www.Padasalai.Net

www.Trb Tnpsc.Com

Virudhunagar District 12604 12M Common First Mid Term Test - 2024 Standard 12 Marks: MATHS Time: 1.30 Hours Part - I 10×1= Answer all the questions: 1) If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$ then $9I_2 - A =$ b) $\frac{A^{-1}}{2}$ a) **A**⁻¹ c) 3 A⁻¹ d) 2A⁻¹ 2) If A = $\begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$ then λ is d) 21 c) 19 b) 14 a) 17 3) If $A^{T}A^{-1}$ is symmetric, then $A^{2} =$ d) (A⁻¹)² c) A^T b) $(A^{T})^{2}$ a) A⁻¹ 4) The rank of matrix $\begin{bmatrix} -1 & 3 \\ 4 & -7 \\ 3 & -4 \end{bmatrix}$ is c) 3 d) None of the b) 2 a) 1 5) If |z| = 1, then the value of $\frac{1+z}{1+z}$ is b) z c) $\frac{1}{7}$ d) 1 a) z 6) If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is b) 1 a) $\frac{1}{2}$ c) 2 d) 3 7) $z^2 = \overline{z}$ has solutions. c) 3 4) 4 b) 2 a) 1 8) If z is a complex number such that $z \in C R$ and $z + \frac{1}{z} \in R$ then |z| is a) 0 c) 2 b) 1 d) 3 A zero of x³ + 64 is a) () b) 4 c) 4i d) - 410) The number of positive zeros of the polynomial $\sum_{r=0}^{n} nC_r (-1)^r x^r$ a) 0 b) n c) < D d)r Part - II

Answer any four questions only:

4×2

11) If A is non-Singular matrix of odd order, Prove that |adj A| is positive

12) Solve
$$\frac{3}{x} + 2y = 12$$
, $\frac{2}{x} + 3y = 13$ by Crammer's rule

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Padasalai.Net

V12M

- 13) Simplify: $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$ into rectangular form
- 14) Find the square root of -5 -12i
- 15) If $x^2 + 2(k + 2)x + 9k = 0$ has equal roots find k.
- 16) Show that the equation x⁹ 5x⁵ + 4x⁴ + 2x² + 1 = 0 has atleast 6 imaginary solutions.

Part - III

Answer any four questions only:

- 17) Find a matrix A if adj A = $\begin{vmatrix} 7 & 7 & -7 \\ -1 & 11 & 7 \\ 11 & 5 & 7 \end{vmatrix}$
- 18) Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one women alone to finish the same work by using matrix invension method.
- 19) If $z_1 = 2 i$ and $z_2 = -4 + 3i$, find the inverse of $z_1 z_2$ and $\frac{z_1}{z_2}$
- 20) Simplify : $\left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)^{18}$
- 21) If p and q are the roots of the equation $1x^2 + nx + n \not\equiv 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{1}} = 0$
- 22) If the roots of $x^3 + px^2 + qx + r = 0$ are in G.P., Prove that $9pqr = 27r^2 + 2q^3$, where p, q, r $\neq 0$

Part - IV

swer any four questions only:

- 23) Solve $\frac{3}{x} \frac{4}{y} \frac{2}{z} 1 = 0$, $\frac{1}{x} + \frac{2}{y} + \frac{1}{z} 2 = 0$, $\frac{2}{x} \frac{5}{y} \frac{4}{z} + 1 = 0$ by Cramer's rule.
- 24) Investigate for what values of λ and μ the sytem of linear equations x + 2y + z = 7, $x + y + z = \mu$, x + 3y 5z = 5 has i) no solution ii) a unique solution iii) an infinite number of solutions.
- 25) If z_1 , z_2 and z_3 be complex numbers such that $|z_1| = |z_2| = |z_3| = r > 0$ and

$$z_1 + z_2 + z_3 \neq 0$$
 prove that $\frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3} = r$

- Solve the equation z³+27=0
- 27) Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135$, if it is known that 1 + 21 and $\sqrt{3}$ are two of its zeros.
- 28) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is knows that $\frac{1}{3}$ is a solution.

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

4×3=12

4×5=20