

FORMULAE	EXPLANATION OF THE TERMS INVOLVED	SI UNIT
HORIZONTAL COMPONENT -Earth's magnetic field $B_H = B_E \cos I$	B_E = net Earth's magnetic field at any point on the surface of the Earth B_H = horizontal component of Earth's magnetic field	Magnetic field B = Tesla (T) CGS unit: GAUSS
VEDTICAL COMPONENT E III	At magnetic equator $B_H = B_E$ At magnetic poles $B_H = 0$	1 GAUSS= 10 ⁻⁴ TESLA
<u>VERTICAL COMPONENT</u> - Earth's magnetic field	B_E = net Earth's magnetic field at any point on the surface of the Earth B_H = vertical component of Earth's magnetic field At magnetic equator B_V = 0	
$B_V = B_E \sin I$	At magnetic equator $B_V = 0$ At magnetic poles $B_V = B_E$	
$\frac{\text{ANGLE OF DIP}}{\text{tan I} = \frac{Bh}{Bv}}$	B_H =Horizontal component of magnetic field B_V =Vertical component of magnetic field tan I =angle of dip	Magnetic field B = Tesla (T) 1 GAUSS=10 ⁻⁴ TESLA
$\vec{p}_{m} = q_{m}\vec{d}$	Pm= magnetic dipole moment q_m = pole strength of the magnetic pole d= distance between south pole to north pole = $2l$	Ampere per metre square Am ²
$\frac{\text{MAGNETIC FIELD}}{\vec{B} = \frac{1}{q_m} \vec{F}}$	B=magnetic field q _m =pole strength F= force experienced by the bar magnet	NA ⁻¹ m ⁻¹
RATIO OF MAGNETIC LENGTH AND GEOMETRICAL LENGTH $ \frac{Magnetic \ length}{Geometrical \ length} = \frac{5}{6} = 0.833 $	$\frac{Magnetic \ length}{Geometrical \ length} = \frac{5}{6} = 0.833$	no unit
MAGNETIC FLUX I) FOR UNIFORM FIELD $\Phi_B = \vec{B}.\vec{A} = BA\cos\theta = B_{\perp}A$ • SCALAR QUANTITY • M L ² T ⁻² A ⁻¹	$φ_B$ = magnetic flux B=magnetic field A=area vector ; $θ$ = angle between $ρ$ B and A II) FOR NON UNIFORM FIELD $Φ_B = \int \vec{B} . d \vec{A}$	SI:weber (Wb) CGS:Maxw ell 1 weber = 108 maxwell
MAGNETIC FLUX DENSITY No of magnetic field lines Unit Area	The magnetic flux density is defined as the number of magnetic field lines crossing per unit area kept normal to the direction of lines of force.	Wb m ⁻² or tesla (T)

Chaps: Magnetism & Current Formulae Sheet In Class 12

Chaps: Maynetisin	d current Formulae meet In	Class 12
COULOMB'S INVERSE SQUARE LAW OF MAGNETISM $F = k \frac{q_{m_A} q_{m_B}}{r^2}$	F= force between two magnetic poles $r = distance \ between \ two \ magnetic \ poles$ $k = \frac{\mu_{\circ}}{4\pi} \approx 10^{-7} \ H \ m^{-1}$; $\mu_{o} = absolute \ permeability \ of$ free space ; $q_{m} = pole \ strength$	force: newton (N) k: Henry per metre Hm ⁻¹
MAGNETIC FIELD AT A POINT ALONG THE AXIAL LINE OF THE MAGNETIC DIPOLE (BAR MAGNET) $\vec{B}_{axial} = \frac{\mu_{\circ}}{4\pi} \frac{2}{r^{3}} \vec{p}_{m}$	Pm= magnetic dipole moment r=distance from the centre of the magnet to the point C. B=magnetic field	Magnetic field B = Tesla (T)
MAGNETIC FIELD AT A POINT ALONG THE EQUATORIAL LINE DUE TO A MAGNETIC DIPOLE (BAR MAGNET) $\vec{B}_{equatorial} = -\frac{\mu_{\circ}}{4\pi} \frac{\vec{p}_{m}}{r^{3}}$	Pm= magnetic dipole moment r=distance from the centre of the magnet to the point C. B=magnetic field	Magnetic field B = Tesla (T)
TORQUE ON A BAR MAGNET IN UNIFORM MAGNETIC FIELD $\tau = p_m B \sin \theta$	Pm= magnetic dipole moment B=magnetic field	torque: newton metre Nm
POTENTIAL ENERGY IN BAR MAGNET $U = -\vec{p}_m \cdot \vec{B}$	U=potential energy Pm= magnetic dipole moment B=magnetic field	(J) JOULE
MAGNETISING FIELD	$\vec{H}_{\text{= magnetising field}}$	Am ⁻¹
$\overrightarrow{M} = \frac{\text{Magnetic moment}}{\text{Volume}} = \frac{\overrightarrow{p}_m}{V}$	M= intensity of magnetization Pm= magnetic dipole moment v=volume	Am ⁻¹
MAGNETIC INDUCTION OR TOTAL MAGNETIC FIELD $\vec{B} = \vec{B}_o + \vec{B}_m = \mu_o \vec{H} + \mu_o \vec{M}$ $\vec{B} = \vec{B}_o + \vec{B}_m = \mu_o (\vec{H} + \vec{M})$	definition & explanation of the terms involved:- The magnetic induction (total magnetic pfield) inside the specimen B is equal to pthe sum of the magnetic field Bo produced in vacuum due to the magnetising field pand the magnetic field Bm due to the induced magnetism of the substance.	tesla
MAGNETIC SUSCEPTIBILITY $\chi_m = \frac{\left \vec{M} \right }{\left \vec{H} \right }$	X _M =magnetic susceptibility M= intensity of magnetization H=magnetising field	X _m = no unit M = Am ⁻¹ H = Am ⁻¹

3 Chaps: Magnetism	& Current Formulae Sheet Tnpsc.Con	class 12
CURIE'S LAW $\chi_m \propto \frac{1}{T} \text{ or } \chi_m = \frac{C}{T}$	C = Curie constant T =temperature X_M =magnetic susceptibility	X _m = no unit
$\chi_m = \frac{C}{T - T_C}$	$X_{M=}$ magnetic susceptibility $C = Curie \ constant$ $T_{C} = Curie \ temperature$ T=temperature	X _m = no unit
BIOT-SAVART LAW $d\vec{B} = \frac{\mu_{\circ}}{4\pi} \frac{I d\vec{l} \times \hat{r}}{r^{2}}$ $d\vec{B} = \frac{\mu_{0}}{4\pi} \frac{I dl \sin \theta}{r^{2}} \hat{n}$	r=distance between the point P and dl dl =magnitude of the length element I=current; B=magnetic field	Magnetic field B = Tesla (T)
$\vec{B} = \frac{\mu_0 I}{2\pi a} \hat{n}$	μ ₀ = absolute permeability of free space B=magnetic field I=current; a=dist. b/w straight conductor & the chosen point 'P'	Magnetic field B = Tesla (T)

NOTES:-

$$\vec{B} = \frac{\mu_0 I}{2} \frac{R^2}{\left(R^2 + z^2\right)^{3/2}} \hat{k}$$

(i) If the circular coil contains N turns, then the magnetic field is

$$\vec{B} = \frac{\mu_0 NI}{2} \frac{R^2}{\left(R^2 + z^2\right)^{3/2}} \hat{k}$$

(ii) The magnetic field at the centre of the coil is

$$\vec{B} = \frac{\mu_0 NI}{2R} \hat{k} \qquad \text{since } z = 0$$

μ_o= absolute permeability of free space B=magnetic field i=current r and z= refer from diagram

Magnetic field B = Tesla (T)

TANGENT LAW

$$B_H = \frac{\mu_{\circ} N}{2R} \frac{I}{\tan \theta}$$

N=no of turns R=radius of the coil I=current tan00=angle of deflection produced

Magnetic field B = Tesla (T)

MAGNETIC DIPOLE MOMENT IN **CURRENT LOOP AS A MAGNETIC DIPOLE**

$$\vec{p}_m = I \vec{A}$$

pm = magnetic dipole moment

<i>A</i> =	area	of the	circular	loop	$A = \pi r^2$
I=cı	ırren	t			

Ampere per metre square Am² Am²

MAGNETIC DIPOLE MOMENT OF REVOLVING ELECTRON

$$\mu_L = n \times 9.27 \times 10^{-24} \,\mathrm{Am}^2$$

 μ_L =Magnetic dipole moment n=principal quantum no. (no of the orbit)

AMPÈRE'S CIRCUITAL LAW

$$\oint\limits_{C} \vec{B}.\overrightarrow{dl} = \mu_{\circ}I_{\textit{enclosed}}$$

B=magnetic field μ₀= absolute permeability of free space dl=closed loop I=current in enclosed area

 $N/A^2 = NA^{-2}$

Chap3: Magnetis
MAGNETIC FIELD DUE TO THE
CURRENT CARRYING WIRE OF
INFINITE LENGTH USING
AMPÈRE'S LAW
$\vec{B} = \frac{\mu_{\circ}I}{2\pi r}\hat{n}$
MAGNETIC FIELD DUE TO A

B=magnetic field
μ_0 = absolute permeability of free space
I=current
r= Radius of the Ampèrian loop

Magnetic
field B =
Tesla (T)

MAGNETIC FIELD DUE TO A
LONG CURRENT CARRYING
SOLENOID

$$B = \mu_0 \frac{nLI}{L} = \mu_0 nI$$

n=no of turns per unit length=N/L L=length of the solenoid

I=current

Magnetic field B = Tesla (T)

MAGNETIC FIELD - TOROID 1.INSIDE THE TOROID

$$B_s = \mu_0 nI$$

2.0PEN SPACE INTERIOR TO THE TOROID

$$\vec{B}_P = 0$$

3.0PEN SPACE EXTERIOR TO THE TOROID

$$\vec{B}_Q = 0$$

 μ_0 = absolute permeability of free space

$$n = \frac{N}{2\pi r_2},$$

n=no of turns per unit length N=total no of turns in the toroid

Magnetic field B = Tesla (T)

LORENTZ FORCE

$$\vec{F} = q \left(\vec{v} \times \vec{B} \right)$$

$$F_{\scriptscriptstyle m}=q\nu B\sin\theta$$

F=Lorentz force

q=charge

v=velocity of the charge in the magnetic field B

B= magnetic filed

Newton

TESLA

1
$$T = \frac{1 \text{ N s}}{\text{C m}} = 1 \frac{\text{N}}{\text{A m}} = 1 \text{ N A}^{-1} \text{m}^{-1}$$

The strength of the magnetic field is one tesla if a unit charge moving normal to the magnetic field with unit velocity experiences unit force.

 $NA^{-1}m^{-1}$

MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD TIME PERIOD:

$$T = \frac{2\pi m}{qB}$$

ANGULAR FREQUENCY

$$\omega = 2\pi f = \frac{q}{m}B$$

m=mass q=charge B=Magnetic field T=Time period f=frequency w=angular frequency

$$f = \frac{qB}{2\pi m}$$
FREQUENCY:

time: seconds (s) frequency: hertz(Hz) **Angular** frequency radian per seconds(ra $d s^{-1}$

MOTION OF A CHARGED PARTICLE UNDER CROSSED **ELECTRIC AND MAGNETIC** FIELD (VELOCITY SELECTOR)

$$v_{\circ} = \frac{E}{B}$$

v=velocity E=electric field B=magnetic field

ms⁻¹

CYCLOTRON

$$\mathbf{f}_{\rm osc} = \frac{qB}{2\pi m}$$

$$T = \frac{2\pi m}{qB}$$

$$KE = \frac{1}{2}mv^2 = \boxed{\frac{q^2B^2r^2}{2m}}$$

f=frequency T=Time period KE=kinetic energy q=charge B=magnetic field m=mass r=radius

time: seconds (s) frequency: hertz(Hz) KE= joule(J)

FORCE ON A CURRENT CARRYING CONDUCTOR PLACED IN A MAGNETIC FIELD

$$\vec{F}_{total} = (\vec{l} \vec{l} \times \vec{B})$$

In magnitude,

$$F_{\text{total}} = BIl\sin\theta$$

I=current

l=length of straight currnt carrying conductor B=magnetic field

Newton (N)

FORCE BETWEEN TWO LONG PARALLEL CURRENT CARRYING CONDUCTORS

FORCE ON CONDUCTOR A

$$\frac{\vec{F}}{l} = -\frac{\mu_{\circ} I_1 I_2}{2\pi r} \,\hat{j}$$

FORCE ON CONDUCTOR B

$$\frac{\vec{F}}{l} = \frac{\mu_{\circ} I_1 I_2}{2\pi r} \hat{j}$$

 I_1 and I_2 = electric currents passing through the conductors A and B in same direction r = conductors separated by a distance r μ_0 = absolute permeability of free space

force = newton(N)

TORQUE ON A CURRENT LOOP PLACED IN A MAGNETIC FIELD

 $\tau = NIAB \sin \theta$

(a) When θ = 90° or the plane of the loop is parallel to B, τ is maximum.

 $\tau_{max} = IAB$

(b) When θ = 0°/180° or the plane of the loop is perpendicular to B, the τ is 0.

N=no of turns

I=Current flowing in the loop

A=Area

B=magnetic field

torque: newton metre Nm

CURRENT IN A MOVING COIL GALVANOMETER

 $I = G \Theta$

I=Current

G=galvanometer constant

 ϑ =amount of twist

Current= Ampere (A)

$$V_{s} = \frac{\theta}{V}$$

$$V_{S} = \frac{\theta}{IR_{g}} = \frac{NAB}{KR_{g}}$$
$$V_{S} = \frac{1}{GR_{g}} = \frac{I_{S}}{R_{g}}$$

The deflection produced per unit voltage applied across galvanometer.

rad V⁻¹

GALVANOMETER TO AN AMMETER

$$I_g = \frac{S}{S + R_g}I$$

R_a=resistance of ammeter R_g=galvanometer's resistance S=shunt resistance through the path

In order to increase the range of an ammeter n times, the value of shunt resistance to be connected in parallel is

$$S = \frac{R_g}{n-1}$$

GALVANOMETER TO A

$$VOLTMETER$$

$$I_g = \frac{V}{R_g + R_h}$$

$$\Rightarrow R_h = \frac{V}{I_g} - R_g$$

R_H=Resistance value connected in series with the galvanometer I_G=Current(galvanometer)

R_g=galvanometer's resistance

In order to increase the range of voltmeter *n* times the value of resistance to be connected in series $R_h = (n\text{-}1)\;R_g$ with galvanometer is

> With Regards, \$\$ PRITHVI, XII \$TD, **PRIT-EDUCATION.**