

www.Trb Tnpsc.Com

www.surabooks.com

MATHEMATICS Question Bank

Salient Features :

- Govt. Exam Question Papers
- PTA Model Question Papers
- SURA'S Model Question Papers

Sor Orders Contact

80562 94222 / 81242 01000 / 81243 01000/96001 75757 / 78718 02000/ 98409 26027

enquiry@surabooks.com

Ph:8124201000 / 8124301000

www.surabooks.com

© Reserved with Publishers

Code No. : SG359

Head Office:

Sura Publications

1620, 'J' Block, 16th Main Road, Anna Nagar, **Chennai - 600 040. Phone** : 044-4862 9977, 486 27755 **Mobile** : 81242 01000 / 81243 01000 **Whatsapp**: 81242 01000 **E-mail** : orders@surabooks.com **Website** : www.surabooks.com

For Orders Contact 80562 94222 81242 01000 81243 01000 96001 75757 78718 02000 98409 26027

For More Information - Contact

Doubts in Our Guides	:	enquiry@surabooks.com							
For Order	:	orders@surabooks.com							
Contact	:	81242 01000 / 81243 01000							
Whatsapp	:	81242 01000 / 98409 26027							
Online Site	:	www.surabooks.com							
For Free Study Materials Visit http://tnkalvi.in									

Our Guides for XI, XII Standard

- 🔹 சுராவின் தமிழ் உரைநூல்
- Sura's Smart English Guide
- Sura's Compact English Guide
- Sura's Mathematics (EM/TM)
- Sura's Physics (EM/TM)
- Sura's Chemistry (EM/TM)
- Sura's Bio-Botany & Botany (EM/ TM) (Short version & Long Version)
- Sura's Bio-Zoology & Zoology (EM/ TM) (Short version & Long Version)
- Sura's Computer Science (EM/TM)
- Sura's Computer Application (EM / TM)
- Sura's Commerce (EM/TM)
- Sura's Economics (EM/TM)
- Sura's Accountancy (EM/TM)
- Sura's Business Mathematics (EM)

5-07-202

Sura's 6-in-1 Question Bank (EM)

S.No.	CONTENTS	Page Nos.
1.	Govt. Exam Question papers - 1 to 7	3 - 22
2.	PTA Model Question Papers - 1 to 6	23 - 40
3.	Sura's Model Question Papers 1 to 10	41 - 77
4.	Answer key	78 - 80

enquiry@surabooks.com

Ph:8124201000 / 8124301000

www.Trb Tnpsc.Com

www.Padasalai.Net

www.surabooks.com

11	Ath							Reg. No.
		INSTAN	NT S	UPPLEMENTA	RY E	XAM - JULY	2024	
				PAR	Т - П	I		
Tin	ne Allowed	: 3.00 Hours]	Mathe	ema	tics	[Maxim	um Marks : 100
Instr	uctions • (1) Check the	auest	ion paper for fairne	ess of 1	printing If there	is any lack of	fairness inform the
msu	uctions . (1	Hall Supe	rvisor	immediately.	.55 01]	printing. If there	is any lack of	lanness, inform the
	(2) Use Blue	or Bl a	ack ink to write and	d unde	erline and pencil	to draw diagra	ams.
Note	: This que	estion paper of	contair	ns four parts.				
NT - 4 -				Par	t - I			14 × 1 - 14
note	$\begin{array}{c} (1) \text{Al} \\ (ii) Cl \end{array}$	iswer all the	quesu st appr	ons. ropriate answer fro	m the	given four alter	natives and w	$14 \times 1 = 14$
	(II) CI	d the corresp	onding	answer.	in the	given iour alter	natives and w	The the option code
		r	1	,				
1.	If f(x) = 2x	2 and $g(x) =$	$\frac{1}{2}$, th	nen <i>fog</i> is :				
	3		3x	2		2		1
	(a) $\frac{1}{2x^2}$		(b)	$\overline{3x^2}$	(c)	$\overline{9x^2}$	(d)	$\overline{6x^2}$
2.	If {(<i>a</i> , 8),(6	(b, b) represent	nts an	identity function, the	hen th	e value of <i>a</i> and	b are respecti	vely :
	(a) (8,6)		(b)	(8,8)	(c)	(6,8)	(d)	(6,6)
3.	$7^{4k} \equiv $	_(mod 100)						
	(a) 1		(b)	2	(c)	3	(d)	4
4	x	8	ivos .				(-)	-
4.	$x^2 - 25$	$x^2 + 6x + 5$ g	IVES .					
	$x^2 -$	7x + 40		$x^2 + 7x + 40$		$x^2 - 7x + 40$		$x^{2} + 10$
	(a) $\frac{1}{(x-5)^{2}}$	(x+5)	(b)	(x-5)(x+5)(x+	1) (c)	$(x^2 - 25)(x + 1)$	- (d))	$\overline{(x^2-25)(x+1)}$
5.	Transpose	of a column 1	natrix	is :				
	(a) unit n	natrix	(b)	diagonal matrix	(c)	column matrix	(d)	row matrix
6.	Two poles	of heights 6 1	n and	11 m stand vertical	lly on	a plane ground.	If the distance	e between their feet
	is 12 m, wl	nat is the dist	ance b	etween their tops?				
	(a) 13 m		(b)	14 m	(c)	15 m	(d)	12.8 m
7.	A tangent i	s perpendicu	lar to t	the radius at the :				
_	(a) centre		(b)	point of contact	(c)	infinity	(d)	chord
8.	The straigh	t line given b	y the e	equation $x = 11$ is :		D 11 1 / 37		
	(a) Parall	el to X - axis			(d)	Parallel to Y - a	XIS	11)
0	(c) Passii	ig infough in on of a line n	e origi	III through the origin	(a)	passing unrough	the line $7x = 2$	11)
9.	(a) $7r = 3$	$rac{1}{2}$ of a line p $rac{1}{2}$ $rac{1}{2}$	(b)	3r - 7v + 4 = 0	and p	3r + 7v = 0	the line $7x - 5$	y + 4 = 0 is 7x - 3y = 0
10	(a) = 7x - 3	y + 4 = 0 $^2 A = \tan A$ is	equal.	5x - 7y + 4 = 0	(C)	3x + 7y = 0	(u)	7x - 3y = 0
10.	(a) $\sec \theta$	5 mii 0 15	(b)	$\cot^2 \theta$	(c)	sin θ	(d)	cot θ
11.	If the ratio	of the height	of a to	ower and the length	n of its	s shadow is $\sqrt{3}$: 1, then the a	ngle of elevation of
	the sun has $(x) = 450$	measure :	(1)	200	()	0.00	7.15	(0)
10	(a) 45°	of a right air	(D) cular :	SU"	(C) is 5 ar	90° n and clont hois!	(d) t is 12 or unit	00°
12.	r = nergnt			10 arr				
	(a) 12 cm	l	(D)	10 cm	(c)	13 cm	(d)	5 cm
				[:	3]			

enquiry@surabooks.com

Ph:8124201000 / 8124301000

		www.sur	aboo	ks.com		
4		D] Sura	's 🗯 X Std - Math	ematics 🗯 Q	UESTION BANK
13.	Which of the follow	ving is incorrect?				
	(a) $P(A) > 1$	(b) $0 \le P(A) \le 1$	(c)	$\mathbf{P}(\boldsymbol{\phi}) = 0$	(d)	$P(A) + P(\overline{A}) = 1$
14.	The range of the da	ita 8, 8, 8, 8, 8, 8, 8 is :				
	(a) 0	(b) 1	(c)	8	(d)	3
		Pa	rt - II			
Note	e: Answer any 10	questions. Question No.28	is com j	pulsory.		$10\times2=20$
15.	If B × A = {(-2, 3),	,(-2, 4),(0, 3),(0, 4),(3, 3),(, 4)} fir	nd A and B.		
16.	$\operatorname{Given} f(x) = 2x - x$	2				
	Find (i) $f(1)$ (ii) $f(3)$	(x + 1)				

- **17.** Find the 8^{th} term of the G.P. 9, 3, 1,...
- **18.** Find the LCM of $9a^3b^2$, $12a^2b^2c$.
- **19.** Determine the nature of the roots for the following quadratic equation $15x^2 + 11x + 2 = 0$.
- **20.** In figure QA and PB are perpendiculars to AB. If AO = 10 cm, BO = 6 cm and PB = 9 cm, find AQ.

- **21.** The line 'p' passes through the points (3,-2), (12, 4) and the line 'q' passes through the points (6,-2) and (12, 2). Is 'p' parallel to 'q'?
- **22.** Find the slope of the straight line 6x + 8y + 7 = 0.
- 23. Prove the following identity $\frac{1 \tan^2 \theta}{\cot^2 \theta 1} = \tan^2 \theta$
- 24. A cylindrical drum has a height of 20 cm and base radius of 14 cm. Find its curved surface area.
- **25.** The volumes of two cones of same base radius are 3600 cm³ and 5040 cm³. Find the ratio of heights.
- 26. Find the standard deviation of first 21 natural numbers.
- 27. A coin is tossed thrice. What is the probability of getting two consecutive tails?
- **28.** Which term of an A.P. 16, 11, 6, 1,... is -54 ?

Part - III

Note: Answer any 10 questions. Question No.42 is compulsory.

- **29.** Let A = The set of all natural numbers less than 8, B = The set of all prime numbers less than 8, C = The set of even prime number. Verify that $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- **30.** A function $f: [-5, 9] \rightarrow \mathbb{R}$ is defined as follows:

$$f(x) = \begin{cases} 6x+1; -5 \le x < 2\\ 5x^2 - 1; \ 2 \le x < 6\\ 3x - 4; \ 6 \le x \le 9 \end{cases}$$

Find (i) $f(-3) + f(2)$ (ii) $f(7) - f(1)$
(iii) $2f(4) + f(8)$ (iv) $\frac{2f(-2) - f(6)}{f(4) + f(-2)}$

- **31.** Find the sum to 'n' terms of the series $3 + 33 + 333 + \dots$ to *n* terms.
- **32.** If $9x^4 + 12x^3 + 28x^2 + ax + b$ is a perfect square, find the values of 'a' and 'b'.

enquiry@surabooks.com

Ph:8124201000 / 8124301000

 $10 \times 5 = 50$

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Trb Tnpsc.Com

Www.surabooks.com

- **33.** Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,....., 24 cm. How much area can be decorated with these colour papers?
- **34.** If $A = \begin{pmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{pmatrix} B = \begin{pmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{pmatrix}$ verify that $(AB)^{T} = B^{T}A^{T}$.

35. State and prove Pythagoras Theorem.

- **36.** Find the area of the quadrilateral whose vertices are at (-9, 0), (-8, 6), (-1, -2) and (-6, -3)
- **37.** Find the equation of a straight line through the intersection of lines 7x + 3y = 10, 5x 4y = 1 and parallel to the line 13x + 5y + 12 = 0.
- **38.** A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point 'A' on the ground is 60° and the angle of depression to the point 'A' from the top of the tower is 45°. Find the height of the tower. ($\sqrt{3} = 1.732$)
- **39.** A metallic sphere of radius 16 cm is melted and recast into small spheres each of radius 2 cm. How many small spheres can be obtained?
- **40.** A teacher asked the students to complete 60 pages of a record note book. Eight students have completed only 32, 35, 37, 30, 33, 36, 35 and 37 pages. Find the standard deviation of the pages completed by them.
- **41.** Two dice are rolled. Find the probability that the sum of outcome is (i) equal to 4 (ii) greater than 10 (iii) less than 13.
- **42.** The internal and external diameters of a hollow hemispherical vessel are 20 cm and 28 cm respectively. Find the cost to paint the vessel all over at ₹ 0.14 per cm².

Part - IV

Note : Answer all the questions.

43. (a) Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm. Also, measure the lengths of the tangents.

(**OR**)

- (b) Construct a $\triangle PQR$ in which QR = 5 cm, $\angle P = 40^{\circ}$ and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.
- **44.** (a) The following table shows the data about the number of pipes and the time taken to fill the same tank.

No. of pipes (<i>x</i>)	2	3	6	9
Time Taken (in min) (y)	45	30	15	10

Draw the graph for the above data and hence :

- (i) Find the time taken to fill the tank when five pipes are used
- (ii) Find the number of pipes when the time is 9 minutes.

(OR)

(b) Draw the graph of $y = x^2 + x - 2$ and hence solve $x^2 + x - 2 = 0$.

enquiry@surabooks.com Ph:8124201000 / 8124301000

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

$\mathbf{2}\times\mathbf{8}=\mathbf{16}$

www.Trb Tnpsc.Com

www.surabooks.com

	Oth	PU	BLIC EXAMIN		APRIL 2024		Reg. No.
	310			PART - III			
Tin	ne Allowed :	3.00 Hours]	Ma	athemat	ics	[Maxim	um Marks : 100
Insti	ructions : (1)	Check the que Hall Superviso	stion paper for f or immediately.	fairness of p	printing. If there	is any lack of f	fairness, inform the
	(2)	Use Blue or B	lack ink to writ	te and unde	rline and pencil	to draw diagra	ams.
Note	e: This ques	tion paper conta	ins four parts.				
				Part - I			
Note	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	wer all the ques	tions	r from the	airran farra altar	natives and w	$14 \times 1 = 14$
	(II) CIIC	the correspondie	propriate answe	er monn the	given iour alter	natives and wi	The the option code
_							
1.	If $n(A \times B) =$	$= 6 \text{ and } A = \{1, 3\}$	3 }, then $n(B)$ is	:	2		
	(a) 1	(b)	2	(c)	3	(d)	6
2.	If $f : A \to B$	is a bijective fur	the network is $n(\mathbf{I})$	(3) = 7, then	n(A) is equal to		·
	(a) 7	(b)	49	(c)	1	(d)	14
3.	The least nu	mber that is divi	sible by all the	numbers fr	m 1 to 10 (both	i inclusive) is :	•
	(a) 2025	(b)	5220	(c)	5025	(d)	2520
4.	An A.P. cons	sists of 31 terms	. If its 16 th term	is <i>m</i> , then	the sum of all th	e terms of this	A.P. is :
	(a) 16 m	(b)	62 m	(c)	31 <i>m</i>	(d)	$\frac{31}{m}$
5.	Which of the	e following shou	ld be added to i	make $x^4 + 6$	4 a perfect squa	re?	2
	(a) $4x^2$	(b)	$16x^2$	(c)	$8x^2$	(d)	$-8x^{2}$
6	Graph of a li	inear equation is	2			(u)	0.0
	(a) straight	t line (b)	circle	(c)	parabola	(b)	hyperbola
7	(u) straight If in $AABC$	$DE \parallel BC \mid AB =$	3.6 cm AC = 2	$4 \mathrm{cm}$ and	$\Delta D = 2.1 \text{ cm the}$	n the length o	f AF is ·
1.	(a) 1.4 cm	$DL \parallel DC, AD$ (b)	1.8 cm	(c)	1.2 cm	(d)	1 05 cm
0	How many te	(0) angents can be d	rown to the circl	(C) le from an e	vterior point?	(u)	1.05 CIII
D.	(a) One	angents can be u	Two			(d)	Zara
•	(a) One	(U)	Iw0	(\mathbf{C})	$\frac{1}{5} \text{ and } (5, 0) =$	(u)	Zelo
9.	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	ita (h)	25 ag unita	(-3, 0), (0,	-3) and $(3, 0)$ 1	18 . (d)	10 ag unita
10	(a) 0 sq. u	$\frac{1}{100}$	25 sq. units	(0)	5 sq. units	(u)	10 sq. units
10.	If $x = a \tan \theta$	and $y = b \sec\theta$,			2 2		2 2
	(a) $\frac{y^2}{x^2} - \frac{x}{x}$	$\frac{1}{2} = 1$ (b)	$\frac{x^2}{2} - \frac{y^2}{2} = 1$	(c)	$\frac{x^2}{2} + \frac{y^2}{2} = 1$	(d)	$\frac{x^2}{2} - \frac{y^2}{x^2} = 0$
	b^2 a	2	$a^2 b^2$		$a^2 b^2$		$a^2 b^2$
11.	The curved 10 cm is :	surface area	of a right of	circular cy	linder of heig	ht 4 cm ar	nd base diameter
	(a) $40 \pi \text{ sq}$	units (b)	20π sq. units	s (c)	14 π sq. units	(d)	80 π sq. units
12.	The ratio of t	he volumes of a d	cylinder, a cone a	and a sphere	e, if each has the s	same diameter	and same height is :
	(a) 1:2:3	6 (b)	2:1:3	(c)	1:3:2	(d)	3:1:2
13.	Which of the	e following valu	es cannot be a p	orobability	of an event?		
	(a) 0	(b)	0.5	(c)	1.05	(d)	1
14.	The probability value of x is	lity of getting a :	job for a person	n is $\frac{x}{3}$. If the function of the second seco	ne probability of	not getting the	b job is $\frac{2}{3}$, then the
	(a) 2	(b)	1	(c)	3	(d)	1.5
				[6]			

enquiry@surabooks.com

Ph:8124201000 / 8124301000

www.Trb Tnpsc.Com

Www.surabooks.com ♥ Sura's ➡ X Std - Mathematics ➡ QUESTION BANK

Part - II

 $10 \times 2 = 20$ Answer any 10 questions. Question No.28 is compulsory. Note : If $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$ then find A and B. 15. If f(x) = 3x - 2, g(x) = 2x + k and $f \circ g = g \circ f$, then find the value of k. 16. 'a' and 'b' are two positive integers such that $a^b \times b^a = 800$. Find 'a' and 'b'. 17. Simplify: $\frac{4x^2y}{2z^2} \times \frac{6xz^3}{20y^4}$ 18. Find the sum and product of the roots for following quadratic equation. $x^2 + 8x - 65 = 0$. 19. A man goes 18 m due East and then 24 m due North. Find the distance of his current position from the 20. starting point. If the points A (-3, 9), B(a, b) and C(4, -5) are collinear and if a + b = 1, then find a and b. 21. Find the equation of a straight line which has slope $\frac{-5}{4}$ and passing through the point (-1, 2). 22. Prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$. 23. If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area. 24. 25. Find the volume of cylinder whose height is 2 m and base area is 250 sq. m. Find the range and coefficient of range of the following data : 25, 67, 48, 53, 18, 39, 44 26. What is the probability that a leap year selected at random will contain 53 Saturdays? 27. Find the HCF of 23 and 12. 28 Part - III $10 \times 5 = 50$ Note : Answer any 10 questions. Question No.42 is compulsory. Let A = { $x \in N \mid 1 < x < 4$ }, B = { $x \in W \mid 0 \le x < 2$ } and C = { $x \in N \mid x < 3$ }. Then verify that 29. $A \times (B \cup C) = (A \times B) \cup (A \times C).$ Let A = $\{0, 1, 2, 3\}$ and B = $\{1, 3, 5, 7, 9\}$ be two sets. Let $f : A \rightarrow B$ be a function given by 30. f(x) = 2x + 1. Represent this function : (ii) in a table form (i) by arrow diagram (iii) as a set of ordered pairs (iv) in a graphical form

- **31.** Find the sum of $9^3 + 10^3 + \dots 21^3$.
- **32.** Find the square root of $64x^4 16x^3 + 17x^2 2x + 1$.
- **33.** If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 5A + 7I_2 = 0$.
- **34.** State and prove Thales Theorem.
- **35.** Find the area of quadrilateral whose vertices are at (-9, -2), (-8, -4), (2, 2) and (1, -3).
- **36.** Find the equation of the perpendicular bisector of the line joining the points A(-4, 2) and B(6, -4).
- **37.** Two ships are sailing in the sea on either sides of a lighthouse. The angle of elevation of the top of the lighthouse as observed from the ships are 30° and 45° respectively. If the lighthouse is 200m high, find the distance between the two ships. $(\sqrt{3} = 1.732)$.
- **38.** If the radii of the circular ends of a frustum which is 45 cm high are 28 cm and 7 cm, find the volume of the frustum.
- **39.** A right circular cylindrical container of base radius 6 cm and height 15 cm is full of ice-cream. The ice-cream is to be filled in cones of height 9 cm and base radius 3 cm, having a hemispherical cap. Find the number of cones needed to empty the container.
- **40**. Find the coefficient of variation of 24, 26, 33, 37, 29, 31.
- **41.** Two dice are rollled once. Find the probability of getting an even number on the first die or the total of face sum 8.
- **42.** Find the sum to n terms of the series $7 + 77 + 777 + \dots$

enquiry@surabooks.com Ph:8124201000 / 8124301000

www.surabooks.com ♡ Sura's ➡ X Std - Mathematics ➡ QUESTION BANK

Part - IV

Note : Answer all the questions.

43. (a) Construct a $\triangle PQR$ which the base PQ = 4.5 cm, $|\mathbf{R}| = 35^{\circ}$ and the median RG from R to PQ is 6 cm.

(OR)

- (b) Draw a circle of diameter 6 cm. from a point P, which is 8 cm. away from its centre. Draw the two tangents. PA and PB to the circle and measure their lengths.
- 44. (a) Draw the graph of $y = 2x^2 3x 5$ and hence solve $2x^2 4x 6 = 0$.

(OR)

(b) Draw the graph of xy = 24, x, y > 0. Using the graph find, (i) y when x = 3 and (ii) x when y = 6.

& & & & &

enquiry@surabooks.comPh:8124201000 / 8124301000Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Trb Tnpsc.Com

8

 $\mathbf{2}\times\mathbf{8}=\mathbf{16}$

www.surabooks.com

6					(3.0011		Reg No					
		INSTANT S	UPPLEMEN	ITARY EX	(AM - JUNI	E - 2023						
	510			PART - III								
Ti	me Allowed :	3.00 Hours]	Μ	athemat	tics	[Maxim	um Marks:100					
 		Chaole the area	tion non on for	fairmann a fu	minting If the		faire and informer that					
Inst	Hall Supervisor immediately.											
	(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.											
Not	Note: This question paper contains four parts.											
				Part - I								
Not	e: (i) Ans	wer all the ques	tions.				$14 \times 1 = 14$					
	(1) Choose the most appropriate answer from the given four alternatives and write the option code											
	and	the corresponding	ig answer.									
1.	If there are 1 (a) 2	024 relations fro	$pm a set A = \{1$	$\{2, 3, 4, 5\}$	to a set B, the 4	n the number of	f elements in B is :					
	(a) 3	(0)	2	(C)	4	(u)	0					
2.	$7^{4\kappa} \equiv $	(mod 100)	2	(a)	2		1					
	(a) 1	(0)	2	(0)	3	(a)	4					
3.	The next terr	n of the sequence	$\frac{1}{2}, \frac{1}{6}, \frac{1}{10}, \frac{1}{14}$	is :								
	. 1		2 0 10 14	<i>(</i>)	1		1					
	(a) $\frac{15}{15}$	(b)	16	(c)	18	(d)	20					
4	$v^2 + \frac{1}{1}$ is not	ot equal to :										
т.	$y + \frac{1}{y^2}$ is in	or equal to .										
	(a) $\frac{y^4 + 1}{y^4 + 1}$	(b)	$\left(\begin{array}{c} 1 \\ n+1 \end{array} \right)^2$	(c)	$\left(\frac{1}{v-1}\right)^{2} + 2$	(b)	$\left(\frac{1}{1}\right)^{2} - 2$					
	$\frac{y^2}{y^2}$	(0)	$\begin{pmatrix} y+-\\ y \end{pmatrix}$		$\begin{pmatrix} y \\ y \end{pmatrix} + 2$	(u)	$\left(\frac{y+\frac{1}{y}}{y}\right)^{-2}$					
5.	Graph of a li	near equation is	a .									
	(a) straight	line (b)	circle	(c)	parabola	(d)	hyperbola					
6.	If in $\triangle ABC$,	$DE \parallel BC, AB =$	3.6 cm, AC = 2	2.4 cm and	AD = 2.1 cm t	hen the length o	of AE is :					
	(a) 1.4 cm	(b)	1.8 cm	(c)	1.2 cm	(d)	1.05 cm					
7.	How many ta	angents can be c	rawn to the cir	cle from an	exterior point	?						
_	(a) one	(b)	two	(c)	infinite	(d)	zero					
8.	The straight l	to X axis	equation $x = 1$	l 15 (b)	parallel to V a	avic						
	(a) paramen	through the original	vin	(b) (b)	parallel to 1 a	gh the point (0)	11)					
	(c) passing	unough the on	3111	(u)	passing unou	gii the point (0,	11)					
9.	If the slope	of the line PQ i	$s \frac{1}{\sqrt{2}}$, then the	e slope of th	ne perpendicul	lar bisector of l	PQ is :					
			$\sqrt{3}$		1		0					
10	(a) $\sqrt{3}$	(b)	-\sqrt{3}	(c)	$\overline{\sqrt{3}}$	(d)	0					
10.	$\tan\theta \csc^2 \theta$	$-\tan\theta$ is equal	to:		ain 0	(F)	ant 0					
11	(a) sec θ The total sur	(D) face area of a be	col ⁻ 0 misphere is ho	(c) w much tin	sin θ the square i	(a) of its radius?	COLA					
11.	(a) π	(b)	4π	(c)	3π	(d)	2 π					
12.	The curved s	urface area of a	right circular c	cone of heig	ht 15 cm and b	base diameter 10	6 cm is					
	(a) $60\pi \mathrm{cm}^2$	² (b)	68π cm ²	(c)	120π cm ²	(d)	136π cm ²					
13.	The range of	the data 8, 8, 8,	8, 88 is :		0	/ 41	2					
14	(a) 0 The probabil	(b)	l selected at ran	(c)	8 jar containing	(d) n red a blue and	$\frac{3}{1}$					
14.		ity a red marble	n	aom nom a	n + a	p red, q brue and	n + r					
	(a) $\frac{q}{p+a+q}$	$\frac{1}{r}$ (b)	$\frac{P}{p+q+r}$	(c)	$\frac{p+q}{p+q+r}$	(d)	$\frac{p+r}{p+q+r}$					
	$P \cdot Y$		r 1.	[9]	r · 1 · ·		r · I · ·					
				[~]								

enquiry@surabooks.com

Ph:8124201000 / 8124301000

www.Trb Tnpsc.Com

www.surabooks.com

1	[0]	th	SUR	A'S	MODEL QU	EST	ION PAPER	- 5	Reg. No.
Tii	STD me Al	lowed :	3.00 Hours]	PA Matl	rt - II 1ema	ı tics	[Maxim	num Marks : 100
Note	e: ((Answ Choo the c 	wer all the source of the most orrespondition of the most orrespondition of the most orrespondition of the most of	14 que st suita ng an	Pa estions. able answer from t swer	rt - I the give	en four alternatives	s and write th	$14 \times 1 = 14$ the option code with
1.	A sy	stem of t	hree linear	equat	ions in three varia	bles is	inconsistent if the	ir planes	
	(a)	intersect	t only at a p	ooint		(b)	intersect in a line	;	
	(c)	coincide	es with each	n othe	r	(d)	do not intersect		
2.	The	slope of	the line joir	ning (12, 3), (4, <i>a</i>) is $\frac{1}{8}$	The va	alue of 'a' is	6	
	(a)	1		(b)	4	(c)	-5	(d)	2
3.	If the s	e ratio of un has m	the height neasure.	of a to	ower and the leng	th of its	s shadow is $\sqrt{3}$:	l, then the an	gle of elevation of
	(a)	45°		(b)	30°	(c)	90°	(d)	60°
4.	If th	ere are 10	024 relation	ns froi	m a set $A = \{1, 2, $	3, 4, 5}	to a set B, then the	e number of	elements in B is
	(a)	3		(b)	2	(c)	4	(d)	8
5.	Kam of K	alam we amalam	nt to play a winning is	$\frac{1}{9}$, th	y draw contest. 13 en the number of	35 ticke tickets	ets of the lucky dra bought by Kamala	aw were sold am is	. If the probability
	(a)	5	G	(b)	10	(c)	15	(d)	20
6.	The	sum of tl	ne exponent	ts of t	he prime factors i	n the p	rime factorization	of 1729 is	
	(a)	1		(b)	2	(c)	3	(d)	4
7.	Whi	ch of the	following i	is inco	prrect?				_
	(a)	P (A) >	1	(b)	$0 \le P(A) \le 1$	(c)	$\mathbf{P}(\boldsymbol{\phi}) = 0$	(d)	P(A) + P(A) = 1
8.	The	range of	first 10 prir	ne nu	mbers is				
	(a)	9		(b)	20	(c)	27	(d)	5
9.	If sin	$\theta = \cos \theta$	θ , then 2 t	$an^2\theta$	$+\sin^2\theta - 1$ is equation	al to			
	(a)	$-\frac{3}{2}$		(b)	$\frac{3}{2}$	(c)	$\frac{2}{3}$	(d)	$-\frac{2}{3}$
					[56]			

enquiry@surabooks.com

Ph:8124201000 / 8124301000

www.Trb Tnpsc.Com

Note: Answer 10 questions. Question No.28 is compulsory. $10 \times 2 = 20$

- Illy evolutive events of a render experiment and P(rot A) = 0.45, P(A + D) = 0.05
- **15.** If A and B are two mutually exclusive events of a random experiment and P(not A) = 0.45, $P(A \cup B) = 0.65$, then find P(B).
- **16.** If 3 + k, 18 k, 5k + 1 are in A.P. then find k.
- 17. The product of Kumaran's age (in years) two years ago and his age four years from now is one more than twice his present age. What is his present age?
- 18. Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height $10\sqrt{3}$ m.
- **19.** $1^3 + 2^3 + 3^3 + ... + k^3 = 16900$, then find 1 + 2 + 3 + ... + k.
- **20.** A and B are two candidates seeking admission to IIT. The probability that A getting selected is 0.5 and the probability that both A and B getting selected is 0.3. Prove that the probability of B being selected is atmost 0.8.
- 21. A hemi-spherical hollow bowl has material of volume $\frac{436\pi}{3}$ cubic cm. Its external diameter is 14 cm. Find its thickness.
- 22. Three fair coins are tossed together. Find the probability of getting
 - (i) atleast one tail (ii) atmost one head

enquiry@surabooks.com Ph:8124201000 / 8124301000

- www.surabooks.com ∅ Sura's ➡ X Std - Mathematics ➡ QUESTION BANK
- **23.** Find the sum of 1 + 3 + 5 + ... + 55.
- **24.** The hill in the form of a right triangle has its foot at (19, 3)The inclination of the hill to the ground is 45°. Find the equation of the hill joining the foot and top.
- **25.** A tower stands vertically on the ground. From a point on the ground, which is 48m away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.
- **26.** A cone of height 24 cm is made up of modeling clay. A child reshapes it in the form of a cylinder of same radius as cone. Find the height of the cylinder.
- **27.** Solve by factorization method : $2x^4 2\sqrt{6}x + 3 = 0$
- **28.** In a theatre, there are 20 seats in the front row and 30 rows were allotted. Each successive row contains two additional seats than its front row. How many seats are there in the last row?

Part - III

Note: Answer 10 questions. Question No. 42 is compulsory.

$10 \times 5 = 50$

- **29.** A box contains cards numbered 3, 5, 7, 9, ... 35, 37. A card is drawn at random from the box. Find the probability that the drawn card have either multiples of 7 or a prime number.
- 30. O is any point inside a triangle ABC. The bisector of ∠AOB, ∠BOC and ∠COA meet the sides AB, BC and CA in point D, E and F respectively.

Show that $AD \times BE \times CF = DB \times EC \times FA$

- **31.** Find the sum of $10^3 + 11^3 + 12^3 + ... + 20^3$.
- **32.** An oil funnel of tin sheet consists of a cylindrical portion 10 cm long attached to a frustum of a cone. If the total height is 22 cm, the diameter of the cylindrical portion be 8cm and the diameter of the top of the funnel be 18 cm, then find the area of the tin sheet required to make the funnel.
- **33.** Show that the angle bisectors of a triangle are concurrent.
- 34. Two farmers Thilagan and Kausigan cultivates three varieties of grains namely rice, wheat and ragi. If the sale (in ₹) of three varieties of grains by both the farmers in the month of April is given by the matrix.

April sale in ₹

 $A = \begin{bmatrix} rice & Wheat & ragi \\ 500 & 1000 & 1500 \\ 2500 & 1500 & 500 \end{bmatrix}$ Thilagan Kausigan

and the May month sale (in $\overline{\mathbf{x}}$) is exactly twice as that of the April month sale for each variety.

- (i) What is the average sales of the months April and May.
- (ii) If the sales continues to increase in the same way in the successive months, what will be sales in the month of August?

enquiry@surabooks.com Ph:8124201000 / 8124301000

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

58

Www.surabooks.com ♥ Sura's → X Std - Mathematics → QUESTION BANK

- **35.** Show that the given points are collinear: (-3, -4), (7, 2) and (12, 5)
- **36.** A girl is twice as old as her sister. Five years hence, the product of their ages (in years) will be 375. Find their present ages.
- **37.** The area of a triangle is 5 sq.units. Two of its vertices are (2,1) and (3, -2). The third vertex is (x, y) where y = x + 3. Find the coordinates of the third vertex.

38. If
$$S_n = (x+y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + ...n$$
 terms then prove that $(x-y) S_n = \left[\frac{x^2(x^n-1)}{x-1} - \frac{y^2(y^n-1)}{y-1}\right]$

- **39.** If $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ and $x \sin \theta = y \cos \theta$, then prove that $x^2 + y^2 = 1$.
- 40. In a game, the entry fee is ₹150. The game consists of tossing a coin 3 times. Dhana bought a ticket for entry . If one or two heads show, she gets her entry fee back. If she throws 3 heads, she receives double the entry fees. Otherwise she will lose. Find the probability that she (i) gets double entry fee (ii) just gets her entry fee (iii) loses the entry fee.
- 41. Solve the following quadratic equation by completing the square method $\frac{5x+7}{x-1} = 3x+2$
- **42.** Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm, ...24 cm. How much area can be decorated with these colour papers?

Note : Answer All questions.

43. (a) Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.

(OR)

- (b) Draw a tangent to the circle from the point P having radius 3.6 cm, and centre at O. Point P is at a distance 7.2 cm from the centre.
- 44. (a) The following table shows the data about the number of pipes and the time taken to fill the same tank.

No. of pipes (x)	2	3	6	9
Time Taken (in min) (y)	45	30	15	10

Draw the graph for the above data and hence

- (i) find the time taken to fill the tank when five pipes are used
- (ii) Find the number of pipes when the time is 9 minutes.

(OR)

(b) Graph the following quadratic equations and state their nature of solutions. $x^2 + x + 7 = 0$

& & & & &

enquiry@surabooks.com Ph:8124201000 / 8124301000

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

 $2 \times 8 = 16$

www.surabooks.com

1	$ 0\rangle$	th	A'S		ST	ION PAPER - 6		Reg. No.
	ST			PAR	Г - П	I		
Tii	me A	llowed : 3.00 Hours]	Mathe	ema	tics	[Maxin	num Marks : 100
Note	:	 Answer all the Choose the most the corresponding 	14 qu st suit ng ans	Part estions. able answer from the swer.	t - I e give	en four alternatives and	l write th	the option code with $14 \times 1 = 14$
1.	Let	n(A) = m and n(B) =	n the	n the total number o	fnon	-empty relations that ca	an be de	fined from A to B is
	(a)	m^n	(b)	n^m	(c)	$2^{mn} - 1$	(d)	2 ^{mn}
2.	Giv	$\operatorname{en} f(x) = (-1)^x \text{ is a fu}$	nctio	n from N to Z. Then	the r	ange of f is		
	(a)	{1}	(b)	Ν	(c)	{1,-1}	(d)	Z
3.	The	least number that is	divis	ible by all the numb	ers fr	om 1 to 10 (both inclu	sive)	
	(a)	2025	(b)	5220	(c)	5025	(d)	2520
4.	An	A.P consist of 31 terr	ms. If	fits 16 th term is 'm'.	then	the sum of all terms o	f the A.l	P is
	(a)	16m	(b)	62m	(c)	31m	(d)	3½m
5.	Gra	ph of a linear equation	on is a	a				
	(a)	Straight line	(b)	Circle	(c)	Parabola	(d)	Hyperbola
6.	Ifn	umber of columns an	nd rov	vs and not equal in a	ı matı	rix, then it is said to be	a	
	(a)	Diagonal matrix	(b)	Rectangular matrix	x(c)	Square matrix	(d)	Indentity matrix
7.	IfΔ	ABC is an isosceles	triang	gle with $\angle C = 90^{\circ}$ a	nd A	C = 5 cm, then AB is		
	(a)	2.5 cm	(b)	5cm	(c)	10cm	(d)	$5\sqrt{2}$ cm
8.	Two	poles of heights 6 n	n and	11 m stand vertical	ly on	a plane ground. If the	distance	e between their feet
	is 1	2 m, what is the dista	ance b	between their tops?				
	(a)	13 m	(b)	14 m	(c)	15 m	(d)	12.8 m
9.	If th	ne points (2,5), (4,6)	and (a	a,a) are collinear, the	en the	e value of a is equal to		
	(a)	-8	(b)	4	(c)	4	(d)	8
10.	If 5.	$x = \sec \theta$ and $\frac{y}{y} = t$	an θ,	then $x^2 - \frac{1}{y^2}$ is equ	ial to			
	(a)	25	(b)	$\frac{1}{25}$	(c)	5	(d)	1
11.	The	total surface area of	`a her	ni-sphere is how mu	ıch ti	mes the square of its ra	adius.	
	(a)	π	(b)	4 π	(c)	3 π	(d)	2 π
				F -	.1			

[60]

Ph:8124201000 / 8124301000

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

enquiry@surabooks.com

www.Trb Tnpsc.Com

w.surabooks.com 🖞 Sura's 🖛 X Std - Mathematics 🖛 QUESTION BANK 61 The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height 12. is (a) 1:2:3 (b) 2:1:3 (c) 1:3:2(d) 3:1:2 For any collection of *n* items $\Sigma(X - X) =$ 13. (a) ΣX (b) X (c) *n* X (d) The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is 14. 2/3, then the value of x is (b) 1 (a) 2 (c) 3 (d) 1.5 Part - II Answer any 10 questions. Question No.28 is compulsory. $\times 2 = 20$ A function f is defined by f(x) = 3 - 2x. Find x such that $f(x^2) = [f(x)]^2$ 15.

- **16.** Let A = $\{1,2,3,4\}$ and B = N. Let $f : A \rightarrow B$ be defined by $f(x) = x^3$ then (i) Find the range of f (ii) Identify the type of function.
- **17.** Find the number of terms in the A.P, 3, 6, 9, 12111.
- **18.** Simplify: $\frac{x^3}{x-y} + \frac{y^3}{y-x}$
- 19. Show that the matrices $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ -3 & 1 \end{pmatrix}$ satisfy commutative property AB = BA.
- 20. In $\triangle ABC$, D and E are points on the sides AB and AC respectively such that DE || BC. If $\frac{AD}{DB} = \frac{3}{4}$ and AC = 15 cm find AE.
- **21.** The line through the points (-2, a) and (9, 3) has slope $-\frac{1}{2}$. Find the value of *a*.
- **22.** Find the intercepts made by the line 4x-9y+36=0 on the coordinate axes.
- **23.** Prove that $\frac{\sec\theta}{\sin\theta} \frac{\sin\theta}{\cos\theta} = \cot\theta$.
- **24.** A solid iron cylinder has total surface area of 1848 sq.cm. Its curved surface area is five sixth of its total surface area. Find the radius and height of the iron cylinder.
- **25.** The radius of a spherical balloon increases from 12 cm to 16 cm as air being pumped into it. Find the ratio of the surface area of the balloons in the two cases.
- 26. The mean of the data is 25.6 and its co-efficient of variation is 18.75. Find the standard deviation.
- **27.** If P(A) = 0.37, P(B) = 0.42, $P(A \cap B) = 0.09$ then find $P(A \cup B)$.
- **28.** When the positive integers a,b and c are divisible by 13 the respective remainders are 9, 7 and 10. Find the remainder when a+2b+3c is divisible by 13.

enquiry@surabooks.com Ph:8124201000 / 8124301000 Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Trb Tnpsc.Com

62

☑ Sura's ➡ X Std - Mathematics ➡ QUESTION BANK

Part - III

Answer the following any 10 questions. Question No.42 is compulsory. $10 \times 5 = 50$

- **29.** Let $A = \{x \in \mathbb{W} | x < 2\}$, $B = \{x \in \mathbb{N} | 1 < x \le 4\}$ and $C = \{3, 5\}$. Verify that $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- **30.** If f(x) = 2x + 3, g(x) = 1 2x and h(x) = 3x, prove that $fo(g \circ h) = (f \circ g) \circ h$.
- 31. In an A.P, sum of four consective terms is 28 and their sum of their squares is 276. Find the four numbers.
- **32.** Find the sum of the series $(2^3-1^3) + (4^3-3^3) + (6^3-5^3) + \dots n$ terms.
- **33.** Simplify: $\frac{1}{x^2 5x + 6} + \frac{1}{x^2 3x + 2} + \frac{1}{x^2 8x + 15}$
- **34.** If $x^4 8x^3 + mx^2 + nx + 16$ is a perfect square, find the value of *m* and *n*.
- **35.** The perpendicular PS on the base QR of a \triangle PQR intersects QR at S, such that QS = 3 SR. Prove that $2PQ^2 = 2PR^2 + QR^2$.
- 36. Show that the angle bisectors of a triangle are concurrent.
- **37.** Find the area of the quadrilateral formed by the points (8,6), (5,11), (-5,12) and (-4,3).
- **38.** Find the equation of a straight line through the point of intersection of the lines 8x+3y=18, 4x+5y=9 and bisecting the line segment joining the points (5, -4) and (-7,6).
- **39.** From the top of a lighthouse, the angle of depression of two ships on the opposite sides of it are observed to be 30° and 60°. If the height of the lighthouse is 'h' meters and the line joining the ships passes through the foot of the lighthouse. Show that the distance between the ships is $\frac{4h}{\sqrt{3}}$ m.
- **40.** If the radii of the circular ends of a frustum which is 45 cm high are 28 cm and 7 cm, find the volume of the frustum.
- **41.** In a class of 50 students, 28 opted for NCC, 30 opted for NSS and 18 opted both NCC and NSS. One of the students is selected at random. Find the probability that
 - (i) The student opted for NCC but not NSS
 - (ii) The student opted for NSS but not NCC
 - (iii) The student opted for exactly one of them.
- 42. The volume of a cone is 1005 $\frac{5}{7}$ cu. cm. The area of its base is $201\frac{1}{7}$ sq. cm. Find the slant height of the cone.

enquiry@surabooks.com Ph:8124201000 / 8124301000 Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

WWW.surabooks.com

Part - IV

Answer **all** the questions.

43. (a) Construct a $\triangle PQR$ in which QR=5cm, $\angle P = 40^{\circ}$ and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.

(OR)

- (b) Draw a tangent to the circle from the pointP having radius 3.6 cm, and centre at O. Point P is at a distance 7.2 cm from the centre.
- 44. (a) Draw the graph of xy = 24, x, y > 0. Using the graph find,(i) y when x=3 and (ii) x when y = 6.

(OR)

(b) Discuss the nature of the solutions of the quadratic equation $x^2 - 8x + 16 = 0$.

**

63

 $2 \times 8 = 16$

www.Trb Tnpsc.Com

•	Sura's	s 🗯 X Std - Mathem	natics	WWW.SUR QUESTION BA	ANK	ks.com		75
10.	Wh	ich of the following	; is inc	orrect?				
	(a)	P(A) > 1	(b)	$0 \le P(A) \le 1$	(c)	P(f) = 0	(d)	P(A) + P(A) = 1
11.	Gra	ph of a linear equat	ion is a	a				
	(a)	straight line	(b)	circle	(c)	parabola	(d)	hyperbola
12.	The	e total surface area o	of a her	misphere is how m	nuch tir	nes the square of it	ts radius?	
	(a)	π	(b)	4π	(c)	3π	(d)	2π
13.	Wh	ich of the following	shoul	d be added to mak	$x^4 + x^4 + y^4$	64 a perfect square	?	
	(a)	$4x^2$	(b)	$16x^{2}$	(c)	$8x^{2}$	(d)	$-8x^{2}$
14.	Wh	en proving that a qu	adrila	teral is a trapeziun	n, it is 1	necessary to show		
	(a)	Two sides are para	llel.					
	(b)	Two parallel and t	wo noi	n-parallel sides.			6	
	(c)	Opposite sides are	parall	el.				
	(d)	All sides are of eq	ual len	gth.				
				Pa	rt - II			
Not	e:Ar	nswer 10 questions.	Ouest	ion No. 28 is com	oulsory			$10 \times 2 = 20$

15. The standard deviation of 20 observations is $\sqrt{6}$. If each observation is multiplied by 3, find the standard deviation and variance of the resulting observations.

- 16. If one root of the equation $3x^2 + kx + 81 = 0$ (having real roots) is the square of the other then find k.
- 17. Find the common difference of an A.P in which $t_{18} t_{14} = 32$.
- **18.** A Relation \mathbb{R} is given by the set $\{(x, y) | y = x + 3, x \in \{0, 1, 2, 3, 4, 5\}\}$. Determine its domain and range.
- **19.** Show the points P(-1.5, 3), Q(6, -2), R(-3, 4) are collinear.
- 20. The mean of a data is 25.6 and its coefficient of variation is 18.75. Find the standard deviation.
- **21.** If $A = \begin{bmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{bmatrix}$ find the value 3A 9B.
- **22.** Find the number of spherical lead shots, each of diameter 6cm that can be made from a solid cuboids of lead having dimensions 24cm $\times 22$ cm $\times 12$ cm.
- **23.** The line through the points (-2,6) and (4,8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.
- **24.** Find the sum and product of the roots of equation $8x^2 25 = 0$.
- 25. A man has 532 flower pots. He wants to arrange them in rows such that each row contains 21 flower pots. Find the number of completed rows and how many flower pots are left over.
- **26.** Show that the straight lines 3x 5y + 7 = 0 and 15x + 9y + 4 = 0 are perpendicular.

enquiry@surabooks.com Ph:8124201000 / 8124301000

www.surabooks.com ∅ Sura's ➡ X Std - Mathematics ➡ QUESTION BANK

- **27.** If the radii of the circular ends of a frustum which is 45 cm high are 28 cm and 7 cm, find the volume of the frustum.
- **28.** The range of a set of data is 13.67 and the largest value is 70.08. Find the smallest value.

Part - III

Note : Answer 10 questions. Question No. 42 is compulsory.

- **29.** The barrel of a fountain-pen cylindrical in shape, is 7 cm long and 5 mm in diameter. A full barrel of ink in the pen will be used for writing 330 words on an average. How many words can be written using a bottle of ink containing one fifth of a litre?
- **30.** The time taken by 50 students to complete a 100 meter race are given below. Find its standard deviation.

Time taken (sec)	8.5-9.5	9.5-10.5	10.5-11.5	11.5-12.5	12.5-13.5
Number of students	6	8	17	10	9

- 31. A man joined a company as Assistant Manager. The company gave him a starting salary of ₹60,000 and agreed to increase his salary 5% annually. What will be his salary after 5 years?
- **32.** A building and a statue are in opposite side of a street from each other 35 m apart. From a point on the roof of building the angle of elevation of the top of statue is 24° and the angle of depression of base of the statue is 34° . Find the height of the statue.(tan $24^{\circ} = 0.4452$, tan $34^{\circ} = 0.6745$)
- **33.** Two triangles QPR and QSR, right angled at P and S respectively are drawn on the same base QR and on the same side of QR. If PR and SQ intersect at T, prove that $PT \times TR = ST \times TQ$.
- **34.** 4 persons live in a conical tent whose slant height is 19 m. If each person require 22 m² of the floor area, then find the height of the tent.
- **35.** At a fete, cards bearing numbers 1 to 1000, one number on one card are put in a box. Each player selects one card at random and that card is not replaced. If the selected card has a perfect square number greater than 500, the player wins a prize. What is the probability that (i) the first player wins a prize (ii) the second player wins a prize, if the first has won?
- **36.** Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,..., 24 cm. How much area can be decorated with these colour papers?
- **37.** In the figure, the quadrilateral swimming pool shown is surrounded by concrete patio. Find the area of the patio.

enquiry@surabooks.com Ph:8124201000 / 8124301000

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

 $10 \times 5 = 50$

www.Trb Tnpsc.Com

77

 $\mathbf{2}\times\mathbf{8}=\mathbf{16}$

www.surabooks.com

- **38.** Find the non-zero values of x satisfying the matrix equation $x \begin{bmatrix} 2x & 2 \\ 3 & x \end{bmatrix} + 2 \begin{bmatrix} 8 & 5x \\ 4 & 4x \end{bmatrix} = 2 \begin{bmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{bmatrix}$
- **39.** Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tanks will rise by 21 cm.
- **40.** Find the values of a and b if the following polynomials are perfect squares $4x^4 12x^3 + 37x^2 + bx + a$
- **41.** A coin is tossed thrice. Find the probability of getting exactly two heads or atleast one tail or two consecutive heads.
- **42.** Find the sum of the Geometric series $3 + 6 + 12 + \dots + 1536$.

Part - IV

Note : Answer All questions.

43. (a) Construct a $\triangle PQR$ which the base PQ = 4.5 cm, $\angle R = 35^{\circ}$ and the median RG from R to PQ is 6 cm.

(OR)

- (b) Construct a $\triangle PQR$ such that QR = 6.5 cm, $\angle P = 60^{\circ}$ and the altitude from P to QR is of length 4.5 cm.
- 44. (a) Graph the following quadratic equations and state their nature of solutions. $x^2 9x + 20 = 0$

(OR)

(b) Graph the following quadratic equations and state their nature of solutions. $x^2 - 4x + 4 = 0$

www.Trb Tnpsc.Com

www.surabooks.com

ONE MARK ANSWERS

INSTANT SUPPLEMENTARY - JULY 2024

1.	(c)	2.	(a)	3.	(a)	4.	(c)	5.	(d)	6.	(a)	7.	(b)	
8.	(b)	9.	(c)	10.	(d)	11.	(d)	12.	(a)	13.	(a)	14.	(a)	
	PUBLIC EXAM - APRIL - 2024													
1.	(c)	2.	(a)	3.	(d)	4.	(c)	5.	(b)	6.	(a)	7.	(a)	
8.	(b)	9.	(b)	10.	(a)	11.	(a)	12.	(d)	12.	(c)	14.	(b)	
	INSTANT SUPPLEMENTARY EXAM - JUNE - 2023													
1.	(b)	2.	(a)	3.	(c)	4.	(b)	5.	(a)	6.	(a)	7.	(b)	
8.	(b)	9.	(b)	10.	(d)	11.	(c)	12.	(d)	13.	(a)	14.	(b)	
	PUBLIC EXAM - APRIL - 2023													
1.	(c)	2.	(d)	3.	(d)	4.	(b)	5.	(a)	6.	(c)	7.	(c)	
8.	(b)	9.	(c)	10.	(a)	11.	(a)	12.	(d)	13.	(a)	14.	(c)	
	INS	бТА	NT SU	J PPI	.EMEN	TAF	NY EXA	M ·	- AUG	US	Г - 202	2		
1.	(b)	2.	(c)	3.	(c)	4.	(d)	5.	(a)	6.	(b)	7.	(a)	
8.	(b)	9.	(c)	10.	(b)	11.	(a)	12.	(b)	13.	(c)	14.	(b)	
PUBLIC EXAM - MAY - 2022														
1.	(d)	2.	(b)	3.	(d)	4.	(b)	5.	(b)	6.	(b)	7.	(d)	
8.	(b)	9.	(c)	10.	(b)	11.	(b)	12.	(a)	13.	(b)	14.	(b)	
	INSTANT SUPPLEMENTARY EXAM - SEPTEMBER - 2021													
1.	(c)	2.	(c)	3.	(d)	4.	(b)	5.	(b)	6.	(b)	7.	(d)	
8.	(b)	9.	(b)	10.	(c)	11.	(b)	12.	(a)	13.	(b)	14.	(b)	

enquiry@surabooks.com Ph:8124201000 / 8124301000

www.Trb Tnpsc.Com

\$	Sura's 🗯)	(Std - Mo	athema	itics 🖛 (WWW. QUESTIC	SURA	books. NK	com					79
PTA QUESTION PAPER -1													
1.	(a)	2.	(a)	3.	(d)	4.	(c)	5.	(b)	6.	(b)	7.	(c)
8.	(a)	9.	(d)	10.	(c)	11.	(d)	12.	(b)	13.	(c)	14.	(a)
				PTA	A QUE	STIC	ON PA	PEF	R - 2				
1.	(a)	2.	(b)	3.	(b)	4.	(b)	5.	(c)	6.	(a)	7.	(b)
8.	(b)	9.	(c)	10.	(b)	11.	(b)	12.	(b)	13.	(b)	14.	(c)
PTA QUESTION PAPER - 3													
1.	(c)	2.	(c)	3.	(c)	4.	(b)	5.	(a)	6.	(d)	7.	(a)
8.	(d)	9.	(b)	10.	(d)	11.	(c)	12.	(a)	13.	(a)	14.	(c)
PTA QUESTION PAPER - 4													
1.	(c)	2.	(c)	3.	(c)	4.	(c)	5.	(a)	6.	(b)	7.	(c)
8.	(d)	9.	(b)	10.	(c)	11.	(b)	12.	(b)	13.	(a)	14.	(b)
PTA QUESTION PAPER - 5													
1.	(d)	2.	(a)	3.	(c)	4.	(a)	5.	(c)	6.	(a)	7.	(d)
8.	(c)	9.	(b)	10.	(b)	11.	(d)	12.	(a)	13.	(c)	14.	(a)
			G	РТ	A QUE	STIC	ON PA	PEF	R - 6				
1.	(b)	2.	(d)	3.	(d)	4.	(d)	5.	(b)	6.	(b)	7.	(a)
8.	(b)	9.	(d)	10.	(b)	11.	(d)	12.	(a)	13.	(c)	14.	(c)
SURA'S MODEL QUESTION PAPER -1													
1.	(d)	2.	(c)	3.	(c)	4.	(c)	5.	(a)	6.	(d)	7.	(b)
8.	(b)	9.	(a)	10.	(c)	11.	(a)	12.	(b)	13.	(b)	14.	(a)
SURA'S MODEL QUESTION PAPER -2													
1.	(b)	2.	(b)	3.	(c)	4.	(a)	5.	(a)	6.	(b)	7.	(a)
8.	(c)	9.	(c)	10.	(a)	11.	(a)	12.	(c)	13.	(b)	14.	(b)
	enqu	ıiry@s	urabo	ooks.	com	Ph:8124201000 / 8124301000							

www.Trb Tnpsc.Com

80					www	v.sural	book Sura's	<mark>s.com</mark>	l - Math	nematio	cs 🖛 Ql	UESTIO	N BANK
			SU	J RA'S	MOD	EL QU	JEST	ION F	PAPE	R -3			
1.	(c)	2.	(c)	3.	(c)	4.	(c)	5.	(b)	6.	(a)	7.	(a)
8.	(b)	9.	(d)	10.	(a)	11.	(c)	12.	(a)	13.	(b)	14.	(c)
			SU	RA'S	MOD	EL QU	JEST	OIN P	APE	R - 4			
ι.	(b)	2.	(d)	3.	(a)	4.	(a)	5.	(c)	6.	(d)	7.	(a)
8.	(c)	9.	(c)	10.	(b)	11.	(a)	12 .	(d)	13.	(b)	14.	(b)
			SU	RA'S	MOD	EL QU	JEST	ION P	APE	R - 5			
l.	(d)	2.	(d)	3.	(d)	4.	(b)	5.	(c)	6.	(c)	7.	(a)
3.	(c)	9.	(b)	10.	(b)	11.	(c)	12 .	(d)	13.	(b)	14.	(c)
			SU	RA'S	MOD	EL QU	JEST	ION P	APE	R - 6			
ι.	(c)	2.	(c)	3.	(d)	4.	(c)	5.	(a)	6.	(b)	7.	(d)
8.	(a)	9.	(d)	10.	(b)	11.	(c)	12.	(d)	13.	(d)	14.	(b)
			SU	RA'S	MOD	EL QU	JEST	ION P	APE	R - 7			
۱.	(c)	2.	(a)	3.	(b)	4.	(a)	5.	(b)	6.	(b)	7.	(a)
8.	(d)	9.	(b)	10.	(b)	11.	(d)	12.	(a)	13.	(a)	14.	(a)
			SU	JRA'S	MOD	EL QU	JEST	ION P	APE	R - 8			
1.	(c)	2.	(c)	3.	(b)	4.	(b)	5.	(c)	6.	(b)	7.	(c)
8.	(b)	9.	(b)	10.	(d)	11.	(b)	12.	(c)	13.	(b)	14.	(b)
			SU	RA'S	MOD	EL QU	JEST	ION P	APE	R - 9			
1.	(a)	2.	(b)	3.	(b)	4.	(b)	5.	(d)	6.	(c)	7.	(b)
3.	(b)	9.	(d)	10.	(d)	11.	(c)	12.	(b)	13.	(b)	14.	(b)
			SU	RA'S	MOD	el qu	ESTI	ON P	APEF	R -10			
1.	(b)	2.	(b)	3.	(c)	4.	(a)	5.	(a)	6.	(b)	7.	(a)
3.	(c)	9.	(c)	10.	(a)	11.	(a)	12.	(c)	13.	(b)	14.	(b)

**

enquiry@surabooks.comPh:8124201000 / 8124301000Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com