12TH STANDARD PRACTICAL GUIDE

Mr. S. JOHNSON., M.Sc., M.Sc., B.Ed., SACRED HEART MAT. HR. SEC. SCHOOL, SCHOLINGANALLUR, CHENNAI - 600119

ORGANIC SALTANALYSIS

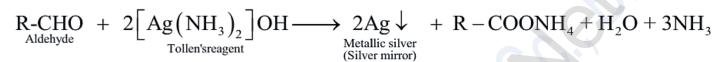
INDEX

I. ORGANIC SALT ANALYSIS

1	BENZALDEHYDE	1
2	CINNAMALDEHYDE	3
3	ACETOPHENONE	5
4	BENZOIC ACID	7
5	CINNAMIC ACID	9
6	UREA	11
7	GLUCOSE	13
8	ANILINE	15
9	SALICYLIC ACID	17
	II. VOLUMETRIC ANALYSIS	
10	ESTIMATION OF FERROUS SULPHATE (Fe ²⁺)	21
11	ESTIMATION OF FERROUS AMMONIUM SULPHATE (FAS)	23
12	ESTIMATION OF OXALIC ACID	25
13	ESTIMATION OF SODIUM HYDROXIDE	27
14	ESTIMATION OF OXALIC ACID	29
	LOGARITHMS	31
	ANTILOGARITHMS	33

3

1. BENZALDEHYDE


S. No.	EXPERIMENT	INFERENCE		
	PRELIMINARY T	ESTS		
1	Odour: Note the Odour of the organic compound.	Bitter almond odour	May be benzaldehyde	
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	No colour change is noted	Absence of carboxylic acid, phenol and amine	
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	No brisk effervescence is obtained	Absence of a carboxylic acid.	
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	yellow or orange or red precipitate	Presence of an aldehyde or ketone	
5				
	TESTS FOR ALIPHATIC OR A	ROMATIC NATURE	:	
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame	Burn with sooty flame	Presence of an aromatic compound	
	TESTS FOR AN UNSA	TURATION:		
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	No Decolourisation takes place	Substance is saturated.	
8	8Test with KMnO4 solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO4 solution and shake it well.No Decolourisation takes placeSub sa			
	TEST FOR SELECTED ORGANIC	FUNCTIONAL GRO	UPS	
	Test for aldehydes.			
1	Tollen's reagent test: Take 2 ml of Tollen's reagent in a clean dry test tube. Add 3-4 drops of an organic compound (or 0.2 g of solid) to it, and warm the mixture on a water bath for about 5 minutes.	Shining silver mirror is formed.	Presence of an aldehyde	

S. No.	EXPERIMENT	OBSERVATION	INFERENCE
2	Fehling's test: Take 1 ml each of Fehling's solution A and B are taken in a test tube. Add 4-5 drops of an organic compound (or 0.2g of solid) to it, and warm the mixture on a water bath for about 5 minutes.	Red precipitate is formed.	Presence of an aldehyde
	DEAGONING		

REASONING

Tollen's reagent test:

Aldehydes react with Tollen's reagent to form elemental silver, accumulated onto the inner surface of the test tube. Thus silver mirror is produced on the inner walls of the test tube.

Fehling's Test:

Fehling's solution A is an aqueous solution of copper sulphate.

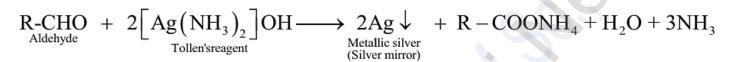
Fehling's solution B is a clear solution of sodium potassium tartrate (Rochelle salt) and strong alkali (NaOH).

The Fehling's solution is obtained by mixing equal volumes of both Fehling's solution A and Fehling's solution B that has a deep blue colour. In Fehling's solution, copper (II) ions form a complex with tartrate ions in alkali. Aldehydes reduces the Cu(II) ions in the Fehling's solution to red precipitate of cuprous oxide(copper (I) oxide).

Note: Benzaldehyde may not give this test as the reaction is very slow.

Report:

- Aromatic (i)
- (ii) Saturated
- (iii) <u>Aldehydes</u> functional group


2. CINNAMALDEHYDE

S. No.	EXPERIMENT	OBSERVATION	INFERENCE
	PRELIMINARY TI	ESTS	
1	Odour: Note the Odour of the organic compound.	Pungent, cinnamon-like	May be cinnamaldehyde
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	No colour change is noted	Absence of carboxylic acid, phenol and amine
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	No brisk effervescence is obtained	Absence of a carboxylic acid.
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	yellow or orange or red precipitate	Presence of an aldehyde or ketone
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H ₂ SO ₄ to it, and heat the mixture.	No charring takes place with smell of burnt sugar	Absence of carbohydrate
	TESTS FOR ALIPHATIC OR AR	OMATIC NATURE:	
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame	Burn with sooty flame	Presence of an aromatic compound
	TESTS FOR AN UNSAT	URATION:	
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	Orange - yellow colour of bromine water is decolourised	Substance is unsaturated.
8	Test with KMnO₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.	Pink colour of KMnO4 solution is decolourised	Substance is unsaturated.
	TEST FOR SELECTED ORGANIC F	UNCTIONAL GROU	JPS
	Test for aldehydes.		
1	Tollen's reagent test: Take 2 ml of Tollen's reagent in a clean dry test tube. Add 3-4 drops of an organic compound (or 0.2 g of solid) to it, and warm the mixture on a water bath for about 5 minutes.	Shining silver mirror is formed.	Presence of an aldehyde

S. No.	EXPERIMENT	OBSERVATION	INFERENCE				
2	Fehling's test: Take 1 ml each of Fehling's solution A and B are taken in a test tube. Add 4-5 drops of an organic compound (or 0.2g of solid) to it, and warm the mixture on a water bath for about 5 minutes.	Red precipitate is formed.	Presence of an aldehyde				
	REASONING						

Tollen's reagent test:

Aldehydes react with Tollen's reagent to form elemental silver, accumulated onto the inner surface of the test tube. Thus silver mirror is produced on the inner walls of the test tube.

Fehling's Test:

Fehling's solution A is an aqueous solution of copper sulphate.

Fehling's solution B is a clear solution of sodium potassium tartrate (Rochelle salt) and strong alkali (NaOH).

The Fehling's solution is obtained by mixing equal volumes of both Fehling's solution A and Fehling's solution B that has a deep blue colour. In Fehling's solution, copper (II) ions form a complex with tartrate ions in alkali. Aldehydes reduces the Cu(II) ions in the Fehling's solution to red precipitate of cuprous oxide(copper (I) oxide).

Note: Benzaldehyde may not give this test as the reaction is very slow.

Report:

- (i) Aromatic
- (ii) Unsaturated
- (iii) Aldehydes functional group

3. ACETOPHENONE

S. No.	EXPERIMENT OBSERVATION		INFERENCE				
	PRELIMINARY TESTS						
1	Odour: Note the Odour of the organic compound.	sweet pungent taste	May be ketone				
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	No colour change is noted	Absence of carboxylic acid, phenol and amine				
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	No brisk effervescence is obtained	Absence of a carboxylic acid.				
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	yellow or orange or red precipitate	Presence of an aldehyde or ketone				
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H_2SO_4 to it, and heat the mixture.	Absence of carbohydrate					
	TESTS FOR ALIPHATIC OR AL	ROMATIC NATURE	*				
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame	Burn with sooty flame	Presence of an aromatic compound				
	TESTS FOR AN UNSA	FURATION:					
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	No Decolourisation takes place	Substance is saturated.				
8	Test with KMnO₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.	No Decolourisation takes place	Substance is saturated.				
	TEST FOR SELECTED ORGANIC	FUNCTIONAL GRO	UPS				
	Test for ketones						
1	Legal's test: A small amount of the substance is taken in a test tube. 1 ml sodium nitro prusside solution is added. Then sodium hydroxide solution is added dropwise.	Red colouration.	Presence of a ketone				

REASONING

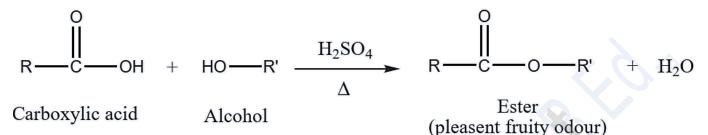
Sodium nitroprusside Test:

The anion of the ketone formed by a alkali reacts with nitroprusside ion to form a red coloured complex. This test is not given by aldehydes.

 $CH_{3}COCH_{3} \xrightarrow{-OH} CH_{3}COCH_{2}^{-} + H_{2}O$ $[Fe(CN)_{5} NO]^{2-} + CH_{3}COCH_{2}^{-} \longrightarrow [Fe(CN)_{5} NO.CH_{3}COCH_{2}]^{3}$ sodium nitro prusside
(Red coloured complex)

Report:

- (i) Aromatic
- (ii) Saturated
- (iii) Ketone functional group


4. BENZOIC ACID

S. No.	EXPERIMENT	OBSERVATION	INFERENCE				
	PRELIMINARY TESTS						
1	Odour: Note the Odour of the organic compound.	pleasant odour	May be Carboxylic acid				
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	Blue litmus turns red	May be a carboxylic acid or phenol				
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	Brisk effervescence is obtained	Presence of a carboxylic acid.				
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	No yellow or orange or red precipitate	Absence of an aldehyde or ketone				
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H_2SO_4 to it, and heat the mixture.	No charring takes place with smell of burnt sugar	Absence of carbohydrate				
	TESTS FOR ALIPHATIC OR A	ROMATIC NATURE	:				
6	6 Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame		Presence of an aromatic compound				
	TESTS FOR AN UNSA	FURATION:					
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	No Decolourisation takes place	Substance is saturated.				
8	Test with KMnO₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.	No Decolourisation takes place	Substance is saturated.				
	TEST FOR SELECTED ORGANIC	FUNCTIONAL GRO	UPS				
	Test for Carboxylic Acids						
1	Esterification reaction: Take 1 ml (or a pinch of solid) of an organic compound in a clean test tube. Add 1 ml of ethyl alcohol and 4 to 5 drops of conc. sulphuric acid to it. Heat the reaction mixture strongly for about 5 minutes. Then pour the mixture into a beaker containing dil.	A Pleasant fruity odour is noted.	Presence of carboxylic group.				

	Sodium carbonate solution and note the smell.			
REASONING				

Esterification test:

Alcohols react with carboxylic acids to form fruity smelling compounds called esters. This esterification is catalysed by an acid such as concentrated sulphuric acid.

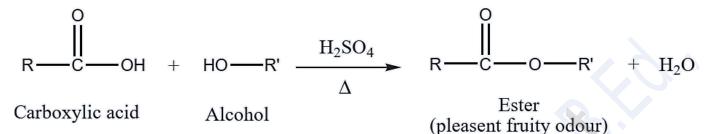
Action with sodium bicarbonate:

Carboxylic acids react with sodium bi carbonate and liberate CO₂. Evolution of carbon dioxide gives brisk effervescence.

$2R-COOH+2NaHCO_{3} \longrightarrow 2R-COONa+CO_{2} \uparrow + H_{2}O$

Report:

- (i) Aromatic
- (ii) Saturated
- (iii) Carboxylic acid functional group


5. CINNAMIC ACID

S. No.	EXPERIMENT	INFERENCE					
	PRELIMINARY TESTS						
1	Odour: Note the Odour of the organic compound.	honey-like odor	May be Carboxylic acid				
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	Blue litmus turns red	May be a carboxylic acid or phenol				
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	Brisk effervescence is obtained	Presence of a carboxylic acid.				
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	No yellow or orange or red precipitate	Absence of an aldehyde or ketone				
5							
	TESTS FOR ALIPHATIC OR AF	ROMATIC NATURE	:				
6	6 Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame		Presence of an aromatic compound				
	TESTS FOR AN UNSAT	TURATION:					
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	Orange - yellow colour of bromine water is decolourised	Substance is unsaturated.				
8	Test with KMnO₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.	Pink colour of KMnO4 solution is decolourised	Substance is unsaturated.				
	TEST FOR SELECTED ORGANIC	FUNCTIONAL GRO	UPS				
	Test for Carboxylic Acids						
1	Esterification reaction: Take 1 ml (or a pinch of solid) of an organic compound in a clean test tube. Add 1 ml of ethyl alcohol and 4 to 5 drops of conc. sulphuric acid to it. Heat the reaction mixture strongly for about 5 minutes. Then pour the mixture into a beaker containing dil.	A Pleasant fruity odour is noted.	Presence of carboxylic group.				

	Sodium smell.	carbonate	solution	and	note	the		
REASONING								

Esterification test:

Alcohols react with carboxylic acids to form fruity smelling compounds called esters. This esterification is catalysed by an acid such as concentrated sulphuric acid.

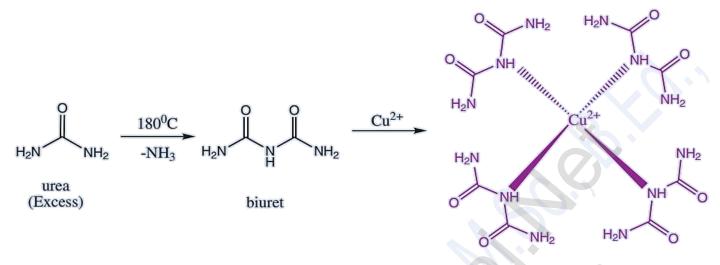
Action with sodium bicarbonate:

Carboxylic acids react with sodium bi carbonate and liberate CO₂. Evolution of carbon dioxide gives brisk effervescence.

$2R-COOH+2NaHCO_{3} \longrightarrow 2R-COONa+CO_{2} \uparrow + H_{2}O$

Report:

- (i) Aromatic
- (ii) Unsaturated
- (iii) Carboxylic acid functional group


6. UREA (DIAMIDE)

S. No.	EXPERIMENT	INFERENCE				
	PRELIMINARY TESTS					
1	Odour:pungent smellNote the Odour of the organic compound.pungent smell		May be Amide			
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	Red litmus turns blue	May be an Amine			
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	No brisk effervescence is obtained	Absence of a carboxylic acid.			
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	yellow or orange or red precipitate	Presence of an aldehyde or ketone			
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H_2SO_4 to it, and heat the mixture.	No charring takes place with smell of burnt sugar	Absence of carbohydrate			
	TESTS FOR ALIPHATIC OR A	ROMATIC NATURE	*			
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame	Burns with non sooty flame	Presence of an aliphatic compound			
	TESTS FOR AN UNSA	TURATION:				
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	No Decolourisation takes place	Substance is saturated.			
8	Test with KMnO₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.	No Decolourisation takes place	Substance is saturated.			
	TEST FOR SELECTED ORGANIC	FUNCTIONAL GRO	UPS			
	Test for diamide					
1	Biuret test: Take A small amount of an organic compound in a test tube. Heat strongly and then allow to cool. Dissolve the residue with 2 ml of water. To this solution Add 1 ml of dilute copper sulphate solution and few drops of 10% NaOH solution drop by drop.	presence of a diamide				

REASONING

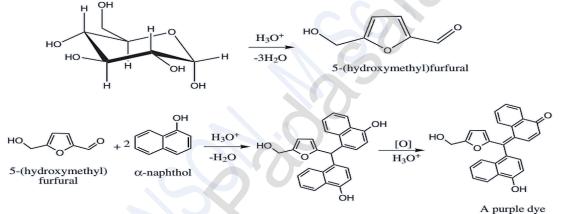
Biuret test:

On strong heating Diamide (like urea) form biuret, which forms a copper complex with Cu^{2+} ions from copper sulphate solution. This copper –biuret complex is deep violet coloured.

[Cu(Biuret)₄]²⁺ complex (violet colour)

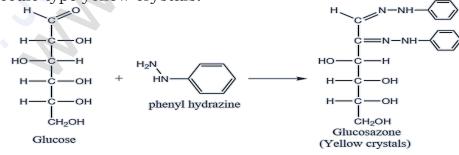
Report:

- (i) Aliphatic
- (ii) Saturated
- (iii) Aliphatic Diamide (Urea) functional group


7. GLUCOSE (CARBOHYDRATE)

S.	EXPERIMENT	OBSERVATION	INFERENCE
No.	PRELIMINARY 1	ESTS	
1	Odour: Note the Odour of the organic compound.	No characteristic odour	Absence of carboxylic acid, phenol and amine
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	No colour change is noted	Absence of carboxylic acid, phenol and amine
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	No brisk effervescence is obtained	Absence of a carboxylic acid.
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	Presence of an aldehyde	
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H_2SO_4 to it, and heat the mixture.	Charring takes place with smell of burnt sugar	Presence of carbohydrate
	TESTS FOR ALIPHATIC OR A	ROMATIC NATURE	:
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame	Burns with non sooty flame	Presence of an aliphatic compound
	TESTS FOR AN UNSA	TURATION:	
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	No Decolourisation takes place	Substance is saturated.
8			Substance is saturated.
	TEST FOR SELECTED ORGANIC	FUNCTIONAL GRO	UPS
-	Test for aldehydes.		
	Tollen's reagent test: Take 2 ml of Tollen's reagent in a clean dry test tube. Add 3-4 drops of an organic compound (or 0.2 g of solid) to it, and warm the mixture on a water bath for about 5 minutes.	Shining silver mirror is formed. (reaction is very slow)	Presence of an aldehyde
2	Fehling's test: Take 1 ml each of Fehling's solution A and B are taken in a test tube. Add 4-5 drops of an	Red precipitate is formed.	Presence of an aldehyde

	organic compound (or 0.2g of solid) to it, and warm the mixture on a water bath for about 5 minutes. Test for carbohydrates		
3	Molisch's test: Take A small amount of an organic compound in a test tube. It is dissolved in 2 ml of water. Add 3-4 drops of alpha naphthol to it.Then add conc. H_2SO_4 through the sides of test tube carefully.	Violet or purple ring is formed at the junction of the two liquids.	Presence of carbohy
4	Osazone test: Take A small amount of an organic compound in a test tube. Add 1 ml of phenyl hydrazine solution and heat the mixture for about 5 minutes on a boiling water bath.	Yellow crystals are obtained	Presence of carbohydrate
	REASONING	<u>i</u>	


Molisch's test:

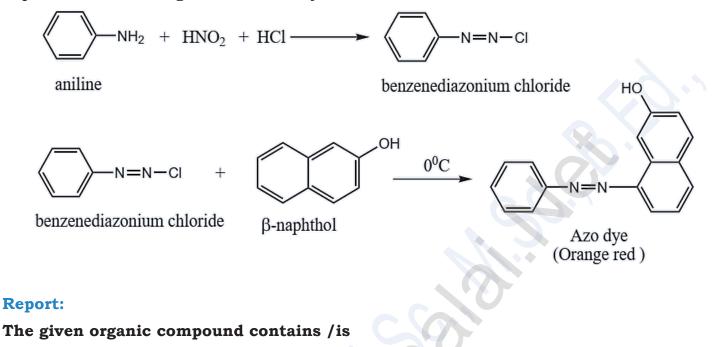
Disaccharides, and polysaccharidesare hydrolysed to Monosaccharides by strong mineral acids. Pentoses are then dehydrated to furfural, while hexoses are dehydrated to 5hydroxymethylfurfural. These aldehydes formed will condense with two molecules of a-Naphthol to form a purple-coloured product, as shown below.

Osazone test:

Phenyl hydrazine in acetic acid, when boiled with reducing sugars forms Osazone. The first two carbon atoms are involved in this reaction. The sugars that differ in their configuration on these carbon atoms give the same type of Osazone. Thus glucose, fructose and mannose give the same needle type yellow crystals.

Report:

- Aliphatic (i)
- (ii) Saturated
- Carbohydrate functional group (iii)


8. ANILINE

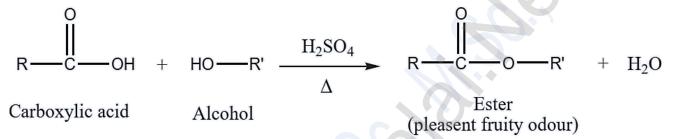
S. No.	EXPERIMENT	OBSERVATION	INFERENCE				
	PRELIMINARY TESTS						
1	Odour: Note the Odour of the organic compound.	Fish odour	May be an Amine				
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	Red litmus turns blue	May be an Amine				
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	No brisk effervescence is obtained	Absence of a carboxylic acid.				
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	No yellow or orange or red precipitate	Absence of an aldehyde or ketone				
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H_2SO_4 to it, and heat the mixture.	No charring takes place with smell of burnt sugar	Absence of carbohydrate				
	TESTS FOR ALIPHATIC OR A	ROMATIC NATURE:					
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame	Burn with sooty flame	Presence of an aromatic compound				
	TESTS FOR AN UNSA	TURATION:					
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	No Decolourisation takes place	Substance is saturated.				
8	Test with KMnO₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.	No Decolourisation takes place	Substance is saturated.				
	TEST FOR SELECTED ORGANIC	FUNCTIONAL GROU	IPS				
	Test for an amine.		[]				
1	Dye test: Take A small amount of an organic substance in a clean test tube, add 2 ml of HCl to dissolve it. Add few crystals of NaNO2, and cool the mixture in ice bath. Then add 2 ml of ice cold solution of β -naphtholin NaOH.	Scarlet red dye is obtained.	Presence of an aromatic primary amine				

REASONING

Azo-Dye Test:

This test is given by aromatic primary amines. Aromatic primary amines react with nitrous acid to form diazonium salts. These diazonium salts undergo coupling reaction with β -naphthol to form orange coloured azo dye.

- (i) Aromatic
- (ii) Saturated
- (iii) <u>Amine</u> functional group

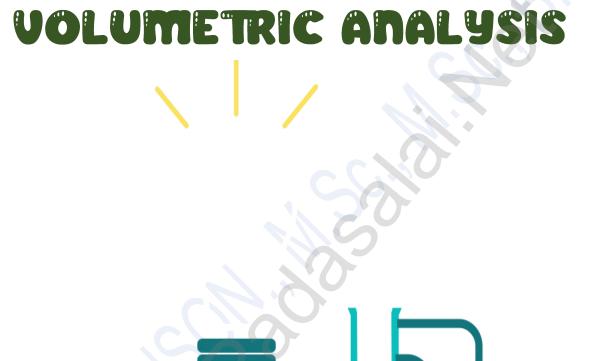

9. SALICYLIC ACID

S. No.	EXPERIMENT	OBSERVATION	INFERENCE				
	PRELIMINARY TESTS						
1	Odour: Note the Odour of the organic compound.	Phenolic odour	May be phenol				
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	Blue litmus turns red	May be a carboxylic acid or phenol				
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	Brisk effervescence is obtained	Presence of a carboxylic acid.				
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	No yellow or orange or red precipitate	Absence of an aldehyde or ketone				
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H_2SO_4 to it, and heat the mixture.	No charring takes place with smell of burnt sugar	Absence of carbohydrate				
	TESTS FOR ALIPHATIC OR A	ROMATIC NATURE:					
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame	Burn with sooty flame	Presence of an aromatic compound				
	TESTS FOR AN UNSA	TURATION:					
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.	No Decolourisation takes place	Substance is saturated.				
8	Test with KMnO₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.	No Decolourisation takes place	Substance is saturated.				
	TEST FOR SELECTED ORGANIC FUNCTIONAL GROUPS						
	Test for Carboxylic Acids						
1	Esterification reaction: Take 1 ml (or a pinch of solid) of an organic compound in a clean test tube. Add 1 ml of ethyl alcohol and 4 to 5 drops of conc. sulphuric acid to it. Heat the reaction mixture strongly for about 5 minutes. Then	A Pleasant fruity odour is noted.	Presence of carboxylic group.				

	pour the mixture into a beaker containing dil. Sodium carbonate solution and note the smell.						
	Test For Phenol						
2	Neutral FeCl3 test: Take 1 ml of neutral ferric chloride solution is taken in a dry clean test tube. Add 2 or 3 drops (or a pinch of solid) oforganic compound to it. If no colouration occurs add 3 or 4 drops of alcohol.	Violet colouration is seen	Presence of phenol.				
	REASONING						

Esterification test:

Alcohols react with carboxylic acids to form fruity smelling compounds called esters. This esterification is catalysed by an acid such as concentrated sulphuric acid.


Action with sodium bicarbonate:

Carboxylic acids react with sodium bi carbonate and liberate CO₂. Evolution of carbon dioxide gives brisk effervescence.

$$2R-COOH+2NaHCO_{3} \longrightarrow 2R-COONa+CO_{2} \uparrow + H_{2}O$$

Report:

- (i) Aromatic
- (ii) Saturated
- (iii) Carboxylic acid and Phenol functional group

19

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

1. Estimation of Ferrous Sulphate (Fe²⁺)

AIM:

To estimate the amount of ferrous sulphate dissolved in 750 ml of the given unknown solution volumetrically. For this you are given with a standard solution of ferrous ammonium sulphate (FAS) of normality 0.1102 N and potassium permanganate solution as link solution.

PRINCIPLE:

During these titrations, Fe²⁺ ions (from ferrous salts) are oxidised to MnO⁴⁻ ions and MnO⁴⁻ ion (from Mn^{2+}) is reduced to Mn^{2+} ion.

Oxidation	:	$5 \text{ Fe}^{2+} \longrightarrow 5 \text{ Fe}^{3+} + 5 \text{e}^{-}$
Reduction	:	$\underbrace{\text{MnO}_4^-}_{\text{Pink}} + 8\text{H}^+ + 5\text{e}^- \longrightarrow \underbrace{\text{Mn}^{2+}}_{\text{colourless}} + 4\text{H}_2\text{O}$

:

Overall reaction

 $5Fe^{2+} + MnO_4^{-} + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$

SHORT PROCEDURE:

S.No	Content	Titration - I	Titration - II
1	Burette solution	KMnO ₄ (link solution)	KMnO ₄ (link solution)
2	Pipette Solution	20ml of standard FAS	20ml of unknown FeSO ₄
3	Acid to be added	20ml of 2N H ₂ SO ₄ (approx)	20ml of 2N H ₂ SO ₄ (approx)
4	Temperature	Lab temperature	Lab temperature
5	Indicator	Self-indicator (KMnO 4)	Self-indicator (KMnO 4)
6	End point	Appearance of permanent Appearance of per pale pink colour pale pink col	
7	Equivalent weight o	of $FeSO_4 = 278g$	

PROCEDURE:

Titration-I

(Link KMnO₄)Vs (Standard FAS)

Burette is washed with water, rinsed with KMnO₄ solution and filled with same KMnO₄ solution up to the zero mark. Exactly 20 ml of standard FAS solution is pipetted out into the clean, washed conical flask. To this FAS solution, approximately 20ml of 2N sulphuric acid is added. This mixture is titrated against KMnO₄ Link solution from the burette. KMnO₄ is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted, and the same procedure is repeated to get concordant values.

Normality of standard ferrous ammonium sulphate solution = $\frac{mass / litre}{Equivalent mass} = \frac{43.2}{392} = 0.1102N$

TITRATION – I:

Std FAS	tor: Self (KMnO ₄)				
S.No.	Volume of Std	Burette Readings (ml)		Vol of KMnO ₄	Concordant
	FAS (ml)	Initial	Final	(ml)	Value (ml)
1	20	0	19.5	19.5	19.5
2	20	0	19.5	19.5	19.0

CALCULATIONS:

Volume of Std FAS solution	
Normality of Std FAS Solution	
Volume of KMnO4 (link) solution	
Normality of KMnO ₄ (link) solution	

 $(V_1) = 20 \text{ ml}$ $(N_1) = 0.1102 N$ $(V_2) = 19.5 \text{ ml}$ $(N_2) =$ Ν ?

According to normality Equation = $V_1 \times N_1 = V_2 \times N_2$

$$N_2 = \frac{V_1 \times N_1}{V_2} = \frac{20 \times 0.1102}{19.5} = 0.1130 N$$

Normality of $KMnO_4$ (link) solution

$$(N_2) = 0.1130 N$$

Titration–II

(Unknown FeSO₄) Vs (Link KMnO₄)

Burette is washed with water, rinsed with KMnO₄ solution and filled with same KMnO₄ solution up to the zero mark. Exactly 20 ml of unknown FeSO₄ solution is pipetted out into the clean, washed conical flask. To this FeSO₄ solution approximately 20ml of 2N sulphuric acid is added. This mixture is titrated against KMnO₄ Link solution from the burette. KMnO₄ is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted and the same procedure is repeated to get concordant values. **TITRATION – II:**

Link KMn	1O ₄ Vs Unknown	Indicat	or: Self (KMnO ₄)				
0 N	Volume of Burette Readings (ml)		Volume of Burette Readings (ml)		Volume of Burette Readings (ml) V		Concordant
S.No.	Unknown FeSO4 (ml)	Initial	Final	Value (ml)			
1	20	0	20.6	20.6	20.6		
2	20	0	20.6	20.6	20.0		

CALCULATIONS:

Volume of KMnO₄ (link) solution Normality of KMnO₄ (link) solution Volume of Unknown FeSO₄ solution Normality of Unknown FeSO₄ solution $(V_2) = 20.6 \text{ ml}$ $(N_2) = 0.1130 \text{ N}$ $(V_3) = 20 \text{ ml}$ $(N_3) = ? \text{ N}$

According to normality Equation = $V_2 \ge N_2 = V_3 \ge N_3$

$$N_3 = \frac{V_2 \times N_2}{V_3} = \frac{20.6 \times 0.1130}{20} = 0.1164 N$$

Normality of FeSO₄ (Unknown) solution

 $(N_3) = 0.1164 N$

WEIGHT CALCULATION:

The amount of FeSO₄ dissolved in 1 lit of the solution = Normality **x** Equivalent weight The amount of FeSO₄ dissolved in 750ml of the solution = $\frac{Normality \times Equivalent \ weight \times 750}{1000}$

$$= \frac{0.1164 \times 278 \times 3}{4} = 24.27 \text{ g}$$

The amount of FeSO₄ dissolved in 750ml of the solution = 24.27 g

RESULT:

1. Normality of KMnO ₄ (link) Solution	= 0.1130 N
2. Normality of Unknown FeSO ₄ Solution	= 0.1164 N
3. The amount of FeSO ₄ dissolved in 750ml of the solution	= 24.27 g

2. Estimation of Ferrous Ammonium Sulphate (FAS)

AIM:

To estimate the amount of ferrous ammonium sulphate (FAS) dissolved in 1500 ml of the given unknown solution volumetrically. For this you are given with a standard solution of ferrous sulphate (FeSO₄) of normality 0.1024 N and potassium permanganate solution as link solution.

PRINCIPLE:

: 5 Fe²⁺ \longrightarrow 5 Fe³⁺ + 5e⁻ Oxidation

Reduction

: $5Fe^{2+} + MnO_4^{-} + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$

: $5Fe^{2+} + MnO_4^{-} + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ **Overall reaction** SHORT PROCEDURE:

S.No	Content	Titration - I	Titration - II
1	Burette solution	KMnO ₄ (link solution)	KMnO ₄ (link solution)
2	Pipette Solution	20ml of standard FeSO 4	20ml of unknown FAS
3	Acid to be added	20ml of 2N H ₂ SO ₄ (approx)	20ml of 2N H ₂ SO ₄ (approx)
4	Temperature	Lab temperature	Lab temperature
5	Indicator	Self-indicator (KMnO ₄)	Self-indicator (KMnO ₄)
6	End point	Appearance of permanent	Appearance of permanent
)	Enta point	pale pink colour	pale pink colour
7	Equivalent weight o	of FAS = 392g	

PROCEDURE :

Titration-I

(Link KMnO₄) Vs (Standard FeSO₄)

Burette is washed with water, rinsed with KMnO₄ solution and filled with same FeSO₄ solution up to the zero mark. Exactly 20 ml of standard FeSO₄ solution is pipetted out into the clean, washed conical flask. To this solution, approximately 20ml of 2N sulphuric acid is added. This mixture is titrated against KMnO₄ Link solution from the burette. KMnO₄ is added drop wise till the appearance of permanent pale pink colour. Burette reading are noted, the same procedure is repeated to get concordant values.

Normality of Ferrous Sulphate (FeSO₄) solution = 0.1024 N

TITRATION – I:

Std FeSO	4 Vs Link KMnO4			Indicat	or: Self (KMnO ₄)	
S.No.	Volume of Std	Burette Readings (ml)		Vol of KMnO ₄	Concordant	
	FeSO ₄ (ml)	Initial	Final	(ml)	Value (ml)	
1	20	0	20.6	20.6	20.6	
2	20	0	20.6	20.6	20:0	
CALCULA	TIONS:					
Volume of	Std FeSO ₄ solution	on	$(V_1) =$	= 20 ml		
Normality of Std FeSO ₄ Solution $(N_1) = 0.1024 \text{ N}$						
Volume of	KMnO4 (link) solu	ition	(V ₂) =	= 20.6 ml		
Normality of KMnO ₄ (link) solution $(N_2) = ? N$						

According to normality Equation = $V_1 \times N_1 = V_2 \times N_2$

$$N_2 = \frac{V_1 \times N_1}{V_2} = \frac{20 \times 0.1024}{20.6} = 0.0994$$
 N

Normality of KMnO₄ (link) solution

$(N_2) = 0.0994 N$

23

Titration–II

(Unknown FAS) Vs (Link KMnO₄)

Burette is washed with water, rinsed with KMnO₄ solution and filled with same KMnO₄ solution up to the zero mark. Exactly 20 ml of unknown FAS solution is pipetted out into the clean, washed conical flask. To this FAS solution approximately 20ml of 2N sulphuric acid is added. This mixture is titrated against KMnO₄ Link solution from the burette. KMnO₄ is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted and the same procedure is repeated to get concordant values.

TITRATION – II:

Link KMnO ₄	Vs Unkr	10wn FAS
------------------------	---------	----------

Indicator: Self (KMnO₄)

0 N	Volume of	Burette Readings (ml)		Vol of KMnO4	Concordant
S.No.	Unknown FeSO4 (ml)	Initial	Final	(ml)	Value (ml)
1	20	0	20.2	20.2	20.2
2	20	0	20.2	20.2	20.2

CALCULATIONS:

Volume of KMnO₄ (link) solution Normality of KMnO₄ (link) solution Volume of Unknown FAS solution Normality of Unknown FAS solution

(V ₂) =	=	20.2 n	11	
(N ₂) :	=	0.0994	4 N	
(V3) =	=	20 ml		
(N ₃) :	=	?	Ν	

According to normality Equation = $V_2 \ge N_2 = V_3 \ge N_3$

$$N_3 = \frac{V_2 \times N_2}{V_3} = \frac{20.2 \times 0.0994}{20} = 0.1004 N$$

Normality of Unknown FAS solution

 $(N_3) = 0.1004 N$

WEIGHT CALCULATION:

The amount of FAS dissolved in 1 lit of the solution = Normality **x** Equivalent weight The amount of FAS dissolved in 1500ml of the solution = $\frac{Normality \times Equivalent \ weight \times 1500}{1000}$

$$=\frac{0.1004\times392\times3}{2}=59.035 \text{ g}$$

The amount of FAS dissolved in 1500ml of the solution = 59.035 g

RESULT:

Normality of KMnO₄ (link) Solution
 Normality of Unknown FAS Solution

3. The amount of FAS dissolved in 1500ml of the solution

= 0.0994 N = 0.1004 N = 59.035 g

AIM:

3. Estimation of oxalic acid

To estimate the amount of oxalic acid dissolved in 500 ml of the given solution volumetrically. For this you are given with a standard solution of ferrous ammonium sulphate (FAS) of normality 0.1 N and potassium permanganate solution as link solution. **PRINCIPLE:**

During these titrations, oxalic acid is oxidized to CO_2 and MnO^{4-} ions (from KMnO₄) is reduced to Mn^{2+} ion.

Oxidation : $\underset{\text{Pink}}{\text{MnO}_4^-} + 8\text{H}^+ + 5e^- \longrightarrow \underset{\text{colourless}}{\text{Mn}^{2+}} + 4\text{H}_2\text{O}$

Reduction

: $\operatorname{MnO_4}_{\operatorname{Pink}} + 8\mathrm{H}^+ + 5\mathrm{e}^- \longrightarrow \operatorname{Mn}^{2+}_{\operatorname{colourless}} + 4\mathrm{H_2O}$

Overall reaction : $5(\text{COOH})_2 + 2\text{MnO}_4^- + 6\text{H}^+ \longrightarrow 10\text{CO}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}_4$

Since one mole oxalic acid releases 2 moles of electrons, the equivalent weight of oxalic Acid = (126/2) = 53 (oxalic acid is di-hydrated)

SHORT PROCEDURE:

S.No	Content	Titration - I	Titration - II			
1	Burette solution	KMnO ₄ (link solution)	KMnO ₄ (link solution)			
2	Pipette Solution	20ml of standard FAS	20ml of unknown Oxalic acid			
3	Acid to be added	$20ml of 2N H_2SO_4$ (approx)	20ml of 2N H_2SO_4 (approx)			
4	Temperature	Lab temperature	60°C - 70°C			
5	Indicator	Self-indicator (KMnO 4)	Self-indicator (KMnO ₄)			
6	End point	Appearance of permanent pale pink colour	Appearance of permanent pale pink colour			
7	Equivalent weight	weight of Oxalic Acid = 63g				

PROCEDURE :

Titration–I

(Link KMnO₄)Vs (Standard FAS)

Burette is washed with water, rinsed with KMnO₄ solution and filled with same KMnO₄ solution up to the zero mark. Exactly 20 ml of standard FAS solution is pipetted out into the clean, washed conical flask. To this FAS solution, approximately 20ml of 2N sulphuric acid is added. This mixture is titrated against KMnO₄ Link solution from the burette. KMnO₄ is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted and the same procedure is repeated to get concordant values.

Normality of Ferrous Ammonium Sulphate (FAS) solution = **0.1 N**

TITRATION – I:

Std FAS	Vs Link KMnO4	Indicat	tor: Self (KMnO ₄)		
S.No.	Volume of Std	Burette Readings (ml)		Vol of KMnO ₄	Concordant
	FAS (ml)	Initial	Final	(ml)	Value (ml)
1	20	0	20.4	20.4	20.4
2	20	0	20.4	20.4	20.1

CALCULATIONS:

Volume of Std FAS solution	$(V_1) = 20 r$	nl
Normality of Std FAS Solution	$(N_1) = 0.1$	N
Volume of KMnO ₄ (link) solution	$(V_2) = 20.4$	- ml
Normality of KMnO ₄ (link) solution	$(N_2) = ?$	Ν

According to normality Equation = $V_1 \ge N_1 = V_2 \ge N_2$

$$N_2 = \frac{V_1 \times N_1}{V_2} = \frac{20 \times 0.1}{20.4} = 0.0980$$
 N

Normality of KMnO₄ (link) solution

$(N_2) = 0.0980 N$

Titration–II

(Unknown oxalic acid) Vs (Link KMnO₄)

Burette is washed with water, rinsed with KMnO₄ solution and filled with same KMnO₄ solution up to the zero mark. Exactly 20 ml of unknown oxalic acid solution is pipetted out into the clean, washed conical flask. To this oxalic acid solution approximately 20ml of 2N sulphuric acid is added. This mixture is heated to 60 – 70°C using Bunsen burner and that hot solution is titrated against KMnO₄ Link solution from the burette. KMnO₄ is added drop wise till the appearance of permanent pale pink colour. Burette reading are noted, the same procedure is repeated to get concordant values.

TITRATION – II:

Link KMr	nO4 Vs Unknown (Oxalic acid		Indicat	or: Self (KMnO ₄)
0 N	Volume of	Burette Readings (ml)InitialFinal		Vol of KMnO ₄	Concordant
S.No.	Unknown OxalicAcid(ml)			(ml)	Value (ml)
1	20	0	20.8	20.8	20.8
2	20	0	20.8	20.8	20.0

CALCULATIONS:

Volume of KMnO₄ (link) solution Normality of KMnO₄ (link) solution Volume of Unknown Oxalic acid solution Normality of Unknown Oxalic acid solution $(V_2) = 20.8 \text{ ml}$ $(N_2) = 0.0980 \text{ N}$ $(V_3) = 20 \text{ ml}$ $(N_3) = 2 \text{ N}$

According to normality Equation = $V_2 \ge N_2 = V_3 \ge N_3$

N₃ =
$$\frac{V_2 \times N_2}{V_3} = \frac{20.8 \times 0.0980}{20} = 0.1019$$
 N

Normality of FeSO₄ (Unknown) solution

 $(N_3) = 0.1019 N$

WEIGHT CALCULATION:

The amount of Oxalic acid dissolved in 1 lit of the solution = Normality **x** Equivalent weight The amount of Oxalic acid dissolved in 500ml of the sln. = $\frac{Normality \times Equivalent \ weight \times 500}{1000}$

$$=\frac{0.1019 \times 63}{2} = 3.21 \text{ g}$$

The amount of Oxalic acid dissolved in 500ml of the solution. = **3.21** g

RESULT:

1. Normality of KMnO ₄ (link) Solution	= 0.0980 N
2. Normality of Unknown Oxalic acid Solution	= 0.1019 N
3. The amount of Oxalic acid dissolved in 500ml of the solution	= 3.21 g

26

4. Estimation of sodium hydroxide

AIM:

To estimate the amount of sodium hydroxide dissolved in 250 ml of the given unknown solution volumetrically. For this you are given with a standard solution of sodium carbonate solution of normality 0.0948 N and hydrochloric acid solution as link solution. **PRINCIPLE:**

Neutralization of Sodium carbonate by HCl is given below. To indicate the end point, methyl orange is used as an indicator.

 $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O_2$

Neutralization of Sodium hydroxide by HCl is given below. To indicate the end point, phenolphthalein is used as an indicator.

 $NaOH + HCl \longrightarrow NaCl + H_2O$

SHORT PROCEDURE:

S.No	Content	Titration - I	Titration - II			
1	Burette solution	HCl (link solution)	HCl (link solution)			
2	Pipette Solution	20ml of standard Na₂CO₃	20ml of unknown NaOH			
3	Temperature	Lab temperature	Lab temperature			
4	Indicator	Methyl Orange	Phenolphthalein			
5	End point	Colour change from straw yellow to pale pink	Disappearance of pink colour			
6	Equivalent weight of NaOH = 40 g					

PROCEDURE :

Titration-I

(Link HCl)Vs (standard Na₂CO₃)

Burette is washed with water, rinsed with HCl solution and filled with same HCl solution up to the zero mark. Exactly 20 ml of standard Na₂CO₃ solution is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of methyl orange indicator is added and titrated against HCl link solution from the burette. HCl is added drop wise till the colour change from straw yellow to pale pink. Burette reading is noted and the same procedure is repeated to get concordant values.

Normality of Sodium Carbonate (Na₂CO₃) solution = 0.0948N **TITRATION – I:**

Std Na₂CO₃ Vs Link HCl **Indicator: Methyl Orange Burette Readings (ml)** Volume of Std Vol of HCl Concordant S.No. Na_2CO_3 (ml) Value (ml) (ml) Initial Final 20 20.3 1 0 20.3 20.3 2 20 0 20.3 20.3

CALCULATIONS:

Volume of Std Na₂CO₃ solution $(V_1) = 20 \text{ ml}$ Normality of Std Na₂CO₃ Solution $(N_1) = 0.0948 N$ Volume of HCl (link) solution $(V_2) = 20.3 \text{ ml}$ Normality of HCl (link) solution $(N_2) =$?

According to normality Equation = $V_1 \times N_1 = V_2 \times N_2$

$$N_2 = \frac{V_1 \times N_1}{V_2} = \frac{20 \times 0.0948}{20.3} = 0.0934$$
 N

Normality of HCl (link) solution

$$(N_2) = 0.0934 N$$

Ν

27

Indicator: Phenolphthalein

Titration–II

(Unknown NaOH) Vs (Link HCl)

Burette is washed with water, rinsed with HCl solution and filled with same HCl solution up to the zero mark. Exactly 20 ml of unknown NaOH solution is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of phenolphthalein indicator is added and titrated against HCl link solution from the burette. HCl is added drop wise till the pink colour disappears completely. Burette reading is noted and the same procedure is repeated to get concordant values.

TITRATION - II:

Link	HC1	Vs	Un	known	NaOH
------	-----	----	----	-------	------

	Volume of	Burette Re	adings (ml)	Vol of HCl	Concordant
S.No.	Unknown NaOH (ml)	Initial	Final	(ml)	Value (ml)
1	20	0	21.7	21.7	21.7
2	20	0	21.7	21.7	21.1

CALCULATIONS:

Volume of HCl (link) solution Normality of HCl (link) solution Volume of Unknown NaOH solution Normality of Unknown NaOH solution

 $(V_2) = 21.7 \text{ ml}$ $(N_2) = 0.0934 \text{ N}$ $(V_3) = 20 \text{ ml}$ $(N_3) = ? \text{ N}$

According to normality Equation = $V_2 \ge N_2 = V_3 \ge N_3$

N₃ =
$$\frac{V_2 \times N_2}{V_3} = \frac{21.7 \times 0.0934}{20} = 0.1013$$
 N

Normality of NaOH (Unknown) solution

 $(N_3) = 0.1013 N$

WEIGHT CALCULATION:

The amount of NaOH dissolved in 1 lit of the solution = Normality **x** Equivalent weight The amount of NaOH dissolved in 250ml of the solution = $\frac{Normality \times Equivalent \ weight \times 250}{1000}$

$$=\frac{0.1013\times40}{4}=3.21\,\mathrm{g}$$

The amount of Oxalic acid dissolved in 250ml of the solution. = 1.013 g

RESULT:

- 1. Normality of HCl (link) Solution
- 2. Normality of Unknown NaOH Solution
- 3. The amount of NaOH dissolved in 250ml of the solution

= 0.0934 N = 0.1013 N = 1.013 g

AIM:

To estimate the amount of oxalic acid dissolved in 1250 ml of the given unknown solution volumetrically. For this you are given with a standard solution of HCl solution of normality 0.1010 N and sodium hydroxide solution as link solution.

5. Estimation of oxalic acid

PRINCIPLE:

Neutralization of Sodium hydroxide by HCl is given below. To indicate the end point, phenolphthalein is used as an indicator.

 $NaOH + HCl \longrightarrow NaCl + H_2O$

Neutralization of Sodium hydroxide by oxalic acid is given below. To indicate the end point, phenolphthalein is used as an indicator.

$$2\text{NaOH} + (COOH)_2 \longrightarrow (COONa)_2 + 2H_2O$$

$$\xrightarrow{\text{Sodium oxalate}} + 2H_2O$$

SHORT PROCEDURE:

S.No	Content Titration - I		Titration - II				
1	Burette solution	HCl (standard solution)	Oxalic acid (unknown)				
2	Pipette Solution	20ml of link NaOH	20ml of link NaOH				
3	Temperature	Lab temperature	Lab temperature				
4	Indicator	Phenolphthalein	Phenolphthalein				
5	End point	Disappearance of pink colour	Disappearance of pink colour				
6	Equivalent weight	Equivalent weight of Oxalic acid = 63 g					

PROCEDURE :

Titration-I

(standard HCl)Vs (link NaOH)

Burette is washed with water, rinsed with HCl solution and filled with same HCl solution up to the zero mark. Exactly 20 ml of NaOH is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of phenolphthalein indicator is added and titrated against HCl solution from the burette. HCl is added drop wise till the pink colour disappears completely. Burette reading is noted and the same procedure is repeated to get concordant values.

Normality of Hydrochloric acid (HCl) solution = 0.1010 N

TITRATION – I:

\$ Std HCl V	s Link NaOH	Indicator: Phenolphthalein						
S.No.	Volume of	Burette Re	adings (ml)	Vol of Std HCl	Concordant			
	Link NaOH(ml)	Initial	Final	(m1)	Value (ml)			
1	20	0	20.5	20.5	20.5			
2	20	0	20.5	20.5	20.0			

CALCULATIONS:

Volume of Std HCl solution	$(V_1) = 20.5 \text{ ml}$
Normality of Std HCl Solution	$(N_1) = 0.1010 N$
Volume of NaOH (link) solution	$(V_2) = 20 \text{ ml}$
Normality of NaOH (link) solution	$(N_2) = ? N$

According to normality Equation = $V_1 \ge N_1 = V_2 \ge N_2$

$$N_2 = \frac{V_1 \times N_1}{V_2} = \frac{20.5 \times 0.1010}{20} = 0.1035 N$$

Normality of NaOH (link) solution

$$(N_2) = 0.1035 N$$

29

Titration–II

(Unknown oxalic acid) Vs (Link NaOH)

Burette is washed with water, rinsed with oxalic acid solution and filled with same oxalic acid solution up to the zero mark. Exactly 20 ml of NaOH solution is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of phenolphthalein indicator is added and titrated against oxalic acid solution from the burette. oxalic acid is added drop wise till the pink colour disappears completely. Burette reading is noted and the same procedure is repeated to get concordant values.

TITRATION – II:

Link NaOH Vs Unknown Oxalic acid

Indicator: Phenolphthalein

Ī	0 N	Volume of	Burette Re	adings (ml)	Vol of Unknown	Concordant		
	S.No.	Link NaOH(ml)	Initial	Final	Oxalic acid(ml)	Value (ml)		
Ī	1	20	0	19.7	19.7	19.7		
I	2	20	0	19.7	19.7	19.1		

CALCULATIONS:

Volume of NaOH (link) solution Normality of NaOH (link) solution Volume of Unknown Oxalic acid solution Normality of Unknown Oxalic acid solution

 $(V_2) = 20 \text{ ml}$ $(N_2) = 0.1035 \text{ N}$ $(V_3) = 19.7 \text{ ml}$ $(N_3) = ? \text{ N}$

According to normality Equation = $V_2 \ge N_2 = V_3 \ge N_3$

$$N_3 = \frac{V_2 \times N_2}{V_3} = \frac{20 \times 0.1035}{19.7} = 0.1050 N$$

Normality of Oxalic acid (Unknown) solution

WEIGHT CALCULATION:

The amount of Oxalic acid dissolved in 1 lit of the solution = Normality **x** Equivalent weight The amount of Oxalic acid dissolved in 1250ml of the sln. = $\frac{Normality \times Equivalent \ weight \times 250}{1200}$

$$= \frac{0.1050 \times 63 \times 5}{0.1050 \times 63} = 8.27 \text{ g}$$

 $(N_3) = 0.1050 N$

The amount of Oxalic acid dissolved in 1250ml of the solution. = 8.27 g

RESULT:

REGUET.	
1. Normality of NaOH (link) Solution	= 0.1035 N
2. Normality of Unknown Oxalic acid Solution	= 0.1050 N
3. The amount of Oxalic acid dissolved in 1250ml of the solution	= 8.27 g

30

LOGARITHMS

TABLE I

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38
						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569	0007	00.45	0000	0710	0755	4	8	12	16	20	23	27	31	
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28	
10	1100	1150	1000	1000	1071	0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3 3	6 7	10 10	13 13	16 16	19 19	$\frac{23}{22}$	26 : 25 :	
14	1461	1492	1523	1553	1584						3	6	9	12	15	19	22	25	28
<u> </u>						1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3 3	6 6	9 8	$\frac{11}{11}$	$\frac{14}{14}$	17 17	20 19	23 : 22 :	
16	2041	2068	2095	2122	2148	1000	1001	1000	1007	2011	3	6	8	11	14	16	19	22	
			2000			2175	2201	2227	2253	2279	3	5	8	10		16	18	21	
17	2304	2330	2355	2380	2405	0.400	0455	0.400	0504	0500	3	5	8	10	13	15	18	20	
10	0550	0577	0001	2625	0640	2430	2455	2480	2504	2529	3	5	8	10	12 12	15	17	20 :	
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	$\begin{array}{c} 2\\ 2\end{array}$	5 4	7	9 9	12	14 14	17 16	18	
19	2788	2810	2833	2856	2878						2	4	7	9 <	11	13	16	18	20
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010		3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	
21	3222		3263	3284	3304	3324	3345		3385	3404	2	4	6	8	10	12	14	16	
22	3424		3464	3483	3502	3522	3541	3560	3579	3598	2	- 4	6	8	10	12	14	15	
23	3617		3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802		3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	
25	3979		4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	
26	4150		4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	
27	4314		4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	
28	4472		4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563		5587	5599	5611	5623	5635		5658	5670	1	2	4	5	6	7	8	10	
37	I	5694	5705	5717	5729	5740	5752		5775	5786	1	2	3	5	6	7	8	9	
38	5798		5821	5832	5843	5855	5866		5888	5899	1	2	3	5	6	7	8		10
39	5911	I I	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8		10
40	6021	I I	6042	6053	6064	6075	6085		6107	6117	1	2	3	4	5	6	8		10
41	I	6138	6149 6052	6160	6170	6180	6191		6212	6222	1	2	3	4	5	6	7	8	9
42	1	6243	6253	6263	6274	6284	6294		6314	6325	1	2	3	4	5	6	7	8	9
43	I	6345 6444	6355 6454	6365 6464	6375 6474	6385 6484	6395 6493		6415	6425 6522	1	2	3	4	5 5	6	7 7	8	9 9
44		6444	6454	6464	6474	6484	6493		6513	6522	1	2	3	4		6		8	
45	6532		6551	6561	6471	6580	6590		6609	6618	1	2	3	4	5	6	7	8	9
46	6628		6646	6656	6665	6675	6684		6702	6712	1	2	3	4	5	6	7	7	8
47	I	6730	6739	6749	6758	6767	6776		6794	6803	1	2	3	4	5	5	6	7	8
48	6812		6830	6839	6848	6857	6866	1	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

LOGARITHMS

TABLE 1 (Continued)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126		7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324		7340	7348	7356	7364	7372		7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482		7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559		7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634		7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709		7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
	7782			7803		7818			7839	7846							E		6
60 61	7853		7796 7768	7803	7810 7882	7889	7825 7896	7832 7903	7910	7917	1	1 1	2 2	3 3	4	4	5 5	6 6	6 6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993		8007	8014	8021	8028	8035		8048	8055	1	1	2	3	3	4	5	5	6
64	8062		8075	8082	8089	8096	8102		8116	8122	1	1	2	3	3	4	5	5	6
65	8129		8142	8149	8156	8162		8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195		8209	8215	8222	8228	8235		8248	8254	1	1	2	3	3	4	5	5	6
67	8261		8274	8280	8287	8293	8299		8312 8376	8319	1	1	2	3 3	3	4	5	5	6
68 69	8325 8388		8338 8401	8344 8407	8351 8414	8357 8420	8363 8426		8439	8382 8445	1	1	2 2	ີ2	3 3	4 4	4 4	5 5	6 6
												10	7,		_	4	4		_
70	8451		8463	8470	8476	8482		8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513		8525	8531	8537	8543	8549		8561	8567	. <u>1</u> 0		2	2	3	4	4	5	5
72	8573		8585	8591	8597	8603	8609		8621	8627	1)1	2	2	3	4	4	5	5
73	8633		8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	01	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865		8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085		9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191		9201	9206	9212	9217		9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638		9647	9652	9657	9661		9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708		9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823		9832	9836	9841	9845	9850		9859	9863	o	1	1	2	2	3	3	4	4
97	9868		9877	9881	9886	9890	9894		9903	9908	ō	1	1	2	2	3	3	4	4
98	9912		9921	9926	9930	9934	9939		9948	9952	0	1	1	2	2	3	3	4	4
99	9956		9965	9969	9974	9978		9987	9997	9996	0	1	1	2	2	3	3	3	4
		=															-		

ANTILOGARITHMS

TABLE II

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
00	1000	1002	1005	1007	1009	1012	1014		1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038		1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062		1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
.11	1288	1291	1294	1297	1300	1303	1306		1312	1315	o	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	-1	1	1	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	з
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	\mathbb{P}^{1}	2	2	3	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1 3	1	9	2	2	3	3	•
I I	1585	1626	1629	1633	1600	1603			1614	1618	-			1 2	2	2	3		3
.21 .22	1622	1663	1629	1655	1637	1641	1644 1683	1648 1687	1690	1694	0		$\mathcal{P}_1^{\mathbf{r}}$		2	2	3	3 3	3 3
.22	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1		2	2	3	3	4
.23	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
											J.	-	-		2	2		U	-
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31		2046		2056		2065	12 1	2075		2084	0	1	1	2	2	3	3	4	4
.32	2089		2099	2104	2109	2113	4.X "="	2123	2128	2133	0	1	1	2	2	3	3	4	4
.33			2148	2153	2158	2163	I I	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
.38	2399		2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40		2518	2523	2529	2535	2541	2547			2564	1	1	2	2	3	4	4	5	5
.41		2576	2582	2588	2594	2600	I I	2612		2624	1	1	2	2	3	4	4	5	5
.42			2642	2649	2655	2661	2667			2685		1	2	2	3	4	4	5	6
.43	2692		2704	2710	2716	2723	I I	2735		2748		1	2	3	3	4	4	5	6
.44	2754		2767	2773	2780	2786	I I	2799	2805	2812		1	2	3	3	4	4	5	6
.45	2818		2831	2838	2844	2851 2917	2858		2871 2938	2877		1	$\frac{2}{2}$	3	3	4	5 5	5	6
.46	2884		2897	2904	2911		2924 2992			2944		1			3	4		5	6
.47	2951 3020		2965 3034	2972 3041	2979 3048	2985 3055	2992 3062		3006 3076	3013 3083	1	1 1	$\frac{2}{2}$	3	3 3	4 4	5 5	5 6	6 6
.48				3041															
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	3	4	5	6	6

ANTILOGARITHMS

TABLE II (Continued)

N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
.51	3236		3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311		3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388		3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
.54	3467		3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
.55	3548		3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631		3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
		0000	0010	0000		00.0	0001	0000		0.01	-	-	Ū	Ū	-	Ŭ	0	•	
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802		3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890		3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
											-	_	-		O A	-	-	-	-
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	42S6	1	2	3	4	5	6	7	8	9
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	്3	4	6	7	8	9	10
.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
												Ø							
.70	5012		5035	5047	5058	5070	5082	5093	5105	5117	7	2	/4	5	6	7	8		11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	Y)	2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	
.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	11	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.80	6457		6486	6501	6516	6531	$M \sim M$	6561	6577	6592	2	3	4 5		8	9	11	12	
	I I													6		-			
.82	6607		6637	6653	6668	6683	0	6714 6871	6730	6745	2	3	5	6	8	9	11	12	
.83	6761		6792	6808 6066	6823	6839	6855		6887 7047	6902 7062	2	3	5	6	8	9	11		14
.84	0919	6934	6950	6966	6982	6998	1015	7031	7047	7063	2	3	5	6	8	10	11	13	10
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244		7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	
.87		7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	
.88	7586		7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9	11	12	14	
.89	7762		7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	
																-			
.90		7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	
.91	8128		8166	8185	8204	8222	8241		8279	8299	2	4	6	8	9	11	13	15	
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
	0.000						00000		00-0	0.000				6					
.95	8913		8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	
.96	9120		9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	
.97	9333		9376	9397	9419	9441	9462		9506	9528	2	4	7	9	11	13	15	17	
.98	9550		9594	9616	9638	9661			9727	9750	2	4	7	9	11	13	16	18	
.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

	www.Pada	asalal.Net				www.1rb Tnpsc.Com							
			7 Francium 223.020	6 C esium 132.905	5 Rubidium 85,468	4 Potassium 39.098	3 Na Sodium 22.990	2 Lithium 6.941	1 Hydrogen 1.008				
			BB Radium 226.025	56 Barium 137.328	38 Sr Strontium 87.62	20 Calcium 40.078	12 Magnesium 24.305	9 8 -	×				
	Act 22	Lant 13	89-103	57-71	39 Yttrium 88.906	21 Scandium 44.956	ω						
	B9 Actinium 227.028	57 La Lanthanum 138.905	104 Rf Rutherfordium [261]	72 Hafnium 178.49	40 Zr Zirconium 91.224	22 Titanium 47.88	4						
Alkali Metal	90 Th Thorium 232.038	58 Cerium 140.116	International In	73 Tantalum 180.948	41 Niobium 92.906	Van 50	σ						
Alkaline Earth	91 Pa Protactinium 231.036	59 Pr Praseodymium 140.908	Sama a		<u>~~~</u>	had		Ø	PER				
2000	92 Uranium 238.029	60 Neodymium 144.243	106 Seaborgum [266]	74 Tungsten 183.85	42 Molybdenum 95.95	24 Chromium 51.996	σ		PERIODIC TABLE OF				
Transition Metal	93 Neptunium 237.048	61 Pm Promethium 144.913	107 Bohrium [264]	75 Re Rhenium 186.207	43 TC Fechnetium 98.907	25 Manganese 54.938	7		DIC				
Basic Metal	Ø- <u></u>		108 Hassium [269]	76 Osmium 190.23	44 Ruthenium 101.07	26 Iron 55.845	0		TAE				
Meta	94 Putonium 244.064	62 Sm Samarium 150,36	109 Metnerium [278]	77 r Iridium 192.22	Rhodium 102.906	27 Co Cobalt 58.933	۵ ۵		8LE				
Metalloid	95 Am Americium 243.061	63 Europium 151.964	110 DS Darmstadtium [281]	78 Platinum 195.08	Palladium 106.42	<u>س</u> ے	10		OF				
Nonmetal	96 Cm Curium 247.070	64 Gadolinium 157.25		-0					Ŧ				
Halogen	97 Bk Berkelium 247.070	65 Tb Terbium 158.925	111 Rg Roentgenium [280]	79 Au Gold 196.967	47 Ag Silver 107.868	29 Copper 63.546	1		EE				
2222	98 Californium 251.080	66 Dysprosium 162.500	112 Copernicium [285]	BO Mercury 200.59	48 Cadmium 112.414	30 Zn Zinc 65.38	12		ĒM				
Noble Gas			113 Nihonium [286]	81 Thallium 204.383	49 In Indium 114.818	31 Gallium 69.723	Aluminum 26.982	5 Boron 10.811	LEMENTS				
Lanthanide	99 Einsteinium [254]	67 HO Holmium 164.930	Flerovium [289]	82 Pb Lead 207.2	50 Sn ^{Tin} 118.711	32 Germanium 72.631	Silicon 28.086	6 Carbon 12.011	TS				
Actinide	100 Fermium 257.095	68 Erbium 167.259	n Moscovium [289]	83 Bismuth 208.980	S1 Sb Antimony 121.760	33 Assenic 74.922	15 Phosphorus 30.974	1 N	1 5				
de	101 Mendelevium 258.1	69 Tm Thulium 168.934			XXX								
	102 Nobelium 259,101	70 Yb Ytterbium 173.055	116 LV Livermorium [293]	84 Pol onium 208.982]	52 Tellurium 127.6	34 Selenium 78.971	16 Sulfur 32.066	8 Oxygen 15.999	16				
	103 Lawrencium 1 [262]	71 Lutetium 5 174.967	117 TS Tennessine [294]	Astatine 209.987	53 	35 Bromine 79.904	17 Chlorine 35,453	9 Fluorine 18.998	17				
	3 Incium 2]	967	118 Oganesson [294]	B6 Radon 2222.018	54 Xenon 131.294	36 Krypton 83.798	18 Argen 39.948	10 Neon 20.180	18 2 Helium 4.003				

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Padasalai.Net

www.Trb Tnpsc.Com