I. Answer all the Questions. Write the option code and the corresponding answer: ( $5 \times 1=5$ )

1. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set $B$, then the number of elements in $B$ is
(A) 3
(B) 2
(C) 4
(D) 8
2. Let $n(A)=m$ and $n(B)=n$ then the total number of relations that can be defined from $A$ to $B$ is
(A) $m^{n}$
(B) $n^{m}$
(C) $2^{m n}-1$
(D) $2^{m n}$
3. If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following
statement is true.
(A) $(A \times C) \subset(B \times D)$
(B) $(B \times D) \subset(A \times C)$
(C) $(A \times B) \subset(A \times D)$
(D) $(D \times A) \subset(B \times A)$
4. Let $f$ and $g$ be two functions given by $f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$
$g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $f \circ g$ is
(A) $\{0,2,3,4,5\}$
(B) $\{-4,1,0,2,7\}$
(C) $\{1,2,3,4,5\}$
(D) $\{0,1,2\}$
5. If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of $a$ and $b$ are respectively
(A) $(8,6)$
(B) $(8,8)$
(C) $(6,8)$
(D) $(6,6)$

## II. Answer any SIX Questions:

6. If $A \times B=\{(3,2),(3,4),(5,2),(5,4)\}$, then find $A$ and $B$
7. Let $A=\{1,2,3,4, \ldots, 45\}$ and $R$ be the relation defined as "is a square of" on $A$. Write $R$ as a subset of $A \times A$. Also, find the domain and range of $R$.
8. Let $\mathrm{X}=\{1,2,3,4\}$ and $\mathrm{Y}=\{2,4,6,8,10\}$ and $R=\{(1,2),(2,4),(3,6),(4,8)\}$. Show that $R$ is a function and find its domain, co-domain and range?
9. Let $f(x)=2 x+5$. If $x \neq 0$ then find $\frac{f(x+2)-f(2)}{x}$
10. If $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow B$ is an onto function defined by $f(x)=x^{2}+x+1$ then find $B$.
11. Show that the function $f: N \rightarrow N$ defined by $f(x)=2 x-1$ is one-one but not onto.
12. Find $f \circ g$ and $g \circ f$ when $f(x)=3+x, g(x)=x-4$

## III. Answer any FIVE Questions:

( $5 \times 5=25$ )
13. Let $A=\{x \in \mathrm{~W} / x<2\}, B=\{x \in \mathrm{~N} / 1<x \leq 4\}$ and $C=\{3,5\}$ Verify that. $A \times(B \cap C)=(A \times B) \cap(A \times C)$
14. Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by $f(x)=3 x-1$. Represent this function (i) by arrow diagram (ii) in a table form (iii) as a set of ordered pairs (iv) in a graphical form.
15. If the function $f: R \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{lcc}2 x+7 & \text { if } & x<-2 \\ x^{2}-2 & \text { if } & -2 \leq x<3 \\ 3 x-2 & \text { if } & x \geq 3\end{array}\right.$ then the values of (i) $f(4) \quad$ (ii) $f(-2) \quad$ (iii) $f(4)+2 f(1)$
16. Let $A=\{-1,1\}, B=\{0,2\}$. If the function $f: A \rightarrow B$ defined by $f(x)=a x+b$ is an onto function? Find $a$ and $b$.
17. If $f(x)=x-4, g(x)=x^{2}$ and $h(x)=3 x-5$. Prove that $f \circ(g \circ h)=(f \circ g) \circ h$.

## IV. Answer the following question: $(\mathbf{1} \times 8=8)$

18. Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{\mathbf{2}}{\mathbf{3}}$ of the corresponding sides of the triangle $P Q R\left(\right.$ Scale factor $\frac{2}{3}<1$ )
