FML

FIRST MID TERM TEST - 2024

12 - Sta

_	-	0	ta				

MATHEMATICS

PART -A

I Choose the correct answer.

10 X 1 = 10

- If $[adj (adj A) = |A|^9$, then the order of the square matrix A is 1.

Time: 1.30 Hrs.

- Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$, if B is the inverse of A, then the 2. value of x is
- The value of $\sum_{i=1}^{13} (i^n + i^{n-1})$ is 3.

- c) 1

- If $\left|z \frac{3}{z}\right| = 2$, then the least value of |z| is

- d) 5

- The principal argument of $\frac{3}{-1+i}$ is 5.
 - a) $\frac{-5\pi}{6}$
- b) $\frac{-2\pi}{3}$

- According to the rational root theorem, which number is not possible rational 6. root of $4x^7 + 2x^4 - 10^3 - 5$?
 - a) 1

- d) 5
- The polynomial $x^3 kx^2 + 9x$ has three real roots if and only if, k satisfies 7.
 - a) $|k| \leq 6$
- b) k = 0
- c) |k| > 6 d) $|k| \ge 6$
- If the system of linear equations x + y + az = b, x + 5y + 2z = 6, 8. x + 2y + 3z = 3 has infinitely many solutions then the value of a and b is b) 7,3 c) - 3, 7
- 9. If z = x + iy, then the argument θ is
 - a) $[-\pi, \pi]$ b) $(-\pi, \pi)$

- C) (-π, π]
- 10. The sum of all the n^{th} root of unity is a) 0 b) 1 c) -1 d) n

PART - B

Answer any four question. (Q.No. 16 is compulsory) II

4 X 2 = 8

- Prove that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.
- Solve the system of linear equations by matrix inversion method 2x + 5y = -2, x + 2y = -3

FML 12 கணிதம் (EM) PAGE - 1

- 13. If |z| = 2 show that $3 \le |z + 3 + 4i| \le 7$.
- Show that i) $(2+i\sqrt{3})^{10} (2-i\sqrt{3})^{10}$ is purely imaginary.
- 15. Find a polynomial equation of minimum degree with rational coefficients, having $2+\sqrt{3}i$ as a root.
- 16. Find the square root of -7 + 24i.

PART - C

Answer any four questions. (Q.No. 22 is compulsory) $4 \times 3 = 12$

- 17. Find the rank of the matrix $\begin{bmatrix} 2 & -2 & 4 & 3 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7 \end{bmatrix}$.
- 18. Test the consistency of the system of linear equations. x - y + z = -9, 2x - y + z = 4, 3x - y + z = 6, 4x - y + 2z = 7.
- 19. Show that the equation $z^3 + 2\overline{z} = 0$ has five solutions.
- 20. If $z = (\cos \theta + i \sin \theta)$, show that $z^n + \frac{1}{z^n} = 2\cos n\theta$ and $z^{n-1} = 2i \sin n\theta$.
- 21. If p and q are the roots of the equation $lx^2 + nx + n = 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0.$
- 22. If $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$, prove that $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2).$ $\mathsf{PART} - \mathsf{D}$ $\mathsf{PART} - \mathsf{D}$

- 23. a) Solve the systems of linear equations by Cramer's ru
 - $\frac{3}{4} \frac{4}{y} \frac{2}{z} 1 = 0, \quad \frac{1}{x} + \frac{2}{y} + \frac{1}{z} 2 = 0, \quad \frac{2}{x} \frac{5}{y} \frac{4}{z} + 1 = 0. \quad (OR)$
 - b) Given the complex number z = 3 + 2i, represent the complex numbers z, iz and z + iz on one argand diagram. Show that these complex numbers form the vertices of an isosceles right triangle.
- 24. a) Investigate for what values of λ and μ the system of linear equations x + 2y + z = 7, $x + y + \lambda z = \mu$, x + 3y - 5z = 5 has i) no solution ii) a unique solution iii) an infinite number of solution. (OR)
 - b) If 2 + i and 3 $\sqrt{2}$ are roots of the equation $x^{6}-13x^{5}+62x^{4}-126x^{3}+65x^{2}+127x-140=0$ find all roots.
- 25. a) If z = x + iy and $arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x 3y + 2 = 0$. (OR) b) Solve the equation $6x^4-5x^3-38x^2-5x+6=0$ if it is known that $\frac{1}{2}$ is a solution.
- 26. a) If n is a positive integer, prove that $(\sqrt{3}+i)^n + (\sqrt{3}-i)^n = 2^{n+1}\cos\frac{n\pi}{6}$ (OR) b) Test the consistency of the system of linear equations 2x+5y+7z=52, x+y+z=9, 2x+y-z=0. FML 12 கணிதம் (EM) PAGE - 2