

JAYAM TUITION CENTRE.

STD: 12 SUB: MATHS MARKS: 25

VETTAVALAM. TIRUVANNAMALAI-DT.

EXERCISE TEST - 7 (EX:3-1,2)

2 Mark Questions

5 X 2 = 10

- 1. If α and β are the roots of the quadratic equation $17x^2 + 43x 73 = 0$, construct a quadratic equation whose roots are $\alpha + 2$ and $\beta + 2$.
- 2. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients
- 3. If p is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$, in terms of p.
- 4. Find a polynomial equation of minimum degree with rational coefficients, having $2 \sqrt{3}$ as a root.
- 5. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq'-p'q}{q-q'}$ or $\frac{q-q'}{p'-p}$.

5 Mark Questions

3 X 5 = 15

- 6. If α , β , γ and δ are the roots of the polynomial equation $2x^4 + 5x^3 7x^2 + 8 = 0$, find a quadratic equation with integer coefficients whose roots are $\alpha + \beta + \gamma + \delta$ and $\alpha\beta\gamma\delta$.
- 7. If p and q are the roots of the equation $lx^2 + nx + n = 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0.$
- 8. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root.