Ex.No.: Salt name:

Date:

S. No.	EXPERIMENT	OBSERVATION	INFERENCE
	PRELIMINARY T	ESTS	
1	Odour: Note the Odour of the organic compound.		
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.		X
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.		
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.		
5	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc H ₂ SO ₄ to it, and heat the mixture.		
	TESTS FOR ALIPHATIC OR AI	ROMATIC NATURE	: :
6	Ignition test: Take small amount of the organic compound in a Nickel spatula and burn it in Bunsen flame		
	TESTS FOR AN UNSA	TURATION:	
7	Test with bromine water: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of bromine water and shake it well.		
8	Test with KMnO ₄ solution: Take small amount of the organic compound in a test tube add 2 ml of distilled water to dissolve it. To this solution add few drops of very dilute alkaline KMnO ₄ solution and shake it well.		

REPORT:

The given organic compound contains /is

- (i) Aromatic / Aliphatic
- (ii) Saturated / Unsaturated
- (iii) _____ functional group

Ex.No.: Date:

Estimation of	
---------------	--

Aim:

To estimate the amount of	dissolved in	ml
of the given unknown solution volumetrically.	For this you are given with a standa	rd solution
of	of normality	N and
	solution as link solution.	

Short	t procedure:						
S. No.	CONTENT	TIT	RATIO	ON-I	TIT	RATIO	N-II
1	Burette solution			(link)	_		(link)
2	Pipette solution	20 ml of standard		20 ml of unknown			
3	Acid to be added						
4	Temperature		ter	nperature		ter	nperature
5	Indicator			_ indicator			_ indicator
6	End point	Appearance	of	permanent _ colour	Appearance	of	permanent _ colour
7	Equivalent weight of	f	= _	g			

Titration -I (Link

_) Vs (tandard
---------	---------

s.	Volume of standard	Burette readings	Concordant value
No.	(ml)	Initial (ml) Final (ml)	(Volume of)(ml)
1	20	0	
2	20	0	
3	20	0	

Calculation:

Volume of	(link)	solution (V_1)	=	ml

Normality _____

solution (V_2) = 20 ml Volume of standard _____

Normality of standard solution $(N_2) =$ ____N

 $V_1 \times N_1 = V_2 \times N_2$ According to normality equation:

$$N_1 = \frac{V_2 \times N_2}{V_1} = \frac{20 \times 1}{V_1} = \frac{1}{V_1}$$

Titration -II (Unknown ______) Vs (Link _____

S. Volume of unknown		Burette	Concordant value	
No.	(ml)	Initial (ml)	Final (ml)	(Volume of)(ml)
_				
1	20	0		
2	20	0		
3	20	0		

	_		
Cal	\sim 11	lati	OΠ

Volume of unknown _____ solution (V_1) = 20 ml

Normality of unknown _____ solution $(N_1) =$ ____ N

Volume of _____ (link) solution (V_2) = ____ ml

Normality _____ (link) solution (N_2) = ____ N

According to normality equation: $V_1 \times N_1 = V_2 \times N_2$

$$N_1 = \frac{V_2 \times N_2}{V_1} = \frac{}{} = \frac{}{}$$

The normality of unknown _____ solution = ____ N

Weight calculation:

The amount of _____ dissolved in 1 lit of the solution = (Normality) x (equivalent weight)

The amount of _____ dissolved

in 750 ml of the solution = $\frac{Normality \times Equivalent \ weight \times}{}$

=

= _____g

Report:

i) The normality of	(link) solution	= 1
, , , , , , , , , , , , , , , , , , , ,		,	

ii) The normality of unknown ______ solution = _____ N

iii) The amount of _____ dissolved in ___ ml of the solution = ____ g