 1 =$ 3 $x 1 =$ 3 $28 + 6$ 34 g3. $27 g \text{ of } A1$ ii) 1.51×10^{23} molecules of NH4Cl. (APR-24)Solution: $x 12^{3} \text{ molecular Mass}$	Avogadro number, x Given mass	$\frac{6.023 \times 10^{23}}{1}$
$\frac{= 0.18 \times 6.023 \times 10^{23}}{18}$ $= 0.01 \times 6.023 \times 10^{23}$ No. of water = 0.06023 × 10^{23} molecules $\frac{= 0.25 \text{ mole}}{4. \text{ Give the salient features of "Modern atom theory"}}$ $\frac{(PTA = 5, SEP-20, APR-24)}{Modern Atomic Theory:}$ i) An atom is no longer indivisible ii) Atoms of the same element may have different atomic mass (Isotopes 17Cl ³). iii) Atoms of different elements may have sam atomic masses (Isotopes 17Cl ³). iii) Atoms of one element can be transmute into atoms of other elements. (artifici transmutation). v) Atoms of one element can be transmute into atoms of other elements. (artifici transmutation). v) Atoms of one element can be transmute into atoms of other elements. (artifici transmutation). v) Atoms of an atom can be converted in energy (E=mc ²). 3. Calculate the number of moles in (PTA - 5) i) 27g of Al ii) 1.51 × 10 ²³ molecules of NH ₄ Cl. (APR-24) Solution:	Gram molecular mass	$=\frac{1}{4}$
Image: space of the sequence of the sequences		= 0.25 mole
 = 0.01 x 6.023 x 10²³ No. of water = 0.06023 × 10²³ molecules 2. N₂+ 3H₂ → 2NH₃. (The atomic mass of nitrogen is 14, and that of hydrogen is 1) 1 mole of nitrogen (g) + 3 moles of hydrogen (g) → 2 moles of ammonia (g) 1 mole of nitrogen = 1 x 14 = 14 g N = 3 × 1 = 3g 2 moles of hydrogen H NH₃ = (2 x 14) + (2 x 3) 2 moles of hydrogen H NH₃ = (2 x 14) + (2 x 3) 2 moles of nydrogen NH₃ 3. Calculate the number of moles in NH₃ = (2 x 14) + (2 x 3) 2 a calculate the number of moles in NH₃ = (2 x 14) + (2 x 3) 2 moles of NH₄Cl. (APR-24) 4. Give the salient features of "Modern atom theory". (PTA = 5, SEP-20, APR-24) Nodern Atomic Theory: 1) An atom is no longer indivisible ii) Atoms of the same element may have sam atomic masses (Isobars ₂₀Ar⁴⁰, ₂₀Ca⁴⁰). iv) Atoms of one element can be transmuted into atoms of other elements. (artifici transmutation). v) Atom is the smallest particle that take pa in a chemical reaction. vi) The mass of an atom can be converted in energy (E=mc²). 5. Derive the relationship between Relative molecular mass and Vapour density. (GMQ.PTA - Solution: 	=	0.25 more
No. of water(PTA = 5, SEP-20, APR-24)No. of of water(PTA = 5, SEP-20, APR-24)No. of of hydrogen is 1)(PTA = 5, SEP-20, APR-24)No. of of hydrogen (_g) =(PTA = 5, SEP-20, APR-24)No. of of hydrogen (_g) =(PTA = 5, SEP-20, APR-24)No. of of hydrogen (_g) =(PTA = 5, SEP-20, APR-24)No. of different elements may have san atomic mass of of the same element may have san atomic mass of of other elements. (artifici transmutation).No. of of hydrogen H(PTA = 5, SEP-20, APR-24)NH3(2 x 14) + (2 x 3) (2 x 4, 6)NH3(2 x 14) + (2 x 3) (2 x 4, 6)Solution:(PTA = 5, SEP-20, APR-24)Solution:(4. Give the salient features of "Modern atomi
water = 0.06023×10^{23} molecules 2. N ₂ +3H ₂ \rightarrow 2NH ₃ . (The atomic mass of nitrogen is 14, and that of hydrogen is 1) 1 mole of nitrogen (g) + 3 moles of hydrogen (g) \rightarrow 2 moles of ammonia (g) 1 mole of nitrogen = $1 \times 14 = 14$ g 3 moles of $= 3 \times 1 = 3$ g 2 moles of hydrogen NH ₃ 2 moles of hydrogen NH ₃ 2 moles of hydrogen NH ₃ 3. Calculate the number of moles in (PTA-5) i) 27g of Al ii) 1.51 $\times 10^{23}$ molecules of NH ₄ Cl. (APR-24) Solution: Wodern Atomic Theory: 1 An atom is no longer indivisible 1 Atoms of the same element may have sam atomic masses (Isobars $_{20}Ar^{40}$, $_{20}Ca^{40}$). iv) Atoms of one element can be transmuted into atoms of other elements. (artificit transmutation). v) Atom is the smallest particle that take par		theory". (PTA – 5, SEP-20, APR-24)
 molecules i) An atom is no longer indivisible ii) An atom is no longer indivisible ii) An atom is no longer indivisible ii) Atoms of the same element may have different atomic mass (Isotopes 17Cl² 17Cl³⁷). iii) Atoms of different elements may have sam atomic masses (Isobars 20Ar⁴⁰, 20Ca⁴⁰). iv) Atoms of one element can be transmuted into atoms of other elements. (artificit transmutation). v) Atom is the smallest particle that take particle t		
 2. N₂ + 3H₂ → 2NH₃. (The atomic mass of nitrogen is 14, and that of hydrogen is 1) mole of nitrogen (g) + moles of hydrogen (g) → moles of ammonia (g) mole of nitrogen = 1 x 14 = 14 g moles of nitrogen H moles of hydrogen H moles of hydrogen NH₃ 2 moles of hydrogen NH₃ 28 + 6 28 + 6 28 + 6 34 g 3. Calculate the number of moles in (PTA-5) 27g of Al 1.51 × 10²³ molecules of NH₄Cl. (APR-24) 3. Calculate the number of moles in (PTA-5) 4. Calculate the number of moles in (PTA-5) 5. Derive the relationship between Relative molecular mass and Vapour density.		
(The atomic mass of nitrogen is 14, and that of hydrogen is 1) 1 mole of nitrogen (g) + 3 moles of hydrogen (g) \rightarrow 2 moles of ammonia (g) 1 mole of nitrogen = 1 x 14 = 14 g 3 moles of = 3 × 1 = 3g 3 moles of = 3 × 1 = 3g 2 moles of hydrogen NH ₃ 2 moles of hydrogen NH ₃ 2 moles of hydrogen NH ₃ 2 moles of hydrogen NH ₃ 3. Calculate the number of moles in (PTA - 5) i) 27g of Al ii) 1.51 × 10 ²³ molecules of NH ₄ Cl. (APR-24) Solution: (The atomic mass (Isotopes 1/7CF 1/7CI37). (ii) Atoms of different elements may have san atomic masses (Isobars $_{20}Ar^{40}, _{20}Ca^{40}$). (iv) Atoms of one element can be transmute into atoms of other elements. (artifici transmutation). v) Atom is the smallest particle that take pa in a chemical reaction. vi) The mass of an atom can be converted in energy (E=mc ²). 5. Derive the relationship between Relative molecular mass and Vapour density. (GMQ,PTA - Relative Molecular Mass: The ratio between the Mass of one molecu of gas or vapour to the mass of one atom of		i) Atoms of the same element may hav
 of hydrogen is 1) 1 mole of nitrogen (g) + 3 moles of hydrogen (_g) → 2 moles of ammonia (_g) 1 mole of nitrogen = 1 x 14 = 14 g 3 moles of = 3 × 1 = 3g 2 moles of hydrogen NH₃ 3. Calculate the number of moles in (PTA - 5) i) 27g of Al ii) 1.51 × 10²³ molecules of NH₄Cl. (APR-24) Solution: 		different atomic mass (Isotopes 17Cl ³²
 1 mole of nitrogen (g) + 3 moles of hydrogen (g) → 2 moles of ammonia (g) 1 mole of nitrogen		$_{17}\mathrm{Cl}^{37}$).
 3 moles of hydrogen (g) → 2 moles of ammonia (g) 1 mole of nitrogen	• • •	iii) Atoms of different elements may have sam
 2 moles of ammonia (g) 1 mole of nitrogen = 1 x 14 = 14 g 3 moles of		atomic masses (Isobars $_{20}Ar^{40}$, $_{20}Ca^{40}$).
$\frac{1 \text{ mole of nitrogen}}{N} = 1 \times 14 = 14 \text{ g}$ into atoms of other elements. (artificities transmutation). 2 moles of hydrogen NH ₃ 2 moles of hydrogen NH ₃ 2 moles of hydrogen NH ₃ $\frac{1 \times 14 = 14 \text{ g}}{3 \times 1 = 3 \text{ g}}$ into atoms of other elements. (artificities transmutation). v) Atom is the smallest particle that take particle that tak		iv) Atoms of one element can be transmute
NImage: I x I4Image: I x I4 <th>1 mole of nitrogen</th> <th>into atoms of other elements. (artificia</th>	1 mole of nitrogen	into atoms of other elements. (artificia
 in a chemical reaction. <l< th=""><th>= x 4 = 4g </th><th>transmutation).</th></l<>	= x 4 = 4g	transmutation).
hydrogen H C 2 moles of hydrogen NH3 $NH_3 = (2 \times 14) + (2 \times 3)$ $NH_3 = (2 \times 14) + (2 \times 3)$ $28 + 6$ $34 g$ C 3. Calculate the number of moles in $PTA - 5$ i) 27g of Al $PTA - 5$ ii) 1.51 × 10 ²³ molecules of NH4Cl. (APR-24)Solution: C	3 moles of	v) Atom is the smallest particle that take particle
$\frac{NH_3 = (2 \times 14) + (2 \times 3)}{28 + 6}$ 34 g 3. Calculate the number of moles in (PTA - 5) i) 27g of Al ii) 1.51 × 10 ²³ molecules of NH ₄ Cl. (APR-24) Solution: $energy (E=mc^2).$ 5. Derive the relationship between Relative molecular mass and Vapour density. (GMQ,PTA - CAPR-24) Comparison of the mass of one molecular mass of one molecular mass of one atom of the mass of the mass of one atom of the mass of the	hydrogen H = 3×1 = $3g$	in a chemical reaction.
$28 + 6$ 34 g 5. Derive the relationship between Relative molecular mass and Vapour density. $3. \text{ Calculate the number of moles in (PTA - 5)}$ $i) 27\text{g of Al}$ $ii) 1.51 \times 10^{23}$ molecules of NH ₄ Cl. (APR-24)Solution:Solution:	2 moles of hydrogen NH ₃	vi) The mass of an atom can be converted int
34 g 3. Calculate the number of moles in (PTA – 5) i) 27g of Al ii) 1.51 × 10 ²³ molecules of NH ₄ Cl. (APR-24) Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Soluti: Solution: Solution: Soluti: Solutio	$NH_3 = (2 \times 14) + (2 \times 3)$	energy ($E=mc^2$).
34 g 3. Calculate the number of moles in (PTA - 5) i) 27g of Al ii) 1.51 × 10 ²³ molecules of NH ₄ Cl. (APR-24) Solution: molecular mass and Vapour density. (GMQ,PTA - 4) (GMQ,P	28+6	5. Derive the relationship between Relativ
 3. Calculate the number of moles in (PTA – 5) i) 27g of Al ii) 1.51 × 10²³ molecules of NH₄Cl. (APR-24) Solution: (GMQ,PTA – 6) Relative Molecular Mass: The ratio between the Mass of one molecular of gas or vapour to the mass of one atom of the mass of the	34 g	-
i) $27g \text{ of Al}$ ii) 1.51×10^{23} molecules of NH ₄ Cl. (APR-24) Solution: Relative Molecular Mass: The ratio between the Mass of one molecular of gas or vapour to the mass of one atom of the mass of the mass of one atom of the mass of	2 Coloniate the marked final is to the final	
The ratio between the Mass of one molecules of NH ₄ Cl. (APR-24) Solution: The ratio between the Mass of one molecules of gas or vapour to the mass of one atom α		
Solution: of gas or vapour to the mass of one atom		
•,		
	•/	,

dolphin.pub2005@gmail.com

www.Trb Tnpsc.Com

DOLPHIN-10 TH Science UNI	IT-7 UNNAL MUDIYUM
Vapour Density: The ratio of the mass of a certain volume of a gas or vapour to the mass of an equal volume of hydrogen, measured under the same conditions of temperature and pressure. Avogadro's law, equal volume of all gases contain equal number of molecules Thus, let the number of molecules in one volume = n, then	Relative Molecular Mass =Mass of 1 molecules of a gas or vapour at S.T.PMass of 1 atom of hydrogenSubstituting eqn (1) and (2)V.DV.DRelative Molecular Mass2Now on cross multiplication $2 \times VD =$ Relative Molecular Mass of a gas.
V.D. at S.T.P = <u>Mass of 'n' molecules of a gas or vapour at S.T.P</u> <u>Mass of n' molecules of hydrogen</u> Cancelling 'n' which is common, V.D = <u>Mass of 1 molecules of a gas or vapour at S.T.P</u> <u>Mass of 1 molecules of hydrogen</u> Since Hydrogen is diatomic V.D = <u>Mass of 1 molecules of a gas or vapour at S.T.P</u> <u>Mass of 2 atoms of hydrogen</u> <u>Comparing Relative Molecular Mass with</u> <u>Vapour Density:</u> V.D =	ADDITIONAL QUESTIONS 6. Calculate the percentage of sulphur in H ₂ SO ₄ (APR-23) Molecular mass of = $(1x2)+(32x1)+(16x4)$ H2SO4 = $2+32+64$ = $98g$. % of s in = Mass of sulphur H ₂ SO ₄ = Mass of sulphur Molecular mass of H ₂ SO ₄ x100
$\frac{\text{Mass of 1 molecules of a gas or vapour at S.T.P}}{2 \text{ x Mass of 1 atom of hydrogen}} \rightarrow 1$	$= \frac{32}{98} \times 100$ = 32.65%
УШ. НОТ	QUESTION
 Calcium Carbonate is decomposed on heating in the following reaction. (JUNE-23) CaCO₃ → CaO + CO₂ How many moles of Calcium Carbonate are involved in this reaction? 1 mole 	Gram molecular mass of Calcium Carbonate of $CaCO_3 = (1 \times 40) + (1 \times 12) + (3 \times 16)$ = 40 + 12 + 48 = 100 g. iii) How many moles of CO ₂ are there in this
ii) Calculate the gram molecular mass of Calcium Carbonate involved in this reaction.	equation? 1 mole
IX. SOLVE THE FOL	LOWING PROBLEMS
 How many grams are there in the following? (PTA - 4) i) 2 moles of hydrogen molecule, H₂. 	$Mass = 2 \times (2 \times 1)$ = 4g ii) 3 moles of chlorine molecule, Cl ₂ .
$Mass = No. of moles \times Molecular Mass.$	

dolphin.pub2005@gmail.com

www.kalvidolphin.com

www.Trb Tnpsc.Com

OLPHIN-10 TH Science UN	IT-7 UNNAL MUDIYUN
Molecular Mass $Cl_2 = (2 \times 35.5) = 71g$	Molecular Mass of $= (2 \times 27) + ((1 \times 32))$
Mass = No. of moles \times Molecular Mass.	
$= 3 \times 71$	$Al_2(SO_4)_3 + (4 \times 16)) 3$
= 213g	= 54 + (32 + 64) 3
i) 5 moles of sulphur molecule, S ₈ .	= 54 + (96) 3
Molecular Mass $S_8 = (8 \times 32)$	= 342 g
= 256	$\frac{1}{12} = \frac{12}{12} = \frac{12}{12}$
$Mass = No. of moles \times Molecular Mass.$	Mass of Oxygen in $= 12 \times 16$
$= 5 \times 256$	$Al_2(SO_4)_3$
	= 192 g
= 1280 g	
() 4 moles of phosphorous molecule, P ₄ .	% of Mass of 0
Molecular Mass $P_4 = (4 \times 31)$	Oxygen in = $\overline{\text{Molecular Mass of Al}_2(SO_4)}$
= 124	$Al_2(SO_4)_3 \times 100$
Mass = No. of moles \times Molecular Mass.	$\frac{192}{342} \times 100$
$= 4 \times 124$	56.14 %
= 496 g.	
40). (PTA -2) Molar Mass of = $(1 \times 40) + (1 \times 12) + (3 \times 16)$	10.804 amu. Let B - 10 = x % $B - 11 = (100 - x) \% \longrightarrow 1$
$Molar Mass of = (1 x 40) + (1 x 12) + (3 x 16) CaCO_3 40 + 12 + 48 100 g % of Ca in Mass of Ca x 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $10x + 1100 - 11x = 1080.4$
MolarMass of = (1 x 40) + (1 x 12) + (3 x 16)CaCO3 $40 + 12 + 48100 g$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $10x + 1100 - 11x = 1080.4$ $-x + 1100 = 1080.4$
$Molar$ $Mass of = (1 x 40) + (1 x 12) + (3 x 16)$ $CaCO_3$ $40 + 12 + 48$ $100 g$ % of Ca in $CaCO_3 = \frac{Mass of Ca}{Molecular Mass of CaCO_3} \times 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $10x + 1100 - 11x = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$
$Molar$ $Mass of = (1 x 40) + (1 x 12) + (3 x 16)$ $CaCO_3$ $40 + 12 + 48$ $100 g$ % of Ca in $CaCO_3 = \frac{Mass of Ca}{Molecular Mass of CaCO_3} \times 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100 - 11x} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$
$ \begin{array}{rcl} Molar & & \\ Mass of &= & (1 \times 40) + (1 \times 12) + (3 \times 16) \\ CaCO_3 & & \\ \hline $	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ $x = 19.6$
$Molar$ $Mass of = (1 x 40) + (1 x 12) + (3 x 16)$ $CaCO_3$ $40 + 12 + 48$ $100 g$ $\% of Ca in$ $CaCO_3 = \frac{Mass of Ca}{Molecular Mass of CaCO_3} \times 100$ $= \frac{40}{100} \times 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100 - 11x} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ Substitute in (1) B - 11 = (100 - 19.6) %
$Molar$ $Mass of = (1 x 40) + (1 x 12) + (3 x 16)$ $CaCO_3$ $40 + 12 + 48$ $100 g$ $\% of Ca in$ $CaCO_3 = \frac{Mass of Ca}{Molecular Mass of CaCO_3} \times 100$ $= \frac{40}{100} \times 100$ $= 40\%$ $\% of C in$ $CaCO_3 = \frac{Mass of C}{Molecular Mass of CaCO_3} \times 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $10x + 1100 - 11x = 1080.4$ $10x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ $x = 19.6$ Substitute in (1) B - 11 = (100 - 19.6) % $B - 11 = 80.4 %$
$Molar$ $Mass of = (1 x 40) + (1 x 12) + (3 x 16)$ $CaCO_3$ $40 + 12 + 48$ $100 g$ $\% of Ca in$ $CaCO_3 = \frac{Mass of Ca}{Molecular Mass of CaCO_3} \times 100$ $= \frac{40}{100} \times 100$ $= 40\%$ $\% of C in$ $CaCO_3 = \frac{Mass of C}{Molecular Mass of CaCO_3} \times 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100 - 11x} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ Substitute in (1) B - 11 = (100 - 19.6) % $B - 11 = 80.4 %$ % relative abundance of B - 11 = 80.4%
$Molar$ $Mass of = (1 x 40) + (1 x 12) + (3 x 16)$ $CaCO_3$ $40 + 12 + 48$ $100 g$ $\% of Ca in$ $CaCO_3 = \frac{Mass of Ca}{Molecular Mass of CaCO_3} \times 100$ $= \frac{40}{100} \times 100$ $= 40\%$ $\% of C in$ $CaCO_3 = \frac{Mass of C}{Molecular Mass of CaCO_3} \times 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $10x + 1100 - 11x = 1080.4$ $10x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ Substitute in (1) B - 11 = (100 - 19.6) % $B - 11 = 80.4 %$
$\begin{array}{rcl} Molar\\ Mass of &=& (1 \times 40) + (1 \times 12) + (3 \times 16)\\ CaCO_3 \end{array}$ $\begin{array}{rcl} 40 + 12 + 48\\ 100 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \text{ Mass of Ca}\\ CaCO_3 \end{array} = & \frac{Mass of Ca}{Molecular \text{ Mass of CaCO}_3} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40\%}{Molecular \text{ Mass of CaCO}_3} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} 12\%\\ \end{array}$ $\begin{array}{rcl} 00 \text{ GCO}_3 \end{array}$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100 - 11x} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ Substitute in (1) B - 11 = (100 - 19.6) % $B - 11 = 80.4 %$ % relative abundance of B - 11 = 80.4%
$\begin{array}{rcl} Molar\\ Mass of &=& (1 \times 40) + (1 \times 12) + (3 \times 16)\\ CaCO_3 \end{array}$ $\begin{array}{rcl} 40 + 12 + 48\\ 100 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \text{ Mass of Ca}\\ CaCO_3 \end{array} = & \frac{Mass of Ca}{Molecular \text{ Mass of CaCO}_3} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40\%}{Molecular \text{ Mass of CaCO}_3} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} 12\%\\ \end{array}$ $\begin{array}{rcl} 00 \text{ GCO}_3 \end{array}$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ Substitute in (1) B - 11 = (100 - 19.6) % $B - 11 = 80.4 %$ % relative abundance of B - 11 = 80.4% % relative abundance of B - 10 = 19.6% ADDITIONAL QUESTIONS
$Molar$ $Mass of = (1 x 40) + (1 x 12) + (3 x 16)$ $CaCO_3$ $40 + 12 + 48$ $100 g$ $\% of Ca in = \frac{Mass of Ca}{Molecular Mass of CaCO_3} \times 100$ $= \frac{40}{100} \times 100$ $= 40\%$ $\% of C in = \frac{Mass of C}{Molecular Mass of CaCO_3} \times 100$ $\frac{12}{100} \times 100$ $\frac{12}{100} \times 100$ $\frac{12\%}{100} \times 100$ $\frac{12\%}{100} \times 100$ $\frac{12\%}{100} \times 100$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100 - 11x} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ Substitute in (1) B - 11 = (100 - 19.6) % $B - 11 = 80.4 %$ % relative abundance of B - 11 = 80.4% % relative abundance of B - 10 = 19.6% $ADDITIONAL QUESTIONS$ 5. The mass percentage of carbon is 27.28
$\begin{array}{rcl} Molar\\ Mass of &=& (1 \times 40) + (1 \times 12) + (3 \times 16)\\ CaCO_3 \end{array}$ $\begin{array}{rcl} 40 + 12 + 48\\ 100 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \end{array}$ $\begin{array}{rcl} 00 \text{ g} \text{ Mass of Ca}\\ CaCO_3 \end{array} = & \frac{Mass of Ca}{Molecular \text{ Mass of CaCO}_3} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} = & \frac{40\%}{Molecular \text{ Mass of CaCO}_3} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} \frac{12}{100} \times 100\\ \end{array}$ $\begin{array}{rcl} 12\%\\ \end{array}$ $\begin{array}{rcl} 00 \text{ GCO}_3 \end{array}$	Let $B - 10 = x \%$ $B - 11 = (100 - x) \% \longrightarrow 1$ Average Atomic Mass: $\frac{10x + 11(100 - x)}{100} = 10.804$ $\frac{10x + 1100 - 11x}{100} = 1080.4$ $-x + 1100 = 1080.4$ $-x = 1080.4 - 1100$ $-x = -19.6$ Substitute in (1) B - 11 = (100 - 19.6) % $B - 11 = 80.4 %$ % relative abundance of B - 11 = 80.4% % relative abundance of B - 10 = 19.6% ADDITIONAL QUESTIONS

(Atomic mass: Al-27, O-16, S -32) (PTA – 2)

dolphin.pub2005@gmail.com

www.Trb Tnpsc.Com

DOLPHIN-10TH Science

UNNAL MUDIYUM

DOLI IIIN-IU Science UN	II-7 UNNAL MUDITUM
Mass of carbon $= 27.28 \%$	$=\frac{46}{}$
Mass of oxygen = 72.73%	23
Number of moles Mass of Carbon	= 2 moles of sodium
of carbon Atomic mass of Carbon	iii)
= 27.28	The Molecular weight of 18
12	H ₂ O
= 2.27	Thus 18 grams of $H_2O = 1$ mole of H_2O
Number of moles $= 2$	$36 \text{ grams of } H_2O = 2 \text{ mole of } H_2O$
of carbon – 2	$1 \text{ mole H}_2\text{O} = \frac{6.023 \text{ x } 10^{23}}{1 \text{ mole H}_2\text{O}}$
Number of moles _ Mass of Oxygen	molecules of H_2O
of oxygen Atomic mass of Oxygen	$= 1.204 \times 10^{23}$
= 72.73	molecules of H ₂ O
16	7. Under same conditions of temperature and
= 4.54	pressure, if you collect 3 litre of O ₂ , 5 litre of
Number of moles $= 4$	Cl ₂ and 6 litre of H ₂ . (APR–24)
of oxygen	A) Which has the highest number of
Molecular = C_2O_4 (or) 2 CO ₂	molecules?
formula	B) Which has the lowest number of molecules?
Molecular mass = $(2 \times 12) + (4 \times 16)$	1) Number of =
= 88g	Moles of O_2 Molar Volume
6. i) Calculate the mass of 1.51 x 10^{23} molecule	= 3/22.4
of H ₂ O. (GMQ)	= 0.1339 moles
ii) Calculate the moles of 46g sodium	Number of Number of moles x
ii) Calculate the number of molecules present in	Molecules = Avagadro number
the 36 g water.	$= 0.1339 \times 6.023 \times 10^{23}$
Solution :	$= 0.8064 \times 10^{23}$
i) 1.51×10^{23} molecules of water	$8.064 \times 10^{22} \text{ O}_2$
molecular mass of $H_2O = 18g$	molecules
Number _ Number of molecules of water	
of moles Avogadro's number	Number of $= 5/22.4 = 0.2232$ moles
= 1.51 x 10 ²³	moles of Cl ₂
6.023 x 10 ²³	Number of $= 0.2232 \times 6.023 \times 10^{23}$
$=\frac{1}{-}$	molecules
4	= 1.344 x 1023 molecules
= 0.25 mole	Number of
Number of moles = Mass	moles of H ₂
of moles molecular mass $= 0.25 = mass / 18$	= 6/22.4 = 0.2678 moles
$\frac{-0.23 - \text{mass} / 18}{\text{Mass}} = 0.25 \times 18$	Number of $= 0.2678 \times 6.023 \times 10^{23}$
$\frac{Mass}{Mass} = 0.23 \times 10$	molecules
ii)	$= 1.6129 \times 10^{23} \text{ molecules}$
Number Mass of the elemet	1) 6 litre of H_2 has the highest number of molecules
$radiate of moles = \frac{radiate of the element}{Atomic mass of the element}$	2) 3 litre of O_2 has the lowest number of molecules
	I

dolphin.pub2005@gmail.com

www.Trb Tnpsc.Com

D	DLPHIN-10 TH Science	UN	IIT-12	UNNAL MUDIYUM
	UNIT 12		ANT ANATO PLANT PHYSI	
1	Textbook	Evaluation		PAGE-184
		I. CHOOSE THE	BEST ANSWER	
1.	, 1 ,	present in the (GMQ, JUNE-23) odermis ns: d) Endodermis	a) Carbohydrate	med during anaerobic (GMQ SEP-20) b) Ethyl alcohol d) Pyruvate Ans: b) Ethyl alcohol
2.	The endarchcondition isfeature of(MAY-22, A)a) rootb) stemc) leavesd) flow	AUG-22, APR-24)	a) chloroplast c) stomata d) inner mitochonda	 place in (PTA - 3, APR-23) b) mitochondrial matrix rial membrane ns: b) Mitochondrial matrix
3.	The xylem and phloem arron same radius is calleda) radialb) ampc) conjointd) Non		 photosynthesis? a) when ATP is cor b) when CO₂ is fixe c) when H₂O is split 	ed
	<u> </u>	II. FILL IN T	THE BLANKS	
1. 2.	The innermost layer Cortex i Xylem and phloem are arran			Ans: Endodermis oundle called Ans: radial bundle
	Glycolysis takes place in			Ans: Cytoplasm
4. 5.	The source of O ₂ liberated in is ATP factory			Ans: water Ans: Mitochondria
do	lphin.pub2005@gmail.com		98	www.kalvidolphin.com

DC	DLPHIN-10 TH Scie	nce UNIT-12	UNNAL MUDIYUM
	III. STATE WH	ETHER THE FOLLOWING STATEMENTS ARE 1	RUE OR FALSE.
		IF FALSE CORRECT THE STATEMENT.	
1.	Phloem tissue is inv	olved in the transport of water in plant.	
	Ans	: False.	
	Correct statement	: Phloem tissue is involved in the transport of food in p	lant.
2.	The waxy protectiv	e covering of a plant is called as cuticle.	
	Ans	: True.	
3.	In monocot stem cambium is present in between xylem and phloem.		
	Ans	: False.	
	Correct statement	: In dicot stem cambium is present in between xylem a	nd phloem.
4.	Palisade parenchyr	na cells occur below upper epidermis in dicot root.	
	Ans	: False.	
	Correct statement	: Palisade parenchyma cells occur below upper epidern	nis in dicot leaf .
5.	Mesophyll contains	chlorophyll.	
	Ans	: True.	
6.	Anaerobic respirat	on produces more ATP than aerobic respiration.	
	Ans	: False.	
	Correct statement	: Anaerobic respiration produces less ATP than aerobic	respiration.
	IV. MA	TCH THE ITEMS IN COLUMN-I TO THE ITEMS IN	COLUMN-II

S. No.	Column I	Column II		Answer
1	Amphicribal	Dracaena		Fern
2	Cambium	Translocation of food		Secondary growth
3	Amphivasal	Fern		Dracaena
4	Xylem	Secondary growth		Conduction of water
5	Phloem	Conduction of water]	Translocation of food

V. ANSWER IN A SENTENCE

1.	What is collateral vascular bundle?	3.	What is the common step in aerobic and
	collateral vascular bundle is a type of bundle in which xylem lies towards the centre		anaerobic pathway? Glycolysis.
	and phloem lies towards the periphery.	4.	Name the phenomenon by which
2.	Where does the carbon that is used in photosynthesis come from? From atmosphere in the form of CO ₂ .		carbohydrates are oxidized to release ethyl alcohol. Anaerobic respiration or fermentation. Eg: Yeast.

dolphin.pub2005@gmail.com

UNIT-12

UNNAL MUDIYUM

VI. SHORT ANSWER QUESTIONS

- 1. Give an account on vascular bundle of dicot stem.
 - i) Vascular bundles of dicot stem are conjoint, collateral, endarch and open.
 - ii) They are arranged in the form of a ring around the pith.

2. Write a short note on mesophyll.

The tissue present between the upper and lower epidermis is called mesophyll. It is differentiated into palisade and Spongy Parenchyma

a) Palisade parenchyma:

It is found just below the upper epidermis. These cells have more number of chloroplasts.

The cells do not have intercellular spaces and they take part in photosynthesis.

The cells are elongated

b) Spongy parenchyma:

It is found below the palisade parenchyma tissue.

Cells have intercellular spaces. It helps in gaseous exchange.

The cells are almost spherical or oval.

3. Draw and label the structure of Oxysomes. (JUNE-23)

- 4. Name the three basic tissues system in flowering plants. (APR-23)
 - i) Dermal or Epidermal tissue system
 - ii) Ground tissue system
 - iii) Vascular tissue system
- 5. What is photosynthesis and where in a cell does it occur? (PTA-3,SEP-21)

- Photosynthesis is a process in which carbon dioxide combines with water in the presence of sunlight and chlorophyll to form carbohydrates. During this process oxygen is released as a byproduct.
- ii) It occurs in the **chloroplast** of plant cell.

$$6CO_2 + 12H_2O \xrightarrow{\text{Light}} C_6H_{12}O_6 + 6 H_2O + 6O_2\uparrow$$

6. What is respiratory quotient? (PTA - 1, SEP-21, MAY-22, AUG-22, APR-24)

Respiratory quotient is the ratio of volume of carbon dioxide liberated and the volume of oxygen consumed during respiration.

Respiratory Quotient (RQ) =

 $\frac{\text{Volume of CO}_2 \text{ liberated}}{\text{Volume of O}_2 \text{ liberated}}$

7. Why should the light dependent reaction occur before the light independent reaction? (APR-24)

Because light dependent reaction supplies organic energy molecules such as ATP and NADPH₂, which is necessary to reduce CO_2 into carbohydrate in the light independent reaction.

8. Write the reaction for photosynthesis?

(MAY-22)

 $6CO_2 + 12H_2O \xrightarrow[Chlorophyll]{Sunlight /} C_6H_{12}O_6 + 6H_2O + 6O_2$

ADDITIONAL QUESTIONS

9. What is the common step in aerobic and anaerobic pathway and where does it occur in a cell? (PTA-5)

- i) It take place in cytoplasm in cell
- ii) It is a breakdown of one molecule of glucose (6 carbon) into two molecules of pyruvic acid (3 carbon)

dolphin.pub2005@gmail.com

www.Trb Tnpsc.Com

UNNAL MUDIYUM

DOLPHIN-10TH Science

iii) It is the first step of both aerobic and anaerobic respiration.

10. What is vascular bundle?(PTA - 1)

Xylem and phloem tissues present in the form of bundles are called as vascular bundles.

- 11. What are the factors affecting
photosynthesis?factors affecting
(AUG-22, APR-23)a) Internal Factors :
 - a) Internal Factors :

i) Pigments

igments

- ii) Leaf age
- iii) Accumulation of carbohydrates
- iv) Hormones
- b) External Factors.
- i) Light ii) Carbon dioxide
- iii) Temperature iv) Water
- v) Mineral elements

VII. LONG ANSWER QUESTIONS

UNIT-12

1. Differentiate the following

- a) Monocot root and Dicot root
- b) Aerobic and Anaerobic respiration.
- Ans:
- a) Monocot root and Dicot root

S.No.	Tissue	Monocot root	Dicot root
1	Number of Xylem	Polyarch	Tetrarch
2	Cambium	Absent	Present (During secondary growth only)
3	Secondary Growth	Absent	Present
4	Pith	Present	Absent
5	Conjunctive Tissue	Sclerenchyma	Parenchyma
6	Example	Maize	Bean

b) Aerobic and Anaerobic Respiration.

S.No.	Aerobic Respiration.	Anaerobic Respiration. (AUG-22)
1	Glucose is completely oxidized with	oxidation of Glucose takes place without oxygen.
1	the help of oxygen.	
2	Glucose oxidized into CO ₂ , H ₂ O and	Glucose is converted into ethanol or lactic acid
2	Energy	
3	It occurs in most plants and animals.	It occurs in some bacteria
4	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O +$	$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH + Energy (ATP)$
4	ATP	

2. Describe and name three stages of cellular respiration that aerobic organisms use to obtain energy from glucose.

Stages of Aerobic respiration

- a) Glycolysis:
 - i) It is the breakdown of one molecule of glucose into two molecules of pyruvic acid.
 - ii) Glycolysis takes place in cytoplasm of the cell.
 - iii) It is the first step of both aerobic and anaerobic respiration.

dolphin.pub2005@gmail.com

www.kalvidolphin.com

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

(G.MQ. AUG-22) (SEP-20) (SEP-21)

DOLPHIN-10TH Science

UNIT-12

b) Krebs Cycle:

- i) This cycle occurs in mitochondria matrix.
- ii) At the end of glycolysis, 2 molecules of pyruvic acid enter into mitochondria.
- iii) The oxidation of pyruvic acid into CO₂ and water takes place through this cycle.

c) Electron Transport Chain;

- i) This is accomplished through a system of electron carrier complex called Electron Transport Chain (ETC) located on the inner membrane of the mitochondria.
- ii) NADH₂ and FADH₂ molecules formed during glycolysis and Krebs cycle are oxidised to NAD⁺ and FAD⁺ to release the energy via electrons.
- iii) The electrons, as they move through the system, release energy which is trapped by ADP to synthesize ATP. This is called oxidative phosphorylation.
- iv) In this process, O2 the ultimate acceptor of electrons gets reduced to water.

3. How does the light dependent reaction differ from the light independent reaction? What are the end product and reactants in each? Where does each reaction occur within the chloroplast?

	Light dependent reaction	Light independent reaction
Reaction (i)	It takes place in the presence of light .	It takes place in the absence of light .
	Photosynthetic pigments absorb the	During this reaction CO_2
Reaction (ii)	light energy and convert it into chemical	is reduced into carbohydrates
	energy ATP and NADPH ₂ .	is reduced into carbonydrates
Reactants	Sunlight, Water, ADP and NADPH.	CO_2 , ATP and NADPH ₂
End Product	O ₂ , ATP and NADPH ₂	Carbohydrate
0.0000000000000000000000000000000000000	In the thylakoid membranes (Grana)	In the stroma of the chloroplast.
Occurrence	of the chloroplast.	

ADDITIONAL QUESTIONS

1. Draw and label the different types of vascular bundles

dolphin.pub2005@gmail.com

www.kalvidolphin.com

www.Trb Tnpsc.Com

VIII. HIGHER ORDER THINKING SKILLS (HOTS)

1. The reactions of photosynthesis make up a biochemical pathway.

(PTA - 5)

- a) What are the reactants and products for both light and dark reactions?
- b) Explain how the biochemical pathway of photosynthesis recycles many of its own reactions and identify the recycled reactants.
- a) The reactants and products for both light and dark reactions

Light reaction:

Reactants - Light, Water, ADP and NADPH.

End Product - O₂, ATP and NADPH₂

Dark reaction:

Reactants - CO₂, ATP and NADPH₂

End Product - Carbohydrate.

b) Explain how the biochemical pathway of photosynthesis recycles many of its own reactions and identify the recycled reactants.

ADP and NADP

- 2. Where do the light dependent reaction and the Calvin cycle occur in the chloroplast?
 - i) Light dependent reaction takes place in the thylakoid membranes (Grana) of the chloroplast.
 - ii) Calvin cycle takes place in the stroma of the chloroplast.

dolphin.pub2005@gmail.com

www.Trb Tnpsc.Com

DOLPHIN-10 TH	Science
--------------------------	---------

UNNAL MUDIYUM

dolphin.pub2005@gmail.com

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

182

DOLPHIN-10TH Science

II. MATCH THE FOLLOWING

UNIT-23

S. No.	COLUMN A	COLUMN B
1	Script area	Type notes
2	Folder	Animation software
3	Scratch	Edit programs
4	Costume editor	Store files
5	Notepad	Build scripts

Ans:

S. No.	COLUMN A	COLUMN B
1	Script area	Build scripts
2	Folder	Store files
3	Scratch	Animation software
4	Costume editor	Edit programs
5	Notepad	Type notes

III. ANSWER THE FOLLOWING

Ø

1. What is Scratch?

- Scratch is a Visual Programming Language.
- Scratch is a software used to create animations, cartoons and games easily.

2. Write a short note on editor and its main parts?

Editors are software programs that enable the user to create and edit files.

The Scratch editor has three main parts: They are Stage, Sprite and Script editor.

- (i) Stage: Stage is the background appearing when we open the scratch window. The background will most often be white. You can change the background colour as you like.
- (ii) Sprite: The characters on the background of a Scratch window are known as Sprite. Usually a cat appears as a sprite when the Scratch window is opened. The software provides facilities to make alternations in sprite.
- (iii) Script editor / costume editor: Where you edit your programs or your sprite's pictures.

3. What is Stage?

Stage is the background appearing when we open the scratch window. The background will most often be white. You can change the background colour as you like.

4. What is Sprite?

dolphin.pub2005@gmail.com

The characters on the background of a Scratch window are known as Sprite. Usually a cat appears as a sprite when the Scratch window is opened. The software provides facilities to make alternations in sprite.

_____1__1__1_1_1_1_1_1_

www.Trb Tnpsc.Com

UNNAL MUDIYUM

(SEP-20, APR-24)

(APR-23)

www.Trb Tnpsc.Com

DOLPHIN-10TH Science

PRACTICAL

UNNAL MUDIYUM

PRACTICALS

S. NO.		NAME OF THE EXPERIMENT	TIME
1.	ICS	Determination of weight of an object using the principle of moments	40 minutes
2.	PHYSICS	Determination of focal length of a convex lens	40 minutes
3.	Р	Determination of resistivity	40 minutes
4.	RY	Identification of the dissolution of the given salt whether it is exothermic or endothermic	40 minutes
5.	CHEMISTRY	Testing the solubility of the salt	40 minutes
6.	CHEN	Testing the water of hydration of salt	40 minutes
7.)	Test the given sample for the presence of acid or base	40 minutes
8.	Y	Photosynthesis - Test tube and Funnel Experiment (Demonstration)	40 minutes
9.	TAN	Parts of a Flower	40 minutes
10.	BIO - BOTANY	Mendel's Monohybridcross	40 minutes
11.	BIO	Observation of Transeverse Section of Dicot stem and Dicot Root	40 minutes
12.	Ϋ́	Observation of Models - Human Heart and Human Brain	40 minutes
13.	IO -	Identification of Blood Cells	40 minutes
14.	BIO - ZOOLOGY	Identification of Endocrine Glands	40 minutes

dolphin.pub2005@gmail.com

PRACTICAL

UNNAL MUDIYUM

PHYSICS

1. DETERMINATION OF WEIGHT OF AN OBJECT USING THE PRINCIPLE OF MOMENTS

Aim:

To determine the weight of an object using the principle of moments

Apparatus required:

A metre scale, a knife edge, slotted weights, thread

Procedure:

- > A metre scale is supported at its centre of gravity by a knife edge or suspended by using a thread tied to its centre so that the scale is in the horizontal position. Ensure that the scale is in equilibrium position.
- \triangleright A known weight W₂ and an unknown weight W₁ are suspended from to either side of the scale using the weight hangers.
- > Fix the position of one weight hanger and adjust the position of the second weight hanger such that the scale is in equilibrium.
- \blacktriangleright Measure the distance d₁ and d₂ of the two weight hangers from the centre of the scale accurately.
- > The experiment is repeated for different positions of the unknown weight. Measure the distances. The reading are tabulated as follows:

Observation:

S. No.	Weight in the weight hanger (W ₂) kg	Distance of known weight d ₂ (m)	Distance of unknown weight d ₁ (m)	$ W_2 \times d_2 (kg x m) $	Unknown weight $W_1 = W_2 \times d_2$ $\overline{d_1(kg)}$
1	0.050	0.2	0.13	0.01	0.077
2	0.100	0.2	0.255	0.02	0.078
3	0.150	0.2	0.375	0.03	0.080
				Mean	0.078

Calculations:

Moment of a force can be calculated using the formula

Moment of the force = Force x distance

	Clock wise moment by unknown weight	$= \mathbf{W}_1 \times \mathbf{d}_1$	
	Anticlockwise moment by known weight	$= \mathbf{W}_2 \times \mathbf{d}_2$	
	$W_1 \times d_1 = W_2 \times d_2$ Unknown weight W_1	$= \mathbf{W}_2 \times \mathbf{d}_2$	
Result	:	d ₁	
Us	ing the principle of moments, the weight of th	e unknown body $W_1 = 0.078 \text{ Kg}$	

R

Using the principle of moments, the weight of the unknown body

dolphin.pub2005@gmail.com

www.kalvidolphin.com

DOLPHIN-10TH Science UNNAL MUDIYUM GOVT. EXAM - APRIL 2024 (c) Mass of the object (d) Both (a) and (b) **PART I** 10. Which is the correct sequence of blood flow? (i) Answer all the questions. (a) Ventricle \rightarrow Atrium \rightarrow Vein \rightarrow Arteries (ii) Choose the most appropriate answer from the (b) Atrium \rightarrow Ventricle \rightarrow Vein \rightarrow Arteries given four alternatives and write the option (c) Atrium \rightarrow Ventricle \rightarrow Arteries \rightarrow Vein code and the corresponding answer. $12 \times 1 = 12$ (d) Ventricle \rightarrow Vein \rightarrow Atrium \rightarrow Arteries 1. The endarch condition is the characteristic feature of: 11. Which of the following is not an "element + (a) Root (b) Stem element \rightarrow compound" type reaction? (c) Leaves (d) Flowers (a) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 2. TFM in soaps represents content in (b) $2K_{(s)} + Br_{2(1)} \rightarrow 2KBr_{(s)}$ soap. (c) $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$ (a) Mineral (b) Vitamin (d) $4Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_2 O_{3(s)}$ (c) Fatty matter (d) Carbohydrate 12. Cancer of the epithelial cell is called as 3. The value of Universal Gas Constant: (a) Leukaemia (b) Sarcoma (a) $3.81 \text{ J mol}^{-1} \text{ K}^{-1}$ (b) 8.03 J mol⁻¹ K⁻¹ (c) Carcinoma (d) Lipoma (c) 1.38 J mol⁻¹ K⁻¹ (d) 8.31 J mol⁻¹ K⁻¹ PART - II 4. Kilowatt hour is the unit of: Answer any seven questions. Question No.22 is (a) resistivity (b) conductivity $7 \ge 2 = 14$ compulsory. (c) electrical energy (d) electrical power 13. What is coefficient of apparent expansion? 5. An enzyme which cuts DNA is: 14. Why is tungsten metal used in bulbs but not used (a) Protease as fuse wires? (b) Restriction endonuclease **15.** What is rust? Give the equation for the formation (c) DNA Ligase of rust. (d) RNA ase **16.** What is stage? 6. One mole of nay substance 17. Why is sinoatrial node called as pacemaker of contains molecules. heart? (a) 6.023×10^{23} (b) 6.023 x 10⁻²³ 18. What are the parts of the hind brain? (c) **3.0115** x 10^{23} (d) **12**.046 x 10^{23} 19. Identify the parts A, B, C and D in the given 7. Which one is referred as "Master gland"? figure. (a) Pineal gland (b) Pituitary gland (c) Thyroid gland (d) Adrenal gland 8. Which among the following is not the characteristic of anemophilous plants? (a) the flowers produce enormous amount of pollen grains. (b) the stigmas are large and protruding. (c) the flowers are brightly coloured, have smell 20. What is colostrum? How is milk production and nectar. hormonally regulated? (d) pollen grains are small and dry. **21.** What is metastasis? 9. Inertia of a body depends on: **22.** If the pH of a solution is 4.5, find the value of its (a) Weight of the object pOH. (b) Acceleration due to gravity of planet

DOLPHIN-10TH ScienceUNNAL MUDIYUMPART - IIIOR

DOLIFHIN-IV Science	
PART - III	OR
Answer any seven questions. Question No.32 is	(b) (i) What is an echo?
compulsory.	(ii) State two conditions necessary for hearing an
23. Explain the various types of inertia with	echo?
examples.	(iii) What are the medical applications of echo?
24. (a) Write any three features of natural and	(iv) How can you calculate the speed of sound using
artificial radioactivity.	echo?
(b) Name any two devices, which are working on	34. (a) (i) Under same conditions of temperature and
the heating effect of current.	pressure, if you collect 3 litre of O_2 , 5 litre of Cl_2
25. (a) What happens when $MgSO_4 7H_2O$ is heated?	and 6 litre of H_2 .
Write the appropriated equation.	(A) Which has the highest number of molecules?
(b) Define : Solubility.	(B) Which has the lowest number of molecules?
26. (a) What is Respiratory Quotient?	(ii) Give the salient features of 'Modern Atomic
(b) Why should the light dependent reaction occur	theory'.
before light independent reaction during	OR
photosynthesis?	(b) (i) How do detergents cause water pollution?
27. Write the dental formula of rabbit.	(ii) An organic compound 'A' is widely used as a
28. (a) Why is Euploidy considered to be	preservative and has the molecular formula
advantageous to both plants and animals?	$C_2H_4O_2.$
(b) Classify Neurons based on its structure.	This compound reacts with ethanol to form a
29. How are Arteries and Veins structurally different	Sweet smelling compound 'B', then
from one another?	(A) Identify the compound 'A'
30. Define Ethnobotany and write its importance.	(B) Write the chemical equation for its reactio
31. (a) What are the consequences of deforestation?	with ethanol to form compound 'B'.
(b) State the applications of DNA finger printing	(C) Name this process.
technique.	35. (a) (i) What are synthetic auxins? Give an
32. (a) Name the acid that renders Aluminium	example.
passive. Why?	(ii) With a neat labelled diagram, describe the
(b) Calculate the number of moles in 1.51×10^{23}	parts of the typical angiospermic ovule.
molecules of NH ₄ Cl.	OR
PART - IV	(b) (i) Who is called the "Father of Indian Green
Answer all the questions. Draw diagrams wherever	Revolution"?
necessary. $3 \times 7 = 21$	(ii) Differentiate between out-breeding and in
33. (a) (i) What are the uses of convex lens?	breeding.
(ii) Define dispersion of light.	(iii) Differentiate between Type-I and Type-
(iii) Why are traffic signals red in colour?	Diabetes mellitus.
(iv) What is the least count of travelling	
microscope?	
merescope.	

டால்பின் ப	பப்ளிகேசன்ஸ் புத்தகங்கள் கிடைக்குமிடங்கள்
சென்னை	M.K. ஸ்டோர்ஸ் – 044–25386143, F.A. ஸ்டோர்ஸ் – 97105–68240, M.R. ஸ்டோர்ஸ் – 91766–64596, அராபா புக் டிரேடர் – 044–25987868, கீங்ஸ் புக் ஹவுஸ் – 044– 25367660, பிஸ்மி புக் சென்டர் – 044–25380666, லிம்ரா புக் சென்டர் – 99400– 39953, பிரின்ஸ் புக் ஹவுஸ் – 044–42053926, நூர் புக் சென்டர் – 81487–23350, பழனிராஜ் – 98414–94023, தாம்பரம் : ஸ்ரீராம் அன் கோ – 044–22266431, ரெட்ஹில்ஸ் : தீருமலை புக் சென்டர் – 98411–53261
மதுரை	மனோ புக் சென்டர் - 0452-2621577, ஜெயம் புக் சென்டர் - 0452-2623636, வெற்றி புக் சென்டர் - 98434-61624, M.P.S.S. புக் ஷாப் - 80981-51515, சன்மதி டிரேடர்ஸ் - 97872 61333, மீனாட்சி புக் - 94432 62763, M.V. சதீஸ்குமார் - 98433-49892
கோவை	மெகெஸ்டிக் புக் ஹவுஸ் - 99943 43334, கண்ணன் புத்தக நிலையம் - 95858 88890, சேரன் புக் ஷாப் - 0422-2396623, முருகன் புக் டிப்போ - 93611-11510, பொள்ளாச்சி ; கலைமகள் ஸ்டோர்ஸ் - 04259-228738, அமிர்தம் பேப்பர் மார்ட் - 98651-03333, அன்னூர் - ஸ்ரீ கார்த்திகேயா ஸ்டோர்ஸ் - 94436 52226
திருச்சி	ராசி பப்ளிகேசன்ஸ் – 0431–2703692, சுமதி பப்ளிகேசன்ஸ் – 0431–2703230, ஸ்ரீ முருகன் புக்ஷென்டர் – 0431–2703076, காயத்ரி புக் ஹவுஸ் – 97517–87873, ஸ்ரீராகவேந்திரா ஸ்டோர்ஸ் – 97887–57427, துறையூர் : கே.கே.ஆர் ஸ்டோர்ஸ் – 98656–58650
விழுப்புரம்	சபரிநாதன் பிரதர்ஸ் - 04146-222581, புக் பார்க் - 99944-45135
கள்ளக்குறிச்சி	கருபா ஸ்டேசனரி - 04151-223114,
சேலம்	விக்னேஷ் புக் சென்டர் - 0427-4020409, S.V.S புக் ஷாப் - 98659-06262
கடலூர்	பெல் புத்தக நிலையம் - 04142-652252
சிதம்பரம்	வெற்றி புக் சென்டர் - 94432-22648, ஜெயம் புக் சென்டர் - 93630-60516
தஞ்சாவூர்	ஸ்ரீனிவாசா புக் சென்டர் – 94865-25806, முருகன் பப்ளிகேசன்ஸ் – 96779– 99905, கும்பகோணம் : ஸ்ரீ மார்கண்டேயா புக் டிப்போ – 0435-2420750, ஒரத்தநாடு: செல்வ விநாயகா பேப்பர், – 99435–57292, R.S.V புக் சென்டர் – 9942968475
தீருவண்ணாமலை	பிச்சாண்டி முதலியார் - 94432 14725, K. உதயகுமார் - 94874-09687
வேலூர்	பூமிநாதன் – 93451 72090, வேலூர் புக் சென்டர் – 04162–213250, தீருப்பத்தூர் (வேலூர்) : ரவிக்குமார் – 97863 15453
FFGDILQ	சைந்தில் புக் பேலஸ் – 04242–214886, தனா புக் கம்பெனி – 99943–71123, செல்வம் புக் சென்டர் – 98431–99697, பள்ளிப்பாளையம் : அம்மன் சஞ்சீவி புக் சென்டர் – 97860–40230, பவானி : தனா புக் சென்டர் – 94862–30921, கோபி : கீராவிட்டி புக் சென்டர்–9385728528
தீருவாரூர்	வி. ராமச்சந்தீரன் – 94866-86627
ராமநாதபுரம்	ராமநாதசுவாயி புக் ஷாப் - 94434-91772, அருணா நோட் புக் சென்டர் - 98425- 37005
சிவகங்கை	நீயூ அய்யனார் புக் ஷாப் – 9994079013, காரைக்குடி : ஞானம் புக் சென்டர் 9789886575
கருஷ்ணகி	ஸ்ரீ ரமணா புக் ஹவுஸ் - 90253 13661
தீருநெல்வேலி	ஷியாமளா புக் ஷாப் – 94872–44633, சித்ராதேவி புக் சென்டர் – 76676–64293, ஸ்ரீகீருஷ்ணா புக்ஸ் – 98945–55484
தீண்டுக்கல்	ூயியனார் புக் சென்டர் – 95008-62024, பழனி : தர்சன் புக் எம்போரியம் – 8667218504
தீருப்பூர்	மகேஸ்வரி புக் ஸ்டால் - 94420-04254, சூர்யா பேப்பர் ஸ்டோர்ஸ் - 9994710201
தேனி	மாயா புக்ஸ் & கீப்டீஸ் - 94439-29273, K. சுப்புராஜ் - 88703-16922
நாமக்கல்	ஸ்ரீ கணபதி புக் சென்டர் – 70948-07585, திருச்சுங்கோடு: சோழா புக் ஹவுஸ்– 9842753949
தர்மபுரி	ஸ்ரீ கிருஷ்ணா ஸ்க்ஷல் நீட்ஸ் 9150070034
தூத்துக்குடி	ஸ்ரீ துர்கா ஸ்டோர்ஸ் – 96003–33452, ஈகீள் புக் சென்டர் – 9486688333
புளியங்குடி	ஸ்டூடண்டீ புக் சென்டர் - 79046-69191
விருதுநகர்	சேது புக் சென்டர் – 94864–61400, அருப்புக்கோட்டை : பாலாஜி புக் சென்டர் – 94439–13738

ale

et

எமது வெளியீடுகள் (STATE BOARD)

www.Trb Tnpsc.Com

6th to 12th Std - **STEP TO SUCCESS ENGLISH** 10th to 12th Std - **ELITE ENGLISH** 6th to 12th Std - உன்னால் முடியும் தமிழ் 10th to 12th Std - அழுத் சுற்றி தமிழ் 6th to 10th Std - சமூகஅறிவியல் (Tamil & English Medium) 8th to 10th Std - அறிவியல் (Tamil & English Medium)

DOLPHIN PUBLICATIONS°

239, Keeleppetti Street, Brivilliputtur - 526 125, Virudhuneger Dt. TN.

Cell : 98653 06197 / 89256 77710 / 99435 67646

93453 14146 / 93453 30937

Mail us : dolphin.pub2005@gmail.com [Visit us : www.kalvidolphin.com

