FIRST MID TERM TEST -DISTRICT Trb Trpsc.Com

Standard X

Reg.No.:

MATHEMATICS

Time: 1.30 hrs.

Part - I

Marks: 50

I. Choose the correct answer:

 $4 \times 1 = 4$

1. The range of the relation R = $\{(x,x^2)/x \text{ is a prime number less than 13}\}$ is

a) {2,3,5,7}

b) {2,3,5,7,11}

c) {4,9,25,49,121}

d) {1,4,9,25,49,121}

2. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) - (1 + 2 + 3 + \dots + 15)$ is

a) 14200

b) 14520

c) 14400

d) 14280

3. The solution of the system 3z = 9, -7y + 7z = 7, x + y - 3z = -6 is

a) x = -1, y = 2, z = 3

b) x = 1, y = 2, z = 3

c) x = 1, y = -2, z = 3

d) x = -1, y = -2, z = 3

4. In Δ LMN, \angle L = 60°, \angle M = 50°. If Δ LMN ~ Δ PQR, then the value \angle R is

a) 40°

b) 70°

c) 30°

d) 110°

Part - II

II. Answer any 5 questions. (Q.No.11 is compulsory)

 $5 \times 2 = 10$

5. A function $f: [-5,9] \rightarrow R$ is defined as follows:

$$f(x) = \begin{cases} 6x+1 \; ; \; -5 \le x < 2 \\ 5x^2 - 1 \; ; \; \; 2 \le x < 6 \\ 3x - 4 \; ; \; \; 6 \le x \le 9 \end{cases} \text{, find 2f(4) + f(8)}$$

- 6. If $13824 = 2^a \times 3^b$, then find a and b.
- 7. Use Euclid's Division Algorithm to find the Highest Common Factor (HCF) of 396, 504, 636.
- 8. A boy of height 90 cm walking away from the base of a lamppost at a speed of $1.2\ m$ / sec. If the lamppost is $3.6\ m$ above the ground, find the length of his shadow cast after 4 seconds.
- Simplify: $\frac{4x^2y}{2z^2} \times \frac{6xz^3}{20y^4}$
- 10. Find the LCM of each pair of the following polynomials $a^2 + 4a 12$, $a^2 5a + 6$ whose GCD is a - 2
- 11. Represent at the function $f = \{(1,2), (2,2), (3,2), (4,3), (5,4)\}$ through

i) an arrow diagram

ii) a table form

iii) a graph

III. Answer any 4 questions. (Q.No.17 is compulsory)

 $4 \times 5 = 20$

12. $A = \{x \in W \mid x < 2\}, B = \{x \in N \mid 1 < x \le 4\} \text{ and } C = \{3,5\}, \text{ verify that } A = \{x \in W \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{x \in V \mid x < 2\}, B = \{$ $A \times (B \cup C) = (A \times B) \cup (A \times C)$

- 13. Find the sum to n terms of the series 6 + 66 + 666 +
- 14. The ratio of 6th and 8th term of an A.P is 7.9. Find the ratio of 9th term to 13th term.

X Maths

15. Simplify:
$$\frac{1}{x^2 - 5x + 6} + \frac{1}{x^2 - 3x + 2} = \frac{1}{x^2 - 8x + 15}$$

- 16. Find the GCD of $6x^3 30x^2 + 60x 48$ and $3x^3 12x^2 + 21x 18$
- 17. The data in the adjacent table depicts the length of a person forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constants
 - i) Check if this relation is a function
 - ii) Find a and b
 - iii) Find the height of a person whose forehand length is 40 cm
 - iv) Find the length of forehand of a person if the height is 53.3 inches.

Length 'x' of forehand (in cm)	Height 'y' (in inches)		
35	56		
45	65		
50	69.5		
55	74		

- 18. i) Find the least positive value of x such that $67 + x \equiv 1 \pmod{4}$
 - ii) Solve: $5x \equiv 4 \pmod{6}$

Part - IV

IV. Answer the following questions.

 $2 \times 8 = 16$

- 19. a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR. (scale factor $\frac{7}{3} > 1$)

 (OR)
 - b) Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle ABC. (scale factor $\frac{3}{5}$ <1)
- 20. a) A two wheeler parking zone near bus stand charges as below:

Time (in hours) (x)	4	8	12	24
Amount ₹ (y)	60	120	180	360

Check if the amount charged are in direct variation or in inverse variation to the parking time. Graph the data. Also,

- i) Find the amount to be paid when parking time is 6 hr.
- ii) Find the parking duration when the amount paid is ₹150

(OR)

- b) Graph the following linear function $y = \frac{1}{2}x$. Identify the constant of variation and verify it with the graph. Also
 - (i) find y when x = 9
- (ii) find x when y = 7.5