The second secon		_		
Class	:	1	1	

						_
Register	Append	1000	11-2-15	100	D. Mari	757
Number	100	1 - 2 - 1				

		FIR	ST	MID TER	M	TEST - 20	<u>024</u>	<u>4</u>	
		lowed: 1.30 Hours]		CHEMI	T – I			[Max. Ma	rks : 50
I. A	nsw	er all the questio	ns.	YouTube/ A	١kw	a Academy	1	10	x1=10
1.	The	e equivalent mass	of a t	rivalent metal elem	nent i	s 9 g eq ⁻¹ the mol	ar m	ass of its anh	ydrous
	oxic	le is							
	a)	102 g	b)	27 g	c)	270 g	d)	78 g	1250 X
2.	Wh	ich of the following	is no	t a thermodynamic	funct	tion?		Total Control	421 12
	a)	Internal energy	b)	Enthalpy	c)	Entropy	d)	Frictional en	ergy
3.	The	e oxidation number	of Cr	in Cr ₂ O ₇ ² ·	e e			$\chi_{i_1} = \chi_{i_2} \cdot \ldots \cdot \chi_{i_{2n-1}}$	W 17
	a)	+6	b)	+7	c)	+4	d)	+3	
4.	Spl	itting of spectral lin	es in	an electric field is	called		941		
	a)	Zeeman effect	b)	Shielding effect	c)	Compton effect	d)	Stark effect	
5.	The	maximum numbe	r of e	lectròns in a sub sh	nell is	given by the expre	essio	n .	
	a).	2n²	b)	21+1	c)	41+2	d)	41+1	
6.	The	total number of o	rbitals	s associated with th	e pri	ncipal quantum nu	mber	n = 3 is	
	a)	9	b)	10	c)	15	d)	16	
7.	25 g	of each of the following	owing	gases are taken at	2700	C and 600 mm Hg	pres	sure. Which o	f these
	will	have the least volu	ıme?					1.00	
	a)	HBr	b)	· HCI	c)	HF	d)	HI	
8.	Cor	sider the following	state	ements					
				less at the top of			leve		
	ii) (Gases are much n	nore o	compressible than s	solids	or liquids			* 1
5 E	iii)	When the atmosph	neric	pressure increases	the h	neight of the merci	iry c	olumn rises	
	Sel	ect the correct s	tater	nent					
	a)	I and II	b)	II and III	c)	I and III	d)	I, II and III	F
9.	Whi	ch of the following	is op	tically active?					
	a)	3 - Chloropentan	eb)	2- Chloro propane	e c)	Meso - tartaric a	cid	d) Glucose	
10.	Whi	ch one of the follow	wing r	names does not fit	a rea	I name?			
	a)	3- Methyl -3- he	xanol		b)	4-Methyl -3- he	xano	ne	
	c)	3 - Methyl -3-he	xanor	1 e	d)	2- Methyl cyclo I	hexa	none.	
	100			PART - II			. 4	Para de atra	
Ι. Δ	nswe	er any 5 question	s. Q	uestion number 1	7 is	compulsory.		5.	X2=10
						•			

11. Define mole.

12. State the third law of thermodynamics

13. State Pauli's exclusion principle

V/11/Che/1

- 14. Identify the functional group in the following compounds.
 - a) Ethoxy ethane
- b) Pentan 3 one
- 15. What are spontaneous reactions? What are the conditions for the spontaneity of a process?
- 16. Which ion has the stable electronic configuration? Ni2+ or Fe3+. Why?
- 17. Find the empirical formula?
 - i) $C_8H_{10}N_4O_2$
- ii) C,H,

PART - III

III. Answer any 5 questions. Question number 24 is compulsory.

5X3=15

- 18. Derive de Broglie equation
- 19. Difference between effusion and diffusion.
- 20. Write Aufbau's principle.
- 21. Write note on uncertainty principle.
- 22. Give the general characteristics of organic compounds?
- 23. List the characteristics of Gibbs free energy.
- 24. Give the IUPAC names of
 - i) (CH₃)₂CH CH (CH₃) CH₃
 - ii) CH,CHO
 - iii) CH,-O-CH,

PART - IV

IV. Answer all the questions.

3X5=15

25. a) A Compound on analysis gave the following percentage composition C = 40%, H = 6.6%, O =53.4%. Determine the empirical formula of the compound.

(OR)

- b) Explain the postulates & limitations of Bohr atom model.
- 26. a) i) Why do astronauts have to wear protective suits when they are on the surface of moon? (2)
 - ii) What are ideal gases? In what way real gases differ from ideal gases. (2)

(OR)

- b) State the various statements of second law of thermodynamics.
- 27. a) How will you classify organic compounds based on structure?

(OR)

- b) i) Briefly explain the geometrical isomerism in but 2 ene. (2)
 - ii) 0.30 g of a substance gives 0.88 g of carbon dioxide and 0.54 g of water calculate the percentage of carbon and hydrogen in it. (3)

V/11/Che/2