www.Padasalai.Net

www.Trb Tnpsc.Com

 $5 \ge 5 = 25$

Class: 10

SRI VINAYAGA TUITION CENTRE

ANAIMALAI-642104

FIRST-MID TERM TEST 2024

MATHEMATICS

Total Marks: 50 Marks Duration: 1 Hrs 30 Min

PART A

CHOOSE THE BEST ANSWERS				$10 \ge 1 = 10$
1.	A = {a,b,p}, B = {2,3}	, C = $\{p,q,r,s\}$ then n[(A	$(\cup B) \times B$] is	
	a) 8	b) 20	c) 12	d) 16
2. If there are 1024 relations from a set $A = \{1, 2, 3, 4, 5\}$ to a set B, then the number of elements in B				number of elements in B is
	a) 3	b) 2	c) 4	d) 8
3.	3. Let $n(A) = m$ and $n(B) = n$ then the total number of non-empty relations that can be defined from A to B			
	a) m ⁿ		b) n ^m	
	c) 2 ^{mn} - 1		d) 2 ^{mn}	
4. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r su				unique integers q and r such that $a =$
	bq + r, where r must sa	ttisfy.		
	a) 1 < r < b	b) $0 < r < b$	c) $0 \le r \le b$	d) $0 < r \le b$
5. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible rema				d by 9 then the possible remainders are
	a) 0, 1, 8	b) 1, 4, 8	c) 0, 1, 3	d) 1, 3, 5
6.	. If the HCF of 65 and 117 is expressible in the form of 65m - 117, then the value of m is			
	a) 4	b) 2	c) 1	d) 3
7.	Given $F_1 = 1$, $F_2 = 3$ and	nd $F_n = F_{n-1} + F_{n-2}$ then	F_5 is	
	a) 3	b) 5	c) 8	d) 11
8.	The solution of the sys	tem x + y - 3x = -6, -7y	+7z = 7, 3z = 9 is	
	a) $x = 1, y = 2, z = 3$		b) $x = -1, y = 2, z =$	3
	c) $x = -1, y = -2, z =$	3	d) $x = -1$, $y = -2$, $z =$	= -3
9. If $(x - 6)$ is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$ then the value of k is				
	a) 3	b) 5	c) 6	d) 8
10. If $n(AxB) = 24$, and $A = \{1, 3, 5, 7\}$ then $n(B)$ is				
	a) 8	b) 4	c) 5	d) 6
			PART B	
Answer any 5 questions (Q.NO 17 COMPULSORY)				$5 \ge 2 = 10$
11	. If $A \times B = \{(3,2), (3,4)\}$	4), (5,2), (5,4)} then find	A and B.	

- 12. If f(x) = 3x 2, g(x) = 2x + k and if $f \circ g = g \circ f$, then find the value of k.
- 13. $A = \{-2, -1, 0, 1, 2\}$ and $f : A \rightarrow B$ is an onto function defined by $f(x) = x^2 + x + 1$ then find B.
- 14. Find the number of terms in the A.P. 3, 6, 9, 12,..., 111.
- 15. Find the 8th term of the G.P. 9, 3, 1,....
- 16. Find the sum of 1 + 3 + 5 + ... + 55
- 17. Find the LCM of $x^3 27$, $(x 3)^2$, $x^2 9$

PART C

Answer any 5 questions (Q.NO 24 COMPULSORY)

- 18. Let $A=\{x\in \mathbb{W}|x<2\}\,,\ B=\{x\in \mathbb{N}|1\leq x<4\}\,$ and $C=\{3,5\}$. Then verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 19. Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 5, 8, 11, 14\}$ be two sets. Let $f : A \to B$ be a function given by f(x) = 3x 1. Represent this function (i) by arrow diagram (ii) in a table form (iii) as a set of ordered pairs (iv) in a graphical form
- 20. Consider the functions f(x), g(x), h(x) as given below. Show that $(f \circ g) \circ h = f \circ (g \circ h)$ in each case. f(x) = x - 1, g(x) = 3x + 1 and $h(x) = x^2$
- 21. Find the sum to n terms of the series $5 + 55 + 555 + \dots$

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Padasalai.Net

www.Trb Tnpsc.Com

- 22. Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,..., 24 cm. How much area can be decorated with these colour papers?
- 23. $\frac{1}{x^4} \frac{6}{x^3} + \frac{13}{x^2} + \frac{m}{x} + n$ is a perfect sqaure. Find the values of m and n.
- 24. Solve the following system of linear equations in three variables x + y + z = 5; 2x y + z = 9; x 2y + 3z = 16

PART D

Answer any 1 questions in brief

1 X 8 = 8

- 25. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{4} > 1$).
- 26. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{2}{3} < 1$).

Radalik