$+2$

CHEMISTRY

Volume

1 \& 2

Gem

One, Two. Three and Five Marks Question \& Answers (All in One) with Additional Question and Answers*

SALIENT FEATURES

- Self Evaluation Question \& Answers
- Evaluation Question \& Answers
- PTA Question \& Answers
- Govt. Public Exam Question \& Answers
- The only guide designed answers as per same serial number as in Text Book.
- Problems are solved by using Logarithm table whereever necessary
- Answers are designed in easiest way as per Govt. Public Exam Answer Key Guide Discount Price Rs. 210/One Word Question Bank Discount Price Rs. 25/-

Guide can be purchased from Publication or Leading Book Stalls
For Copies Contact : 9080228421
9488890842

For copies contact : $\subset 9080228421$

கிறப்யம்சா்்கள்

- தன் மத்ப்டீடு விஜா - விடைகள்

- PTA விஞா ー விடைகள்
- அரசு பொதுத் தேர்வு விஜாா ー விடைகள்
- புத்தக விळாா விிசையில் விடைகள் உள்ள ஒரே கைடு
- கணைக்குகள், மடக்கை அட்டவணைை பயன்படுத்த தீர்வு செய்யப்யட்டுள்ள ஒரே மைடு
- அரசு விடை குறிய்ாின் பழ விடைகள் எளிமையாக வழவமைக்கப்ப்்டுள்ளது•

கைடு தள்ளுய விலை ரூ. 210/ஒரு மதப்பெண் விணா வங்க் தள்ளுழி விமை ரூந. 25/-
நேரழயாக ஆா்டர் செய்தோ (அ) கடைகளில் வாங்க் பயன்லெறுவீiா.

For Copies Contact : 9080228421

Our Products are also available in leading book stalls	
CHENNAI	- Parrys - M.K.Stores
TRICHY	- Sri Murugan Book Centre, Rasi Publications,
	Sumathy Publications, Sri Ragavandra Stores
COVAI	- Majestic Book House
MADURAI	- Mano Book Centre
ERODE	- Dhana Book Company
NAMAKKAL	- Sri Saravana Book Centre
THIRUCHENCODE	- Sri Chola Book House
SALEM	- Salem Book House, Vignesh Book Centre,
KARUR	- Sri Vani Book Shop

For copies contact : $\varnothing 9080228421$

UNIT-6: SOLID STATE

EVALUATE YOURSELF

1. An element has a face centered cubic unit cell with a length of 352.4 pm along an edge. The density of the element is $8.9 \mathrm{gcm}^{-3}$. How many atoms are present in 100 g of an element?

Solution:

$\mathrm{a}=352.4 \mathrm{pm}=352.4 \times 10^{-10} \mathrm{~cm}=3.524 \times 10^{-8} \mathrm{~cm}$
$\rho=8.9 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$
for fcc, $n=4$
$\mathrm{w}=100 \mathrm{~g}$
$\mathrm{M}=$?
Density $\rho=\frac{n M}{a^{3} N_{A}}$
$\operatorname{Molar} \operatorname{mass}(M)=\frac{\rho a^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{n}}$
$(3.524)^{3}=43.7630$

\log	Value
8.9	$0.9494(+)$
43.763	1.6411
6.023	0.7798
	$3.3703(-)$
$\log 4$	0.6021
	2.7682

Antilog $(2.7682)=5.865 \times 10^{2}$

$$
\begin{aligned}
& =\frac{8.9\left(3.524 \times 10^{-8}\right)^{3} \times 6.023 \times 10^{23}}{4} \\
& =\frac{8.9 \times 43.7630 \times 6.023 \times 10^{-24} \times 10^{23}}{4}=5.865 \times 10^{2} \times 10^{-1}
\end{aligned}
$$

$\mathrm{M}=58.65 \mathrm{~g} . \mathrm{mol}^{-1}$
Number of moles $\mathrm{n}=\frac{\mathrm{w}}{\mathrm{m}}=\frac{100}{58.65}=1.705$ moles
Number of atoms present in ' n ' moles $=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}$

$$
=1.705 \times 6.023 \times 10^{23}=1.027 \times 10^{24} \text { atoms }
$$

2. Determine the density of $\mathbf{C s C l}$ which crystallizes in a bcc type structure with an edge length $\mathbf{4 1 2 . 1} \mathbf{~ p m}$.

$$
\begin{aligned}
& \mathrm{n}=2 ; \quad \mathrm{a}=412.1 \mathrm{pm}=412.1 \times 10^{-10} \mathrm{~cm} \\
& \quad=4.121 \times 10^{-8} \mathrm{~cm} \\
& \mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23} \\
& \mathrm{M}=132.9+35.5=168.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\
& \rho=? \\
& \rho=\frac{\mathrm{nm}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}
\end{aligned}
$$

\log	Value
69.98	$1.8450(+)$
6.023	0.7798
	2.6248
3368	$3.5274(-)$
	2.6248
	0.9026

Antilog $(0.9026)=7.991$

$$
\begin{aligned}
& =\frac{2 \times 168.4}{\left(4.121 \times 10^{-8}\right)^{3} \times 6.023 \times 10^{23}} \\
& =\frac{336.8}{69.98 \times 10^{-24} \times 6.023 \times 10^{23}}=\frac{3368}{69.98 \times 6.023}
\end{aligned}
$$

Density of $\mathrm{CsCl}(\rho)=7.99 \mathrm{~g} . \mathrm{cm}^{-3}$
3. A face centered cubic solid of an element (atomic mass 60) has a cube edge of $4 \mathrm{~A}^{\circ}$. Calculate its density.
for fcc $n=4$
$\mathrm{M}=60$
$\mathrm{a}=4 \mathrm{~A}^{\circ}=4 \times 10^{-8} \mathrm{~cm}$
$\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$
$\rho=$?
$\operatorname{Density}(\rho)=\frac{n m}{a^{3} \cdot N_{A}}$

\log	Value
150	$2.1761(-)$
24.092	1.3819
	0.7942

Anti $\log (0.7942)=6.226$

$$
\begin{aligned}
& \qquad=\frac{4 \times 60}{\left(4 \times 10^{-8}\right)^{3} \times 6.023 \times 10^{23}}=\frac{A \times 60^{15}}{A \times A \times 4 \times 6.023 \times 10^{23} \times 10^{-24}}=\frac{150}{24.092} \\
& \text { Density of cubic solid } \rho=6.226 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

4. Barium has body centered cubic unit cell with a length of $\mathbf{5 0 8} \mathbf{~ p m}$ along an edge. What is the density of barium in $\mathrm{g} . \mathrm{cm}^{-3}$?
$\mathrm{n}=2 ; \mathrm{a}=508 \mathrm{pm}=508 \times 10^{-10} \mathrm{~cm}=5.08 \times 10^{-8} \mathrm{~cm}$

$$
\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23} \mathrm{M}=137.3 \mathrm{~g} \mathrm{~mol}^{-1} \quad \rho=?
$$

$$
\rho=\frac{\mathrm{nm}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}=\frac{2 \times 137.3}{\left(5.08 \times 10^{-8}\right)^{3} \times 6.023 \times 10^{23}}
$$

$$
=\frac{274.6 \times 10^{1}}{131.10 \times 6.023}=\frac{2746}{131.10 \times 6.023}
$$

Density of Barium $(\rho)=3.5 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$

\log	Value		
131.10	$2.1176(+)$		
6.023	0.7798		
	2.8974		
	$3.4387(-)$		
	2.8974		
	0.5413		
Antilog $(0.5413)=3.477$			

EVALUATION

Choose the Best Answer

1. Graphite and diamond are

(JULY 22,23)

(a) covalent and molecular crystals
(b) ionic and covalent crystals
(c) both covalent crystals
(d) both molecular crystals

Ans: (c) both covalent crystals
2. An ionic compound $A_{x} B_{y}$ crystallizes in fcc type crystal structure with B ions at the centre of each face and A ion occupying corner of the cube the correct formula of $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}}$
(a) AB
(b) AB_{3}
(c) $\mathrm{A}_{3} \mathrm{~B}$
(d) $\mathrm{A}_{8} \mathrm{~B}_{6}$

Ans: (b) AB_{3}

Solution: Number of A ions $=\left(\frac{\mathrm{N}_{\mathrm{c}}}{8}\right)=\left(\frac{8}{8}\right)=1$
Number of B ions $=\left(\frac{N_{f}}{8}\right)=\left(\frac{6}{2}\right)=3$
Simplest formula AB_{3}
3. The ratio of close packed atoms to tetrahedral hole in cubic packing is
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) $1: 4$

Ans: (b) 1:2
Solution: If number of close packed atoms $=\mathrm{N}$; then,
The number of Tetrahedral holes formed $=2 \mathrm{~N}$ Number of Octahedral holes formed $=\mathrm{N}$ Therefore $\mathrm{N}: 2 \mathrm{~N}=1: 2$
4. Solid CO_{2} is an example of
(a) Covalent solid
(b) metallic solid
(c) molecular solid
(d) ionic solid

Ans: (c) molecular solid
Solution: Lattice points are occupied by CO_{2} molecules.
5. Assertion : Monoclinic sulphur is an example of monoclinic crystal system.

Reason : For a monoclinic system, $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ and $\alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$ (MAR 24)
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b)Both assertion and reason are true but reason is not the correct explanation of assertion.
(c) Assertion is true but reason is false.
(d)Both assertion and reason are false.

Ans: (a) Both assertion and reason are true and reason is the correct explanation of assertion
6. In calcium fluoride, having the fluorite structure the coordination number of Ca^{2+} ion and F^{-}ion are

(NEET)

(a) 4 and 2
(b) 6 and 6
(c) 8 and 4
(d) 4 and 8

Ans: (c) 8 and 4
Solution: CaF_{2} has cubical close packed arrangement.
Ca^{2+} Ions are in face centered cubic arrangement, each Ca^{2+} ions is surrounded by $8 \mathrm{~F}^{-}$ions and each F^{-}ion is surrounded by $4 \mathrm{Ca}^{2+}$ ions.
Therefore coordination number of Ca^{2+} is 8 and of F^{-}is 4 .
7. The number of unit cells in 8 gm of an element X (atomic mass 40) which crystallizes in bcc pattern is (N_{A} is the Avogadro number)
(a) 6.023×10^{23}
(b) 6.023×10^{22}
(c) 60.23×10^{23}
(d) $\left(\frac{6.023 \times 10^{23}}{8 \times 40}\right)$

Ans: (b) $\mathbf{6 . 0 2 3 \times 1 0 ^ { 2 2 }}$

Solution:

In bcc unit cell,
1 mole contains 6.023×10^{23} atoms
2 atoms $\equiv 1$ unit cell
Number of atoms in 8 g of element is,
0.2 mole contains $0.2 \times 6.023 \times 10^{23}$ atoms
0.2 mole contains $0.2 \times 6.023 \times 10^{23}$

Number of moles $=\frac{8 \mathrm{~g}}{40 \mathrm{~g} \mathrm{~mol}^{-1}}=0.2 \mathrm{~mol}$

$$
\begin{aligned}
& \left(\frac{1 \text { unit cell }}{2 \text { atoms }}\right) \times 0.2 \times 6.023 \times 10^{23} \\
& 6.023 \times 10^{22} \text { unit cells }
\end{aligned}
$$

8. In a solid atom M occupies ccp lattice and $\left(\frac{1}{3}\right)$ of tetrahedral voids are occupied by atom N. Find the formula of solid formed by M and N.
(a) MN
(b) $\mathrm{M}_{3} \mathrm{~N}$
(c) MN_{3}
(d) $\mathrm{M}_{3} \mathrm{~N}_{2}$

Ans: (d) $\mathbf{M}_{3} \mathbf{N}_{2}$
Solution: If the total number of M atoms is n , then the number of tetrahedral voids $=2 \mathrm{n}$ given that $\left(\frac{1}{3}\right)^{\text {rd }}$ of tetrahedral voids are occupied i.e., $\left(\frac{1}{3}\right) \times 2 \mathrm{n}$ are occupied by N atoms. $\therefore \mathrm{M}: \mathrm{N} \Rightarrow \mathrm{n}:\left(\frac{2}{3}\right) \mathrm{n} \quad$ Li: $\left(\frac{2}{3}\right) \quad 3: 2 \Rightarrow \mathrm{M}_{3} \mathrm{~N}_{2}$
9. The ionic radii of A^{+}and B^{-}are $0.98 \times 10^{-10} \mathrm{~m}$ and $1.81 \times 10^{-10} \mathrm{~m}$. The coordination number of each ion in $A B$ is
(a) 8
(b) 2
(c) 6
(d) 4

Ans: (c) 6
Solution: $\frac{r_{c^{+}}}{r_{\mathrm{A}^{-}}}=\frac{0.98 \times 10^{-10}}{1.81 \times 10^{-10}}=0.54$
It is in the range of $0.414-0.732$, hence the coordination number of each ion is 6 .
$10 . \mathrm{CsCl}$ has bcc arrangement, its unit cell edge length is 400 pm , its inter atomic distance
(a) 400 pm
(b) 800 pm
(c) $\sqrt{3} \times 100 \mathrm{pm}$
(d) $\left(\frac{\sqrt{3}}{2}\right) \times 400 \mathrm{pm}$

Ans: (d) $\left(\frac{\sqrt{3}}{2}\right) \times 400 \mathrm{pm}$
Solution: $\sqrt{3 \mathrm{a}}=\mathrm{r}_{\mathrm{cs}^{+}}+2 \mathrm{r}_{\mathrm{cl}^{-}}+\mathrm{r}_{\mathrm{cs}^{+}} ;\left(\frac{\sqrt{3}}{2}\right) \mathrm{a}=\left(\mathrm{r}_{\mathrm{cs}^{+}}+\mathrm{r}_{\mathrm{cr}^{-}}\right) ;\left(\frac{\sqrt{3}}{2}\right) 400=$ inter ionic distance
11. A solid compound XY has NaCl structure. If the radius of the cation is 100 pm , the radius of the anion will be
(a) $\left(\frac{100}{0.414}\right)$
(b) $\left(\frac{0.732}{100}\right)$
(c) 100×0.414
(d) $\left(\frac{0.414}{100}\right)$

Ans: (a) $\left(\frac{100}{0.414}\right)$

Solution: for an fcc structure $\frac{r_{x^{+}}}{r_{y^{-}}}=0.414$; given that $r_{x^{+}}=100 \mathrm{pm} ; \quad r_{y^{-}}=\frac{100 \mathrm{pm}}{0.414}$
12. The vacant space in bcc lattice unit cell is
(MAR 20)
(a) 48%
(b) 23%
(c) 32%
(d) 26%

Ans: (c) $\mathbf{3 2 \%}$
Solution: Packing efficiency $=68 \%$
Therefore empty space percentage $=(100-68)=32 \%$
13. The radius of an atom is 300 pm , if it crystallizes in a face centered cubic lattice, the length of the edge of the unit cell is
(a) 488.5 pm
(b) 848.5 pm
(c) 884.5 pm
(d) 484.5 pm

Ans: (b) 848.5pm
Solution: Let edge length $=a \quad \sqrt{2 \mathrm{a}}=4 \mathrm{r} \quad \mathrm{a}=\frac{4 \times 300}{\sqrt{2}}=600 \times 1.414=848.4 \mathrm{pm}$
14. The fraction of total volume occupied by the atoms in a simple cubic is
(a) $\left(\frac{\pi}{4 \sqrt{2}}\right)$
(b) $\left(\frac{\pi}{6}\right)$
(c) $\left(\frac{\pi}{4}\right)$
(d) $\left(\frac{\pi}{3 \sqrt{2}}\right)$
Ans: (b) $\left(\frac{\pi}{6}\right)$
Solution: $\left(\frac{\frac{4}{3} \pi \mathrm{r}^{3}}{\mathrm{a}^{3}}\right)=\left(\frac{\frac{4}{3} \pi\left(\frac{\mathrm{a}}{2}\right)^{3}}{\mathrm{a}^{3}}\right)=\left(\frac{\pi}{6}\right)$
15. The yellow colour in NaCl crystal is due to
(a) excitation of electrons in F centers
(b) reflection of light from Cl ion on the surface
(c) refraction of light from Na^{+}ion
(d) all of the above

Ans: (a) excitation of electrons in F centers
16. If ' a ' stands for the edge length of the cubic system; $s c, b c c$, and fcc. Then the ratio of radii of spheres in these systems will be respectively.
(a) $\left(\frac{1}{2} \mathrm{a}: \frac{\sqrt{3}}{2} \mathrm{a}: \frac{\sqrt{2}}{2} \mathrm{a}\right)$ (b) $(\sqrt{1 \mathrm{a}}: \sqrt{3 \mathrm{a}}: \sqrt{2 \mathrm{a}})$ (c) $\left(\frac{1}{2} \mathrm{a}: \frac{\sqrt{3}}{4} \mathrm{a}: \frac{1}{2 \sqrt{2}} \mathrm{a}\right)$ (d) $\left(\frac{1}{2} \mathrm{a}: \sqrt{3 \mathrm{a}}: \frac{1}{\sqrt{2}} \mathrm{a}\right)$

Ans: (c) $\left(\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a\right)$
Solution: $\mathrm{sc} \Rightarrow 2 \mathrm{r}=\mathrm{a} \Rightarrow \mathrm{r}=\frac{\mathrm{a}}{2}$;
$\mathrm{bcc} \Rightarrow 4 \mathrm{r}=\sqrt{3} \mathrm{a} \Rightarrow \mathrm{r}=\frac{\sqrt{3} \mathrm{a}}{4}$

$$
\mathrm{fcc} \Rightarrow 4 \mathrm{r}=\sqrt{2} \mathrm{a} \Rightarrow \mathrm{r}=\frac{\sqrt{2} \mathrm{a}}{4}=\frac{\mathrm{a}}{2 \sqrt{2}} ; \quad\left(\frac{\mathrm{a}}{2}\right):\left(\frac{\sqrt{3} \mathrm{a}}{4}\right):\left(\frac{\mathrm{a}}{2 \sqrt{2}}\right)
$$

17. If ' a ' is the length of the side of the cube, the distance between the body centered atom in one corner atom in the cube will be
(a) $\left(\frac{2}{\sqrt{3}}\right)$ a
(b) $\left(\frac{4}{\sqrt{3}}\right) \mathrm{a}$
(c) $\left(\frac{\sqrt{3}}{4}\right) \mathrm{a}$
(d) $\left(\frac{\sqrt{3}}{2}\right) \mathrm{a}$
Ans: (d) $\left(\frac{\sqrt{3}}{2}\right) \mathbf{a}$

Solution: If a is the length of the side $\sqrt{3} a$, then the length of the leading diagonal passing through the body centered atom is $\frac{\sqrt{3}}{2} \mathrm{a}$.
18. Potassium has a bcc structure with nearest neighbour distance $4.52 \mathrm{~A}^{\circ}$. Its atomic weight is 39 . Its density will be
(a) $915 \mathrm{~kg} \mathrm{~m}^{-3}$
(b) $2142 \mathrm{~kg} \mathrm{~m}^{-3}$
(c) $452 \mathrm{~kg} \mathrm{~m}^{-3}$
(d) $390 \mathrm{~kg} \mathrm{~m}^{-3}$

Solution: $\rho=\frac{\mathrm{n} \times \mathrm{M}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}} \quad \square$
for bcc
$\mathrm{n}=2$
$M=39$
$\rho=\frac{2 \times 39}{\left(5.21 \times 10^{-10}\right)^{3} \times\left(6.023 \times 10^{23}\right)}$
Nearest distance $2 \mathrm{r}=4.52$

$$
\begin{aligned}
& a=\frac{4 \mathrm{r}}{\sqrt{3}}=\frac{2 \times 4.52 \times 10^{-10}}{\sqrt{3}}=5.21 \times 10^{-10} \\
& \rho=915 \mathrm{Kg} \mathrm{~m}^{-3}
\end{aligned}
$$

19. Schottky defect in a crystal is observed when
(a) unequal number of cations and anions are missing from the lattice
(b)equal number of cations and anions are missing from the lattice
(c) an ion leaves its normal site and occupies an interstitial site
(d)no ion is missing from its lattice

Ans: (b) equal number of cations and anions are missing from the lattice
20. The cation leaves its normal position in the crystal and moves to some interstitial position, the defect in the crystal is known as
(a) Schottky defect
(b) F center
(c) Frenkel defect
(d) non-stoichiometric defect

Ans: (c) Frenkel defect
21. Assertion : Due to Frenkel defect, density of the crystalline solid decreases.

Reason : In Frenkel defect cation and anion leaves the crystal.
(a) Both assertion and reason are true and reason is the correct explanation of assertion
(b)Both assertion and reason are true but reason is not the correct explanation of assertion
(c) Assertion is true but reason is false
(d) Both assertion and reason are false

Ans: (d) Both assertion and reason are false
22. The crystal with a metal deficiency defect is

(JULY 21, PTA MQ, MAY 22)

(a) NaCl
(b) FeO
(c) ZnO
(d) KCl

Ans: (b) FeO
23. A two dimensional solid pattern formed by two different atoms X and Y is shown below. The black and white squares represent atoms X and Y respectively. The simplest formula for the compound based on the unit cell from the pattern is
(a) XY_{8}
(b) $\mathrm{X}_{4} \mathrm{Y}_{9}$
(c) XY_{2}
(d) XY_{4}

Ans: (a) $\mathbf{X Y}_{8}$

ADDITIONAL QUESTIONS

24. Which of the following statements is not correct?
(a) The number of carbon atoms in an unit cell of diamond is 4
(b) The number of Bravais lattices in which a crystal can be categorized is 14
(c) The fraction of the total volume occupied by the atoms in a primitive cell is 0.48
(d)Molecular solids are generally volatile

Ans: (c) The fraction of the total volume occupied by the atoms in a primitive cell is $\mathbf{0 . 4 8}$
25. AB crystallizes in a body centred cubi¢ 7 tttice with edge length ' a ' equal to 387 pm .

The distance between two oppositively charged ions in the lattice is:
(a) 300 pm
(b) 335 pm
(c) 250 pm
(d) 200 pm

Ans: (b) $\mathbf{3 3 5} \mathbf{~ p m}$
26. A metal crystallises within a face centred cubic lattice. The edge of the unit cell is 408 pm . The diameter of the metal atom is:
(a) 204 pm
(b) 144 pm
(c) 408 pm
(d) 288 pm
27. The packing efficiency of a face centered cubic structure is

Ans: (d) 288 pm (PTA MQ)
(a) 74%
(b) 68%
(c) 52.38%
(d) 48%

Ans: (a) 74\%
28. In FCC unit cell of the edge length is $8 \sqrt{2} \mathrm{pm}$. The radius of the metal atom is A°
(PTA MQ)
(a) 0.04
(b) 0.02
(c) 8×10^{-2}
(d) $\frac{8}{\sqrt{2}}$

Ans: (a) 0.04
29. The arrangement of crystallographic axes and angles respectively in hexagonal crystal systems is
(PTA MQ)
(a) $a \neq b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$
(b) $\mathrm{a}=\mathrm{b} \neq \mathrm{c} \quad \alpha=\beta=\gamma=90^{\circ}$
(c) $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$
$\alpha=\beta=90^{\circ} \quad \gamma=120^{\circ}$
(d) $\mathrm{a}=\mathrm{b}=\mathrm{c} \quad \alpha \neq \beta \neq \gamma=90^{\circ}$

Ans: (c) $\mathrm{a}=\mathrm{b} \neq \mathrm{c}, \alpha=\beta=\mathbf{9 0}{ }^{\circ} \gamma=120^{\circ}$
30. The formula used to identify density of the unit cell:
(Corona-20)
(a) $\rho=a^{3} N_{A} \times n M$
(b) $\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}-\mathrm{nM}$
(c) $\rho=\frac{\mathrm{nM}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}$
(d) $\rho=\frac{a^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{nM}}$
Ans: (c) $\rho=\frac{n M}{a^{3} N_{A}}$
31. Packing efficiency of Body Centred Cube (BCC):
(a) 52.31%
(b) 68%
(c) 86%
(d) 52.13%

Ans: (b) 68%
(MAR 23)
32. The crystal with metal excess defect is:
(a) NaCl
(b) AgBr
(c) Agcl
(d) FeO

Ans: (a)NaCl

EVALUATION (BOOK BACK)

2, 3 and 5 Mark Question and Answers

1. Define unit cell.

AUG 21, JULY 22, PTA MQ)
A basic repeating structural unit of a crystalline solid is called a unit cell.
2. Give any three characteristics of ionic crystals.

(PTA MQ)

1. Ionic solids have high melting points.
2. They do not conduct electricity in solid state.
3. They conduct electricity in molten state or dissolved in water.
4. They are hard.
5. Differentiate crystalline solids and amorphous solids.
(PTA MQ) (Corona-20, MAY 22, JULY 23)

S. No.	Crystalline solids	Amorphous solids
1.	Long range orderly arrangement of constituents.	Short range, random arrangement of constituents.
2.	Definite shape	Irregular shape
3.	They are anisotropic	They are isotropic
4.	They are true solids	They are super cooled liquids
5.	Definite Heat of fusion	Heat of fusion is not definite
6.	They have sharp melting points	Gradually soften over a range of temperature.
7.	Examples: NaCl, diamond.	Examples: Rubber, plastics, glass.

4. Classify the following solids
(a) \mathbf{P}_{4}
(b) Brass
(c) diamond
(d) NaCl
(e) Iodine

a) P_{4}	Molecular solid
b) Brass	Metallic solid
c) diamond	Covalent solid
d) NaCl	Ionic solid
e) Iodine	Molecular solid

5. Explain briefly seven types of unit cell.

Units	Crystallographic axes	Crystallographic angles
1. Cubic	$\mathrm{a}=\mathrm{b}=\mathrm{c}$	$\alpha=\beta=\gamma=90^{\circ}$
2. Rhombohedral	$\mathrm{a}=\mathrm{b}=\mathrm{c}$	$\alpha=\beta=\gamma \neq 90^{\circ}$
3. Hexagonal	$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$	$\alpha=\beta=90^{\circ} \gamma=120^{\circ}$
4. Tetragonal	$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$	$\alpha=\beta=\gamma=90^{\circ}$
5. Orthorhombic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$	$\alpha=\beta=\gamma=90^{\circ}$
6. Monoclinic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$	$\alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$
7. Triclinic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

(

Crystallographic axes $=\mathbf{a}, \mathrm{b}, \mathbf{c}$
Crystallographic angles $=\alpha=\beta=\gamma$
6. Distinguish between hexagonal closepacking and cubic close packing.

S. No.	HCP	CCP
1.	Primitives are not same $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$	Primitives are same $\mathrm{a}=\mathrm{b}=\mathrm{c}$
2.	Crystallographic angle $\alpha=\beta=90^{\circ} ;$ $\gamma=120^{\circ}$	Crystallographic angles $\alpha=\beta=\gamma=90$
3.	This type is found in metals like Mg, Zn	This type is found in metals like Cu, Ag
4.	The unit cell of hcp has 6 spheres	The unit cell of CCP is 4 spheres
5.	The repeating unit of hcp has two layers of spheres	The repeating unit of CCP has three layers of spheres

7. Distinguish tetrahedral and octahedral voids.

S. No.	Tetrahedral voids	Octahedral voids
1.	The sphere of second layer is above the void of first layer, a tetrahedral void is formed	The triangular voids in the second layer are above the triangular voids in the first layer and the triangular voids do not overlap
2.	The co-ordination number is 4.	The co-ordination number is 6.

8. What are point defects?

If the deviation occurs due to missing atoms, displaced atoms or extra atoms, the imperfection is named as point defect.
9. Explain Schottky defect.
(PTA MQ, SEP 20, MAR 23)
Schottky defect arises due to missing of equal number of cation and anion from the crystal lattice.
This defect does not change the stoichiometry of the crystal.
Ionic solids in which the cation and anion are almost of similar size shows this defect.
(E.g) NaCl

Presence of large number of this defect in the
 crystal, lower its density.
10. Write short note on metal excess (' f ' centers) and metal deficiency defect with an example.
metal excess defect ('f' centers)
This defect arises due to presence of more number of metal ions as compared to anions.
(E.g) Alkali metals, halides $(\mathrm{NaCl}, \mathrm{K} \subset 1)$

The presence of anionic vacancies equal to
 excess metal ion or by the presence of extra cation and electron present in interstitial position make the crystal electrically neutral.
When NaCl is heated in sodium vapour, Na^{+}ions are formed and deposited on the surface of crystal.
Chloride ion diffuse to the surface from the lattice point and combines with Na^{+}ion. The anionic vacancies which are occupied by unpaired electrons are called ' F ' Centers.

Metal deficiency defect

This defect arises due to the presence of less number of cations than the anions.

This defect observed in a crystal having the cations with variable oxidation states.
(E.g) FeO

Some of the Fe^{2+} ions are missing from crystal lattice.
To maintain the electrical neutrality, twice the number of other Fe^{2+} ions in the crystal is oxidised to Fe^{3+} ions.
In such cases overall number of Fe^{2+} and Fe^{3+} ions is less than O^{2-} ions.
11. Calculate the number of atoms in a fcc unit cell.
(PTA MQ, MAR 23)

The number of atoms in a fcc unit cell in FCC $=\frac{\mathrm{N}_{\mathrm{C}}}{8}+\frac{\mathrm{N}_{\mathrm{f}}}{2}=\frac{8}{8}+\frac{6}{2}=1+3=4$
12. Explain AAAA and ABABA and ABCABC type of three dimensional packing with the help of neat diagram. (Any one heading may be asked in Board Exam) (i) AAA type

This type of three dimensional packing arrangements can be obtained by repeating the AAAA type two dimensional arrangements in three dimensions.
Spheres in one layer sitting directly on the top of those in the previous layer so that all layers are identical.
In simple cubic packing, each sphere is in contact with 6 neighbouring spheres - Four in its own layer, one
 above and one below and hence the coordination number of the sphere in simple cubic arrangement is 6 .
(ii) ABABAB type

The spheres in the first layer (A type) are slightly separated and the second layer is formed by arranging the spheres in the depression between the spheres in layer A as shown in fiqure. The third layer is a repeat of the first. Each sphere has a coordination number of 8 .
(iii) ABCABC type

Wherever a sphere of second layer (b) is above the void (x) of the first layer (a), a tetrahedral void is formed. This constitutes four spheres - three in the lower (a) and one in the upper layer (b). When the centres of these four spheres are joined, a tetrahedron is formed.
At the same time, the voids (y) in the first layer (a) are partially covered by the spheres of layer (b), now such a void in (a) is called a octahedral void. This constitutes six spheres - three in the lower layer (a) three in the upper layer (b). When the centres of these six spheres are joined, an octahedron is formed. Simultaneously new tetrahedral voids (or holes) are also created by three spheres in second year (b) and one sphere of first layer (a).

Formation of third layer

The third layer of spheres can be formed in two ways to achieve closest packing
(i) aba arrangement - hcp structure
(ii) abc arrangement - ccp structure

The spheres can be arranged so as to fit into the depression in such a way that the third layer is directly over a first layer. This "aba" arrangement is known as the hexagonal close packed (hcp) arrangement. In this arrangement the tetrahedral voids of the second layer as covered by the spheres of the third year.
In this type the third layer is placed over the second layer in such a way that all the sphere of the third layer fit to octahedral voids.

This arrangement of third layer is different from other two layer ' A ' and ' B '.
This type of arrangement is called CCP structure.
The co-ordination number of each sphere is 12 .

13. Why ionic crystals are hard and brittle?

Ionic crystals are formed by three dimensional arrangements of cations and anions bound by strong electrostatic force of attraction. So Ionic crystals are hard and brittle.
14. Calculate the percentage efficiency of packing in case of body centered cubic crystal.
Number of Spheres in bcc arrangement $=2$
\therefore Total volume of spheres $=2 \times \frac{\sqrt{3 \pi}}{16} \mathrm{a}^{3}=\frac{\sqrt{3 \pi} \mathrm{a}^{3}}{8}$
Packing fraction or efficiency $=$
Total Volume occupied by spheres in unit cell Volume of unit cell

\log	Value
1.732	$0.2385(+)$
3.14	0.4969
12.5	1.0969
	1.8323
Antilog (1.8323)	$=6.797 \times 10^{1}$
	$=67.97$

$=\frac{\frac{\sqrt{3} \pi \mathrm{a}^{3}}{8}}{\mathrm{a}^{3}} \times 100=\frac{\sqrt{3} \pi}{8} \times 100=1.732 \times 3.14 \times 12.5=68 \%$
68% of available volume is occupied.
15. What is the two dimensional co-ordination number of molecule in square close packed layer?
The two dimensional co-ordination number of a molecule in square close packed layer is 4 .
16. What is meant by the term "Coordination number"? What is the coordination number of atoms in a bec structure?
(AUG 21, MAY 22)
The number of spheres directly surrounding a single sphere in a crystal is called co-ordination number. Sphere may be molecule, atoms or ions.
The co-ordination number of atoms in bcc structure is 8 .
17. An element has bcc structure with a cell edge of 288 pm . The density of the element is $7.2 \mathrm{gcm}^{-3}$. How many atoms are present in 208 g of the element?
Total atoms present in bcc

$$
=2
$$

Cell edge of bcc

$$
=288 \mathrm{pm}=2.88 \times 10^{-8} \mathrm{~cm}
$$

$$
=7.2 \mathrm{~g} \mathrm{~cm}^{-2}
$$

Mass of the atoms
Total atoms

$$
\begin{aligned}
& =208 \mathrm{~g} \\
& =?
\end{aligned}
$$

Density ρ

$$
=\frac{\mathrm{nM}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}
$$

Molecular mass (M) $=\frac{\rho a^{3} \mathrm{~N}_{A}}{\mathrm{n}}$

\log	Value
3.6	$0.5563(+)$
23.89	1.3783
6.023	0.7798
	2.7144
Antilog $(2.7144)=5.1795 \times 10^{2}$	

$$
=\frac{7.2 \times\left(2.88 \times 10^{-8}\right)^{3} \times 6.023 \times 10^{23}}{2}
$$

$$
3.6
$$

$$
=\frac{7.2 \times 23.89 \times 6.023 \times 10^{23} \times 10^{-24}}{\not 2}=5.1795 \times 10^{2} \times 10^{-1}
$$

$$
\mathrm{M}=51.795 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Number of moles (n) $\quad=\frac{\mathrm{W}}{\mathrm{M}}=\frac{208}{51.795}=4.015$
Total number of atoms $=$ Number of moles $(\mathrm{n}) \times \mathrm{N}_{\mathrm{A}}$

$$
=4.015 \times 6.023 \times 10^{23}=24.19 \times 10^{23}=2.419 \times 10^{24} \text { atoms }
$$

18. Aluminium crystallizes in a cubic close packed structure. Its metallic radius is 125 pm . calculate the edge length of unit cell.
(MAR 24)
$\mathrm{r}=125 \mathrm{pm}$

$$
\mathrm{a}=354 \mathrm{pm}
$$

Radius $\mathrm{r}=125 \mathrm{pm}$

$$
\mathrm{r}=\frac{\mathrm{a} \sqrt{2}}{4}
$$

Edge length $(a)=\frac{4 \mathrm{r}}{\sqrt{2}}=\frac{4 \times 125}{\sqrt{2}}=2 \sqrt{2} \times 125=2 \times 1.414 \times 125=353.55 \mathrm{pm}$
19. If NaCl is doped with $10^{-2} \mathrm{~mol}$ percentage of strontium chloride, what is the concentration of cation vacancy?
Concentration of $\mathrm{SrCl}_{2}=10^{-2} \mathrm{~mol} \%$
Concentration is in percentage so that total 100 mole of solution can be taken.
Number of moles of $\mathrm{NaCl}=100$ - moles of SrCl_{2}
Number of moles of SrCl_{2} is very negligible as compared to total moles.
Number of moles of $\mathrm{NaCl}=100$
1 mole of NaCl is dopped with $=10^{-2} / 100$ mole of SrCl_{2}

$$
=10^{-4} \text { moles of } \mathrm{SrCl}_{2}
$$

Cation vacancies per mole of $\mathrm{NaCl}=10^{-4}$ mole
$\therefore 1$ mole $=6.022 \times 10^{23}$ particles
So cation vacancies per mole of $\mathrm{NaCl}=10^{-4} \times 6.022 \times 10^{23}=6.022 \times 10^{19}$
So, the concentration of cation vacancies created by SrCl_{2} is 6.022×10^{19} per mole of NaCl .
20. KF crystallizes in fce structure like sodium chloride. Calculate the distance between K^{+}and F^{-}in KF. (Given: density of $K F$ is $2.48 \mathrm{~g} \mathrm{~cm}^{-3}$)
(PTA MQ)
Total number of atoms in $\mathrm{fcc}=4$
Density $=2.48 \mathrm{~g} \mathrm{~cm}^{-3}$
Volume of unit cell $a^{3}=\frac{n \times m}{\text { density } \times N_{A}}$
$=\frac{4 \times 58}{2.48 \mathrm{gcm}^{-3} \times 6.023 \times 10^{23}}=\frac{58}{0.62 \times 6.023 \times 10^{23}}$
$\mathrm{a}^{3}=15.41 \times 10^{-23} \mathrm{~cm}^{3}$
Edge length $(a)=5.375 \times 10^{-8} \mathrm{~cm}$
The distance between the K^{+}and F^{-}ions

\log	Value
0.62	$\overline{1} .7924(+)$
6.023	0.7798
	0.5722
	$1.7634(-)$
	0.5722
	1.1912
Antilog (1.1912)	$=1.553 \times 10^{1}$
	$=15.53$

$(2 \mathrm{r})=\frac{\mathrm{a} \sqrt{2}}{2}=\frac{5.375 \times 10^{-8} \times 1.414}{2}=3.796 \times 10^{-8} \mathrm{~cm}$
21. An atom crystallizes in fcc crystal lattice and has a density of $10 \mathrm{~g} \mathrm{~cm}^{-3}$ with unit cell edge length of 100 pm . Calculate the number of atoms present in 1 g of crystal.
(PTA MQ)
Total number of atoms in fcc (n) $=4$
$\rho=10 \mathrm{~g} \mathrm{~cm}^{-3} \quad \mathrm{~W}=1 \mathrm{~g} \quad \mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23} \quad \mathrm{M}=?$
$\rho=\frac{n M}{a^{3} N_{A}}$
$\mathrm{M}=\frac{\rho \mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{n}}=\frac{10 \times\left(1.0 \times 10^{-8}\right)^{3}\left(6.023 \times 10^{23}\right)}{4}=\frac{6.023}{4}=1.506 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles $(\mathrm{n})=\frac{\mathrm{W}}{\mathrm{M}}=\frac{1}{1.506}=0.664$
Total number of atoms $=$ Number of moles $\times \mathrm{N}_{\mathrm{A}}$

$$
=0.664 \times 6.023 \times 10^{23}=3.999 \times 10^{23} \text { atoms }
$$

22. Atoms X and Y form bcc crystalline structure. Atom X is present at the corners of the cube and Y is at the center of the cube. What is the formula of the compound?
(PTA MQ)

Atom present in corners $=\mathrm{X}$
Crystal structure $=\mathrm{bcc}$

Atom present in center $=\mathrm{Y}$
Formula of the compound $=\mathrm{XY}$
23. Sodium metal crystallizes in bcc structure with the edge length of the unit cell $4.3 \times 10^{-8} \mathbf{~ c m}$. Calculate the radius of sodium atom.
Edge length of sodium unit cell $=4.3 \times 10^{-8} \mathrm{~cm}$

The radius of sodium $=\frac{\sqrt{3} a}{4}$

$$
=\frac{0.733 \times 4.3 \times 10^{-8}}{4} \mathrm{~cm}=1.86 \times 10^{-8} \mathrm{~cm}
$$

24. Write a note on Frenkel defect.

(PTA MQ, MAR 20, MAR 23)

This defect arises due to dislocation of ion from it crystal lattice.
The ions missing from lattice points occupies an interstitial position.
This defect is shown by ionic solids in which cation and anion differ in size.
This defect does not affect the density of crystal. (Eg.) Ag Br

Small Ag^{+}ion leaves its normal site and occupies an interstitial position.

ADDITIONAL QUESTIONS

2 and 3 Mark Question and Answers

25. Define: Isotrophy, anisotrophy.

In solid state, isotropy means having identical values of physical properties such as refractive index, electrical conductance in all direction. Amorphous solids are isotropic.
In solid state, anisotropy means having different values of physical properties such as refractive index, electrical conductance in different direction. Crystalline solids are anisotropic.
26. Write the classification of crystal defects.

1) Point defects;
2) Line defects;
3) Interstitial defects;
4) Volume defects
27. What are covalent solids?
(MAY 22)
In covalent solids, the atoms are bound together in a three dimensional network entity by covalent bonds. (Eg.) Diamond
28. What are Non-polar molecular solids?

In this solids, constituent molecule are held together by weak dispersion forces or London forces. (Eg.) naphthalene
29. What are polar molecular solids?

In this solids, constituent molecules are held together by polar covalent bonds.
(Eg.) Solid CO_{2}
30. What is primitive unit cell?

A unit cell that contain only one lattice point is called primitive unit cell.
31. What is non-primitive unit cell?

In this type, there are additional lattice points, either on a face of the unit cell or within the cell.
32. Write the co-ordination number of sc, bcc, and fcc.

The co-ordination number in sc unit cell $=6$
The co-ordination number in bcc unit cell $=8$
The co-ordination number in fcc unit cell $=12$
33. Find out the total number atoms in bcc unit cell?

Total number atoms in bcc unit cell $=\frac{\mathrm{N}_{\mathrm{c}}}{8}+\frac{\mathrm{N}_{\mathrm{b}}}{1}=\frac{8}{8}+\frac{1}{1}=1+1=2$
34. Write Bragg equation and explain the term.
(PTA MO)
$\mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$
$\mathrm{n} \Rightarrow$ Order of reflection $\quad \lambda \Rightarrow$ Wave length of X-ray
$\mathrm{d} \Rightarrow$ Inter planar distance $\quad \theta \Rightarrow$ angle of reflection
35. Write the formula for density of unit cell.

Density of unit cell $(\rho)=\frac{n m}{a^{3} N_{A}}$
$\mathrm{n}=$ Number of atom in a unit cell;
$\mathrm{m}=$ mass of a atom
$\mathrm{a}=$ edge length;
$\mathrm{N}_{\mathrm{A}}=$ Avagadro number
36. Define packing fraction or packing efficiency.

Packing fraction (or)efficiency $=\left\{\frac{\text { Total volume occupied by spheres in a unit cell }}{\text { volume of unit cell }}\right\} \times 100$
37. Define crystal lattice.
(PTA MQ)
Crystalline solid is characterised by a definite orientation of atoms, ions or molecules, relative to one another in a three dimensional pattern. The regular arrangement of these species through out the crystal is called a crystal lattice.
38. If the no. of close packed sphere is 6 , calculate the number of Octahedral voids and Tetrahedral voids generated.
(MAR 20)
Number of close packed sphere $=6$
Octahedral void (n) $=6$
Tetrahedral void (2n) $=12$
39. If the radius ratio of the compound is between $0.155-0.225$, find out the co-ordination number and structure of the compound.
(Corona-20)

$\left(\frac{\mathbf{R}_{\mathrm{c}^{+}}}{\mathbf{r}_{\mathbf{A}^{-}}}\right)$	Coordination number	Structure	Example
$0.155-0.225$	3	Trigonal planar	$\mathrm{B}_{2} \mathrm{O}_{3}$
$0.225-0.414$	4	Terahedral	ZnS
$0.414-0.732$	6		Octahedral
$0.732-1.0$	8	NaCl	

40. Distinguish between Isotropy and Anisotropy in solids.
(SEP 20)

S.	Isotropy	Anisotropy	
No.	Eg. Glass	Shows different values of physical properties in different direction	
1.	In solids, identical values of physical properties in all directions		
2.	Eg. NaCl		

41. Why $\mathbf{Z n O}$ changes to yellow colour during heating?

On heating ZnO loses oxygen and forms free Zn^{2+} ions.
The excess Zn^{2+} ions move to interstitial sites and the electrons also occupy interstial positions.
42. What are metallic solids? Give e.g.

In metallic solids, the lattice points are occupied by positive metal ions and a cloud of electrons pervades the space.
43. Calculate the percentage efficiency of packing in SC and FCC. (MAR 24)

Packing efficiency in SC:

Radius of sphere $(r)=a / 2$
Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{a}{2}\right)^{3}=\frac{4}{3} \pi \frac{a^{3}}{8}=\frac{\pi a^{3}}{6}$
Number of spheres in Sc arrangement $=1$
Total volume occupied by the spheres in SC unit cell $=1 \times\left(\frac{\pi a^{3}}{6}\right)$

Packing efficiency in FCC:

Radius of sphere $r=\frac{a \sqrt{2}}{4}$
Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{\sqrt{2} a}{4}\right)^{3}=\frac{4}{3} \pi \frac{2 \sqrt{2} a^{3}}{64}=\frac{\sqrt{2} \pi a^{3}}{24}$
Number of spheres in FCC arrangement $=4$
Total volume of spheres occupied in Fcc $=4 \times\left(\frac{\sqrt{2} \pi a^{3}}{24}\right)=\frac{\sqrt{2} \pi a^{3}}{6}$
Packing fraction (or) efficiency $=\frac{\left\{\begin{array}{l}\text { Total Volume Occupied by } \\ \text { spheres in a unit cell }\end{array}\right\}}{\text { Volume of unit cell }} \times 100$
Packing fraction or efficiency $=\frac{\frac{\sqrt{2} \pi a^{3}}{6}}{a^{3}} \times 100=\frac{\sqrt{2} \pi}{6} \times 100=\frac{1.414 \times 3.14 \times 100}{6}=74 \%$
44. What is radius ratio in ionic solid? Tabulate the relation between radius ratio and structural arrangement in ionic solids.
(PTA MO)

$\mathbf{r c}^{+} / \mathbf{r A}^{-}$	Coordination Number	Structure	Example
$0.155-0.225$	3	Trigonal Planar	$\mathrm{B}_{2} \mathrm{O}_{3}$
$0.225-0.414$	4	Tetrahedral	ZnS
$0.414-0.732$	6	Octahedral	NaCl
$0.732-1.0$	8	Cubic	CsCl

Five Mark Question and Answers

45. Write the characteristics of solids.
i) Solids have definite volume and shape.
ii) Solids are rigid and incompressible.
iii)Solids have strong cohesive forces.
iv) Solids have short inter atomic, ionic or molecular distances.
v) Their constituents have fixed positions and can only oscillate about their mean positions.
46. Write the classification of solids.

47. Explain the classification of point defect with example.

48. Explain the impurity defects in crystals.

This defect arises when impurity ions are added to ionic solids.
If the impurity ions are in different valency from that of host, vacancies are created in the crystal lattice of the host.
(E.g) Addition of CdCl_{2} to silver chloride yields solid solutions. When the Cd^{2+} occupies the position of Ag^{+}, disturb the electrical neutrality.
In order to maintain the same, proportional number of Ag^{+}ions leave the lattice.
This produce a cation vacancy in the lattice such kind of crystal defects are called impurity defects.

