Virudhunagar District Common First Mid Term Test - 2024

Standard 12 MATHS

Part - I

Answer all the questions:

Time: 1.30 Hours

10×1=10

Marks: 50

1) If
$$A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$
 then $9I_2 - A =$

- b) $\frac{A^{-1}}{2}$
- c) 3 A-1

2) If A =
$$\begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$$
 be such that $\lambda A^{-1} = A$ then λ is

- c) 19

- 3) If A^TA^{-1} is symmetric, then $A^2 =$
 - a) A⁻¹
- b) (A^T)²
- c) A^T

4) The rank of matrix
$$\begin{bmatrix} -1 & 3 \\ 4 & -7 \\ 3 & -4 \end{bmatrix}$$
 is

- a) 1

- d) None of these

5) If
$$|z| = 1$$
, then the value of $\frac{1+z}{1+z}$ is

- d) 1

6) If
$$\frac{z-1}{z+1}$$
 is purely imaginary, then $|z|$ is

- c) 2
- d) 3

7)
$$z^2 = \frac{1}{z}$$
 has solutions.
a) 1 b) 2

- c) 3
- 4) 4

8) If z is a complex number such that
$$z \in C\setminus R$$
 and $z + \frac{1}{z} \in R$ then $|z|$ is

- c) 2

- 9) A zero of $x^3 + 64$ is
 - a) 0
- b) 4
- c) 4i

10) The number of positive zeros of the polynomial
$$\sum_{r=0}^{n} nC_r (-1)^r x^r$$

- a) 0
- b) n
- c) < n
- d) r

Part - II

 $4 \times 2 = 8$

Answer any four questions only:

- 11) If A is non-Singular matrix of odd order, Prove that [adj A] is positive
- 12) Solve $\frac{3}{y} + 2y = 12$, $\frac{2}{y} + 3y = 13$ by Crammer's rule

2

V12M

- 13) Simplify: $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$ into rectangular form
- 14) Find the square root of -5 -12i
- 15) If $x^2 + 2(k + 2)x + 9k = 0$ has equal roots find k.
- 16) Show that the equation $x^9 5x^5 + 4x^4 + 2x^2 + 1 = 0$ has atleast 6 imaginary solutions.

Part - III

Answer any four questions only:

 $4 \times 3 = 12$

- 17) Find a matrix A if adj A = $\begin{bmatrix} 7 & 7 & -7 \\ -1 & 11 & 7 \\ 11 & 5 & 7 \end{bmatrix}$
- 18) Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one women alone to finish the same work by using matrix invension method.
- 19) If $z_1 = 2 i$ and $z_2 = -4 + 3i$, find the inverse of $z_1 z_2$ and $\frac{z_1}{z_2}$
- 20) Simplify: $\left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)^{18}$
- 21) If p and q are the roots of the equation $1x^2 + nx + n \ge 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{r}} + \sqrt{\frac{n}{l}} = 0$
- 22) If the roots of $x^3 + px^2 + qx + r = 0$ are in G.P., Prove that $9pqr = 27r^2 + 2q^3$, where p, q, $r \neq 0$

Part - IV

Answer any four questions only:

4×5=20

- 23) Solve $\frac{3}{x} \frac{4}{y} \frac{2}{z} 1 = 0$, $\frac{1}{x} + \frac{2}{y} + \frac{1}{z} 2 = 0$, $\frac{2}{x} \frac{5}{y} \frac{4}{z} + 1 \ge 0$ by Cramer's rule.
- 24) Investigate for what values of λ and μ the sytem of linear equations x + 2y + z = 7, $x + y + \lambda z = \mu$, x + 3y 5z = 5 has i) no solution ii) a unique solution iii) an infinite number of solutions.
- 25) If z_1 , z_2 and z_3 be complex numbers such that $|z_1| = |z_2| = |z_3| = r > 0$ and $|z_1| + |z_2| + |z_3| \neq 0$ prove that $\left| \frac{|z_1|z_2 + |z_2|z_3 + |z_3|}{|z_1| + |z_2|} \right| = r$
- 26) Solve the equation $z^3+27=0$
- 27) Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135$, if it is known that 1 + 2i and $\sqrt{3}$ are two of its zeros.
- 28) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ If it is knows that $\frac{1}{3}$ is a solution.