Maximum Marks: 100

1

10TH MODEL PUBLIC EXAMINATION QUESTION PAPER – (2024 – 2025) KEY ANSWER - MARKING SCHEME

GENERAL INSTRUCTIONS:

- 1. If a student has given any answer which is different from one given in this marking scheme, but arrives with correct answer, should be given full credit with appropriate distribution.
- 2. In section I, award 1 mark for the correct option code and the corresponding answer. If one of them (Option or Answer) is wrong then award **ZERO** mark only.
- 3. In **PART II, PART III & PART IV** if the solution is correct then award full mark directly. The stage mark is essential only if the part of the solution is incorrect.
- 4. 4. If a particular stage is wrong and if the student writes the appropriate formula, then suitable mark which is attached with that stage should be awarded for the formula. Mark should not be deducted for not writing the formula, if the student arrives at the correct answer.

	PART – I						
Answer	all the que	estions	14x1=14				
Q. No	Option code	Key Answers	Marks Allotted				
1.	(c)	many - one function	1				
2.	(c)	3	1				
3.	(a)	1	1				
4.	(b)	14280	1				
5.	(b)	The slope is 0.5 and the y intercept is 2.6	1				
6.	(d)	row matrix	1				
7.	(a)	(x-5) (x-3)	1				
8.	(a)	9	1				
9.	(c)	x + y = 3; 3x + y = 7	1				
10.	(d)	$\frac{1}{25}$	1				
11.	(b)	$\frac{7}{11}$	1				
12.	(b)	2	1				
13.	(d)	P(A) > 1	1				
14.	(a)	$\frac{n(n+1)}{2}$	1				

Created by: Mr. Sudhan R DMO., BE.,

PART – II					
Answer	any 10 questions. Question No. 28 is compulsory.		14x1=14		
Q. No	Answers	Step Marks	Total Marks		
15	No. of completed rows $= 25$.	1	2		
15.	Left over flower pots = 7 pots.	1	2		
16.	$egin{array}{llllllllllllllllllllllllllllllllllll$	1 1	2		
	3 + k, 18 - k, 5k + 1 are in AP				
	$t_2 - t_1 = t_3 - t_2$ (common difference is same)				
	18 - k - (3 + k) = 5k + 1 - (18 - k)	1			
	18 - k - 3 - k = 5k + 1 - 18 + k				
17.	15 - 2k = 6k - 17		2		
	32 = 8k				
	$k = \frac{32}{8} = 4.$				
	The value of $k = 4$	1			
	$r = \frac{-1/2}{1/4} = \frac{-1}{2} \times \frac{4}{1} = -2$				
	$a = \frac{1}{4}$				
18.	$t_n = ar^{n-1}$		2		
	$t_{10} = \frac{1}{4} \left(-2 \right)^{10 - 1}$	1			
	$t_{10} = rac{1}{2^2} imes (-2)^9$				
	$t_{10} = -2^7$	1			
19.	$x=3, \ y=12, \ z=3$		2		
	Let PQ be the height of the tower.				
	Take $PQ = h$ and QR is the distance between the tower and the point R. In the right angled ΔPQR , $\angle PRQ = 30^{\circ}$				
	$ton \theta = PQ$	1			
20.	$\tan b = \frac{1}{QR}$	Ť	2		
	$\tan 30^\circ = \frac{n}{48} \Rightarrow \frac{1}{\sqrt{3}} = \frac{n}{48} \Rightarrow h = 16\sqrt{3}$				
	Therefore, the height of the tower is $16\sqrt{3}$ m $R^{30^{\circ}}$	1			

 $\mathbf{2}$

Created by: Mr. Sudhan R DMO., BE.,

www.Trb Tnpsc.Com

3

	Slope of line joining $(\sin\theta, -\cos\theta)$ $(-\sin\theta, \cos\theta)$		
	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\cos \theta + \cos \theta}{-\sin \theta - \sin \theta}$	1	
21.	$m = \frac{2\cos\theta}{-2\sin\theta}$		2
	$m = - \cot \theta$	1	
22.	A B B A 45° C (19, 3) Slope of AC = $m = tan 45^{\circ} = 1$ \therefore Equation of AC whose slope 1 and passing through C (19, 3) is $y - y_{1} = m (x - x)$ y - 3 = 1 (x - 19)	1	2
0.2	x - y - 16 = 0.	1	
23.	$m = 1 \Rightarrow tan \theta = 1$ since $\theta = 45^{\circ}$		2
24.	$LHS = \frac{\cot A - \cos A}{\cot A + \cos A}$ $= \frac{\cos A}{\sin A} - \cos A$ $= \frac{\cos A \left[\frac{1}{\sin A} + \cos A\right]}{\cos A \left[\frac{1}{\sin A} + 1\right]}$ $= \frac{\csc A - 1}{\csc A + 1}$ $LHS = RHS$	1	2
	Ratio of the volumes of two cones $=\frac{1}{3}\pi r^2 h_1:\frac{1}{3}\pi r^2 h_2$	1	
25.	= h1 : h2 = 3600 : 5040 = 360 : 504 = 40 : 56		2
	= 5:7	1	

Created by: Mr. Sudhan R DMO., BE.,

	$t_n = a + (n-1)d$	1	
26.	The 19 th term is		
	$t_{19} = -11 + 18(-4) \Rightarrow -11 - 72$		2
	$\mathrm{t}_{19}=-\ 83$	1	
	$\tan \theta = \frac{\text{opposite side}}{\text{Adjacent side}} = \frac{4}{5}$	1	
27.	an heta = 0.8		2
	$\tan \theta = 38.7^{\circ} (:: \tan 38.7^{\circ} = 0.8011)$		
	$ m \angle BAC = 38.7^{\circ}$	1	
28.	(0, 1) A(-1, 3) Midpoint of AB = $\left(\frac{-1+1}{2}, \frac{3-1}{2}\right) = (0, 1)$	1	
	$\frac{1}{B(1,-1)} = C(5, 1)$ Length of the median through the vertex C $\sqrt{(1-1)^2 + (1-1)^2} = \sqrt{(1-1)^2 + (1-1)^2}$		2
	$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(5 - 0)^2 + (1 - 1)^2}$ $= \sqrt{5^2} = 5$ units.	1	
	PART – III		
Answer	any 10 questions. Question No. 42 is compulsory.		10x5=50
Q. No	Answers	Step Marks	Total Marks
	$f: \mathbb{N} \to \mathbb{N}$ be defined by $f(x) = 3x + 2$		
	i) image of 1, 2, 3		
29.	when $x = 1$, $f(1) = 3(1) + 2 = 5$		
	when $x = 2$, f (2) = 3 (2) + 2 = 8	2	5
	when $x = 3$, $f(3) = 3(3) + 2 = 11$		
	The image of 1, 2, 3 are 5, 8, 11 respectively.		

Created by: Mr. Sudhan R DMO., BE.,

	ii) pre image of 29, 53.		
	$f\left(x\right)=29$		
	3x+2=29		
	3x = 27		
	x = 9	1	
	$f\left(x ight)=53$		
	3x + 2 = 53		
	3x = 51		
	x = 17	_1	
	The pre image of 29, 53 is 9, 17.		
	iii) Identify the type of function:		
	f is one - one and into function	1	
	The size of 15 square colour papers is 10cm, 11cm, 12cm, 24cm.		
	The area of square $= a^2$		
	Using the formula for the sum of squares of integers:		
	$1^2+2^2+\dots+n^2=\frac{n(n+1)(2n+1)}{6}$	1	
30.	The colour paper decorated area $= 10^2 + 11^2 + 12^2 + \dots + 24^2$	1	5
	$=(1^2+2^2+\cdots+24^2)-(1^2+2^2+3^2+\cdots+9^2)$	Ŧ	
	$=\frac{24(24+1)(24{\times}2+1)}{6}-\frac{9(9+1)(2{\times}9+1)}{6}$	2	
	=4(25)(49)-3(5)(19)		
	$=4900-285=4615~cm^2$	1	
	$f \circ g(x) = f(g(x)) = f(x^2) = x^2 - 4$	1	
	Then $(f \circ g) \circ h(x) = f \circ g(h(x))$		
	$=f\circ \ g(3x-5)$		
	$=\left(3x-5\right) ^{2}-4$	1	
0.1	$=9x^2-30x+25-4$		
31.	$=9x^2-30x+21$ (1)		5
	$(g \circ h)x = g(h(x))$		
	$= g(3x-5) = \left(3x-5 ight)^2$		
	$=9x^2-30x+25$	1	
	$f \circ (g \circ h)(x) = f(9x^2 - 30x + 25)$		

Created by: Mr. Sudhan R DMO., BE.,

www.Trb Tnpsc.Com

6

	$=9x^2-30x+25-4$		
	$=9x^2-30x+21$ (2)	1	
	From (1) and (2), $(f \circ g) \circ h = f \circ (g \circ h)$	1	
	Given geometric series $3 + 6 + 12 + \dots + 1536$		
	a = 3, r = 2	1	
	$\mathrm{t}_n=1536$		
	$ar^{n-1} = 1536$		
	$3(2)^{n-1} = 1536$ [$\therefore t_{n} = ar^{n-1}$]	1	
	$3(2)^{n-1} = 3(2)^9$		
32.	$2^{n-1} = 2^9$		5
	n = 10	1	
	$S_{n} = \frac{a(r^{n}-1)}{2}$		
	r = r - 1		
	$S_{10} = \frac{3(2^{10} - 1)}{10 - 1}$		
	$= 3(1023) \Rightarrow 3069$	2	
	$(2x \ 2) + 2(8 \ 5x) - 2(x^2 + 8 \ 24)$		
	$ x \left(\begin{array}{cc} 3 & x \end{array} \right) + 2 \left(\begin{array}{cc} 4 & 4x \end{array} \right) = 2 \left(\begin{array}{cc} 10 & 6x \end{array} \right) $		
	$\begin{pmatrix} 2x^2 + 16 & 12x \end{pmatrix} = \begin{pmatrix} 2x^2 + 16 & 48 \end{pmatrix}$		
	$(3x + 8 x^2 + 8x)$ (20 12x)		
	$\begin{pmatrix} 2x^2 & 2x \end{pmatrix} + \begin{pmatrix} 16 & 10x \end{pmatrix} - \begin{pmatrix} 2x^2 + 16 & 48 \end{pmatrix}$		
	$\begin{pmatrix} 3x & x^2 \end{pmatrix}$ $+$ $\begin{pmatrix} 8 & 8x \end{pmatrix}$ $ \begin{pmatrix} 20 & 12x \end{pmatrix}$	2	
33.	$12x = 48 \Rightarrow x = 4$	1	5
	$3x + 8 = 20 \Rightarrow 3x = 12$		
	$\Rightarrow r = 4$		
	$\therefore r = 4$	1	
	$x^2 + 8x = 12x$	1	
	$\Rightarrow x^2 - 4x = 0$		
	$\Rightarrow x(x-4) = 0, x = 0, x = 4$	1	
	Compare $r^2 + 2r - 2 = 0$ with the standard form $ar^2 + hr + c^2 = 0$	-	
	a = 1 $b = 2$ $c = -2$	1	
34.	u = 1, v = 2, v = 2	L L	5
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1	

Created by: Mr. Sudhan R DMO., BE.,

_	
1	

	substituting the values of a, b and c in the formula we get,		
	$x = \frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)} = \frac{-2 \pm \sqrt{12}}{2} = -1 \pm \sqrt{3}$	2	
	Therefore, $x = -1 + \sqrt{3}, -1 - \sqrt{3}$	1	
	$\Delta \ { m AQC} \ { m is a \ right \ triangle \ at \ C}, \ { m AQ}^2 = { m AC}^2 + \ { m QC}^2 \qquad(1)$		
	Δ BPC is a right triangle at C, $BP^2 = BC^2 + CP^2$ (2)	2	
	Δ ABC is a right triangle at C, $AB^2 = AC^2 + BC^2$ (3)		
	From (1) and (2), $AQ^2 + BP^2 = AC^2 + QC^2 + BC^2 + CP^2$	1	
35.	$4(AC^{2} + BP^{2}) = 4AC^{2} + 4QD^{2} + 4BC^{2} + 4CP^{2}$		5
	$= 4AC^{2} + (2QD)^{2} + 4BC^{2} + (2CP)^{2}$		
	$= 4AC^{2} + BC^{2} + 4BC^{2} + AC^{2}$ (Since P and Q are mid points)		
	$= 5(AC^2 + BC^2)$ (From equation (3))	1	
	$4(\mathrm{AQ}^2 + \mathrm{BP}^2) = 5\mathrm{AB}^2$	1	
	$\mathbf{A} = \{\mathbf{x} \in \mathbf{W} \mid \mathbf{x} < 2\} \Rightarrow \mathbf{A} = \{0, 1\}$	1	
	$B = \{x \in N \ / \ 1 < x \le 4\} \Rightarrow B = \{2, 3, 4\}$	1	
	$C = \{3, 5\}$		
	To Prove A × (B U C) = (A × B) U (A × C)		
	$BUC = \{2, 3, 4, 5\}$		
36.	$A \times (B \cup C) = \{(0,2), (0,3), (0,4), (0,5), (1,2), (1,3), (1,4), (1,5)\}(1)$	1	5
	$A \times B = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}$		
	$\mathrm{A} imes \mathrm{C} = \{(0,3),(0,5),(1,3),(1,5)\}$		
	$\therefore (A \times B) \cup (A \times C) = \{(0,2), (0,3), (0,4), (0,5), (1,2), (0,5), (1,2), (0,5), (1,2), (0,5)$		
	$(1,3), (1,4), (1,5)\}$ (2)	2	
	\therefore (1) = (2) Hence Proved.		
	AB = Tower = 60m		
	CD = lamp post = h		
	AE = x		
	CD = BE = 60 - x = h D 38° 60	1	
37.	In right angle $\triangle AEC$		
	$\tan 38^\circ = \frac{AE}{DE} = 0.7813 \qquad \mathbf{a} \qquad \mathbf{c} \qquad \mathbf{B}$		
	$DE = \frac{x}{0.7813} \dots \dots$		
	In right angle Δ ABC		

Created by: Mr. Sudhan R DMO., BE.,

	$ heta=60^\circ$		
	$\tan 60^\circ = \frac{AB}{BC} = \sqrt{3}$	1	
	$\frac{60}{\mathrm{BC}} = \sqrt{3}$		
	$\mathrm{BC}=rac{60}{\sqrt{3}}$		
	$\mathrm{BC}=rac{60}{\sqrt{3}} imesrac{\sqrt{3}}{\sqrt{3}}$		
	$BC = \frac{60\sqrt{3}}{3}$		5
	$\mathrm{BC}=20\sqrt{3}$		
	BC = DE		
	$\therefore DE = 20\sqrt{3} \dots (2)$	1	
	From (1) & (2)		
	$BC = \frac{x}{0.7813} = 20\sqrt{3}$		
	$x = 20\sqrt{3} \times 0.7813$		
	$x = 20 \times 1.732 \times 0.7813$		
	x = 27.064m	1	
	Height of the lamp post $h = 60 - x$		
	= 60 - 27.064		
	h = 32.93m	1	
	C, D – Positions of the two ships $A_{200} \times 60^{\circ}$		
	Height of the Light House $AB = h m$		
	In $\triangle ABC \tan \theta = \frac{opposite \ side}{A \ djacent \ side}$ h 60°	1	
	$\tan 30^\circ = \frac{h}{x} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x}$		
38.	$x = h\sqrt{3}$ [Where BC = x]	1	5
	In $\triangle ABD$		
	$ \tan 30^\circ = rac{h}{x} \qquad [\text{ Where BD} = y] $		
	$\sqrt{3} = rac{h}{y} \Rightarrow y = rac{h}{\sqrt{3}}$	1	
	Distance between two ships $= (x + y) = h\sqrt{3} + \frac{h}{\sqrt{3}} \Rightarrow d = \frac{4h}{\sqrt{3}}m$	2	

Created by: Mr. Sudhan R DMO., BE.,

Number of guavas (x_i) , N = 7 Number of oranges (y_i) , N = 7 9 3 1 1 $\mathbf{5}$ 253 9 7 496 36 4 16 9 81 1/29 $\mathbf{2}$ 4 3 5256 36 4 16 $\mathbf{2}$ 4 $\sum x_i^2 = 136$ $\sum y_i = 30$ $\sum y_i^2 = 184$ $\sum x_i = 30$ Mean (\overline{x}) : $\bar{x} = \frac{\sum x_i}{N} = \frac{30}{7} = 4.29$ 1/2Standard deviation (σ_1) : $\sigma_1 = \sqrt{\frac{\sum x_i^2}{N} - \frac{\left(\sum x_i\right)^2}{N}}$ $\sigma_1 = \sqrt{\frac{136}{7} - \frac{30^2}{7}} = \sqrt{(19.43) - (18.40)} \approx 1.01$ 39. $\mathbf{5}$ 1/2Coefficient of variation for guavas: C. V₁ = $\frac{\sigma_1}{\bar{x}} \times 100\% = \frac{1.01}{4.29} \times 100\% = 23.54\%$ 1 Mean (\overline{y}) : $\overline{y} = \frac{\sum y_i}{N} = \frac{30}{7} = 4.29$ 1/2Standard deviation (σ_2) : $\sigma_2 = \sqrt{\frac{\sum y_i^2}{N} - \frac{\left(\sum y_i\right)^2}{N}}$ $\sigma_2 = \sqrt{\frac{184}{7} - \frac{30^2}{7}} = \sqrt{(26.29) - (18.40)} \approx 2.81$ 1/2Coefficient of variation for oranges: C. $V_2 = \frac{\sigma_2}{\overline{u}} \times 100\% = \frac{2.81}{4.29} \times 100\% = 65.50\%$ 1

Created by: Mr. Sudhan R DMO., BE.,

www.Trb Tnpsc.Com

10

	C . V ₁ = 23.54%, C . V ₂ = 65.50%. Since, C.V1 < C.V2, we can conclude	1/2	
	that the consumption of guava is more consistent than orange.		
	Let r_1 be the radius of the lower end of the frustum and r_2 be the		
	radius of the upper end of the frustum.		
	Let h and l be the height and slant height of the frustum respectively		
	Civen that $n = 1$ on $n = 2.5$ on $h = 6$ on and then the electronic		
	Given that, $\tau_1 = 1$ cm, $\tau_2 = 2.5$ cm, $\pi = 0$ cm and then the slant		
	height of the frustum is given by		
	$l = \sqrt{h^2 + (r_1 - r_2)^2} \dots $		
	Now put all the values of r_1 , r_2 , h in the equation (1), we get	Ø	
	$l = \sqrt{36 + (2.5 - 1)^2}$		
	$l = \sqrt{36 + (1.5)^2}$		
	$l=\sqrt{36+2.25}$		
	$l = \sqrt{38.25}$		
40.	l = 6.18	2	5
	Hence the slant height of the frustum is 6 cm.		
	External surface area of shuttle $cock = Curved$ surface area of the		
	frustum + Surface area of the hemisphere		
	External surface area of shuttlecock = $\pi(r_1 + r_2)l + 2\pi r_1^2$ (2)		
	Now put all the values r_1 , r_2 , l in the equation (2), we get		
	External surface area of shuttlecock		
	$= \{ \pi(1+2.5) imes 6.18 + 2 imes \pi imes (1)^2 \}$ (3)	1	
	Also put the value of $\pi = 3.14$ in the equation (3), we get		
	External surface area of shuttlecock = $\{3.14 \times 3.5 \times 6.18 + 2 \times 3.14\}$		
	$=\{67.92+6.28\}$		
	= 74.26		
	Hence the external surface area of the shuttlecock is 74.26 cm^2 .	2	

Created by: Mr. Sudhan R DMO., BE.,

www.Trb Tnpsc.Com

11

	Let the ass	umed mean,	A = 11,	c = 1					
	C.I	Mid value (x_i)	f_i	$d_{ m i} = x_{ m i} - A$	d^2	$f_i.d_i$	$f_{i}.d_{i}^{2}$		
	8.5 - 9.5	9	6	$^{,}2$	4	, 12	24		
	9.5 - 10.5	10	8	, 1	1	, 8	8		
	10.5 - 11.5	11	17	0	0	0	0	2	
	11.5 - 12.5	12	10	1	1	10	10		
	12.5 - 13.5	13	9	2	4	18	36		
			N = 50			$\Sigma f_i.d_i = 8$	$\Sigma f_i. d_i^{\ 2} = 78$		
41.	Standard d	leviation $\sigma =$ $=$ $=$	$= c \times \sqrt{\frac{\sum j}{l}}$ $= \sqrt{\frac{78}{50}} = \sqrt{\frac{78}{50}}$ $= \sqrt{\frac{3900}{50}}$ $= \frac{\sqrt{3836}}{50}$ $= 61.935$	$\frac{f_i d_i^2}{N} - \left(\frac{\Sigma f_i d_i}{N}\right)^2$ $- \left(\frac{8}{50}\right)^2$ $- \frac{64}{50 \times 50}$ $- \frac{64}{50 \times 50}$		S			5
		2							
	The series	is neither Ari	thmetic	nor Geome	tric	series.			
	So, it can b	pe split into t	wo series	s and then t	find	the sum.			
	$5 + 55 + 555 + n \ terms = 5[1 + 11 + 111 + + n \ terms]$								
42.	$= rac{5}{9} ig[9 + 99 + 999 + + n terms ig]$								
	$= \frac{5}{9} \left[(10 - 1) + (100 - 1) + (1000 - 1) + \dots + n \ terms \right]$								5
	$= rac{5}{9} ig[(10 + 100 + 1000 + + n \ terms) - n ig]$								
	$S_n = -$	$\frac{n(r^n-1)}{r-1}$						1	
	$=\frac{5}{6}$	$\frac{5}{9} \times \frac{10(10-1)}{(10-1)}$	- n =	$\Rightarrow \frac{50(10-1)}{81}$.)	$\frac{5n}{9}$		1	

Created by: Mr. Sudhan R DMO., BE.,

PART – IV 2x8=16 Answer all questions. Total Step Q. No Answers Marks Marks Rough diagram 1 43.(a) Drawing the circle 1 Drawing the chord PQ 1 3 Constructing tangents at P and Q 2 Calculation of TP Rough Diagram P M 8 cm 8 Radius = 5 cm; Distance = 8 cmConstruction: \triangleright With O as centre draw a circle with radius 5 cm. Draw a line QP which cuts QP at M. \geq Draw a perpendicular bisector of OP which cuts OP at M. \triangleright With M as centre and MQ as radius draw a circle which cuts previous \geq circle at T and T'. Join PT and PT'. PT and PT' are the required tangents. Thus, the length \triangleright of the tangents is PT = PT'Veri⊥cation: \triangleright $OP^2 = OT^2 + TP^2$ $TP^2 = OP^2 - OT^2 = 82 - 52$ $TP^2 = 64 - 25 = 39$ TP = 6.2 cm (approximately)(OR)

Created by: Mr. Sudhan R DMO., BE.,

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

12

www.Trb Tnpsc.Com

13

Created by: Mr. Sudhan R DMO., BE.,

www.Trb Tnpsc.Com

Created by: Mr. Sudhan R DMO., BE.,

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

14

www.Trb Tnpsc.Com

15

4.9		Speed of the water $= x \text{ km/h}$		
42.	(b)	Speed of the boat = 18 km/hour		
		Speed of the boat in the direction of the water $= 18 + x$		
		Speed of the boat in the opposite direction of the water = $18 - x$		
		Time taken by the boat to cross 24 km in the along the direction		
		of the water $=$ $\frac{distance}{speed} = \frac{24}{18 + x}$	1	
		Time taken by the boat to cross 24 km in the opposite the		
		direction of the water $= \frac{24}{18 - x}$	1	
		$\frac{24}{18-x} - \frac{24}{18+x} = 1$	1	
		$24\left(\frac{1}{18-x} - \frac{1}{18+x}\right) = 1$		8
		$24\left(\frac{(18+x)-(18-x)}{(18-x)(18+x)}\right) = 1$	1	
		$24\left(\frac{2x}{324-x^2}\right) = 1$		
		$48x = 324 - x^2$		
		$x^2 + 48x - 324 = 0$		
		(x+54)(x-6) = 0	2	
		$x + 54 = 0 \; ({ m or}) \; x - 6 = 0$	1	
		x = -54 which is not possible (or) $x = 6$		
		\therefore Speed of the water = 6 km/hour	1	
				-

- o 0 o -

Created by: Mr. Sudhan R DMO., BE.,