COMMOM QUARTERLY EXAMINATION - 2024

XI STANDARD

CHEMISTRY ANSWER KEY

PART - I

I. CORRECT ANSWERS:-

- 1 . (C). Galena
- 2 . (B) Van Arkel Process
- 3 . (C) Four
- 4 . (D) Dry ice
- 5 . (B) F₂
- 6 . (B) H₂SO₄
- 7 . (B) Carbon di oxide
- 8 . (B)+3
- 9 . (A) 8
- 10. (B) Strongly acidic
- 11. (C) Methanal
- 12. (D) 1.5625%
- 13. (C)The two bulkier alkyl group
- 14. (B) Acylation
- 15. (C) Aceto phenome

PART – II

16. Explain the following terms with suitable examples. (i) Gangue (ii) slag

- (i) Gangue : The nonmetallic impurities and rocky materials associated with ore SiO_2
- (ii) Slag : The flux combines with gangue to form calcium slag $CaSiO_3$

$$CaO + SiO_2 \longrightarrow CaSiO_3$$

17. How will you identify borate radical? (or) Give Ethyl borate test

Boric acid + Ethanol Con. Sulpuric acid Tri Ethyl borate (greeen flame)

 $B(OH)_3 + 3C_2H_5OH$ con. H_2SO_4 $B(OC_2H_5)_3 + 3H_2O$

- In a ship, a pierced container with a mixture of calcium carbide and calcium phosphide.
- · When it thrown into sea, liberates phosphine and acetylene
- The liberated phosphine catches fire and ignites acetylene.
- These burning gases serve as a signal to the approaching ships.

19. CAUSES OF LANTHANOID CONTRACTION:

The Shielding Effect of 4f electrons are Poor.

20. Define Packing efficiency.

Packing efficiency = ----- X 100

Volume of the unit cell

sc - 52.38 %, bcc - 68 %, fcc - 74 %

- 21. Decomposition of N₂O₅
 - · Decomposition of SO₂Cl₂
 - Decomposition of H2O2 aqueous solution
 - · Isomerisation of cyclopropane to propene

79 What are Lewis acids and bases? Give two example for each.

	Lewis acids	Lewis bases
1	Electron deficient molecule	Molecule with pair of electrons
2	Accepts an electron pair	Donates an electron pair
3	Positive ion	Anion (or) neutral molecule
4	Ex BF ₃ , AlCl ₃ , CO ₂ , Fe ²⁺	Ex NH ₃ , H ₂ O, F ⁻ , CH ₂ =CH ₂

23. Preparation of Picric acid from Phenol (Nitration of Phenol))

Phenol con.HNO₃/H₂SO₄ Picric acid (2,4,6 - trinitro phenol)

Conc.
$$H_2SO_4$$
 O_2N O_2N O_2 O_2N O_2 O_3 O_4 O_2 O_2 O_3 O_4 O_2 O_3 O_4 O_2 O_4 O_2 O_4 O_5 O_5

24 Haloform reaction

Acetaldehyde and methyl ketone containing CH₃C- group only participate this reaction

PART – III

25. Give the limitations of ellingham diagram.

- It does not explain rate of reaction.
- · It does not give any idea about the possibility of other reactions taking place.
- ΔG is assume at equilibrium condition, but it is not always true.

26. Write a note on Fischer Tropsch synthesis

Carbon monoxide +
$$H_2$$
 $Cu / 50atm$ Hydrocarbon $500 \text{ K} - 700 \text{ K}$
 $Cu / 50atm$ $C_nH_{2n} + nH_2O$
 $Cu / 500 \text{ K} - 700 \text{ K}$

27. Write about the bleaching action of sulphur dioxide.

$$SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2(H)$$

 $X + 2(H) \longrightarrow XH_2$
Colourless

28. Write chromyl chloride test.

Potassium-di-chromate + Potassium con.H₂SO₄ Chromyl chloride chloride (orange red vapours)

$$K_2Cr_2O_7 + 4KCl + 6H_2SO_4 \rightarrow 2CrO_3Cl_2 + 6KHSO_4 + 3H_2O_3$$

This reaction is used to confirm the presence of chloride ion in qualitative analysis.

29. Frenkel defect

- Arises due to dislocation of ions from its crystal lattice
- The ion which is missing from the lattice point occupies an interstitial position.
- * Ex : AgBr
- Size of anion and cation differ
- Does not affect the density of crystal

30. Explain pseudo first order reaction with an example.

In a second order reaction, when one of the reactants concentration is in excess of the other then the reaction follows a first order kinetics, such reactions are called Pseudo first order reactions.

Ex- Acid hydrolysis of an ester.

 $CH_3COO\ CH_3 + H_2O\ \underline{H}^+$ $CH_3COOH + CH_3OH$

31.
$$CaF_{2(s)} = Ca^{2+}_{(aq)} + 2F^{-}_{(aq)}$$

 $[F^{-}] = 2 [Ca^{2+}] = 2 \times 33 \times 10^{-4} M$
 $= 6.6 \times 10^{-4} M$
 $= [Ca^{2+}] [F^{-}]^{2}$
 $= (3.3 \times 10^{-4}) (6.6 \times 10^{-4})^{2}$
 $= 1.44 \times 10^{-10}$
Kindly Send Me Your Study Materials To Us Email ID: padasalai.net@qmail.com

32.a. Convert Glycol to Acetaldehyde

Glycol Anhydrous Zinc chloride Acetaldehyde

$$\begin{array}{c|c} CH_2 - OH & anhydrous \\ \hline CH_2 - OH & ZnCl_2 \\ \hline CH_2 - OH & CH_2O \end{array} \begin{array}{c} CH_2 \\ \hline CH - O - H \\ \hline \end{array} \begin{array}{c} Tautomerisation \\ CHO \\ \hline \end{array} \begin{array}{c} CH_3 \\ \hline CHO \\ \hline \end{array}$$
 ethenol (Vinylalcohol)

b. Convert Glycol to 1,4 - dioxane

Glycol con H₂SO₄ 1,4 - dioxane

$$HO-CH_2 - CH_2 - OH$$
 $CON H_2SO_4$
 $-2H_2O$
 $CH_2 - CH_2$
 $CH_2 - CH_2$
 $CH_2 - CH_2$

33.Identify A, B, and C

ethanoic acid
$$\xrightarrow{SOCl_2}$$
 \xrightarrow{A} $\xrightarrow{Pd/BaSO_4}$ \xrightarrow{B} \xrightarrow{NaOH} \xrightarrow{C} $\xrightarrow{CH_3COOH}$ $\xrightarrow{SOCl_2}$ $\xrightarrow{CH_3COCl}$ $\xrightarrow{Pd/BaSO_4}$ $\xrightarrow{CH_3CHO}$ $\xrightarrow{(B)}$ \xrightarrow{NaOH} $\xrightarrow{CH_3-CH-CH_2-CHO}$ \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH}

PART – IV

34.A. Explain zone refining process with an example

- Prainciple Fractional crystallisation
- · The impure metal is taken in the form of a rod
- When the metal rod is heated with mobile induction heater, the metal melts.
- The heater is slowly moved from one end to the other end, the pure metal crystallises.
- The impurity dissolves in the molten zone.
- · When the heater moves the molten zone also moves.
- · This process is repeated again and again to get the pure metal.
- This process is carried out in an inert gas atmosphere to prevent the oxidation of metals.
- Eg. Silicon (Si), Germanium (Ge) and Gallium (Ga)

34.B. Describe the structure of Diborane

- Two BH2 units are linked by two bridged hydrogens.
- It has eight B-H bonds and 12 valance electrons
- The four terminal B-H bonds are 2c-2e bond
- The remaining four electrons have to be used for the two bridged B-H-B bonds (3C-2e)
- In diborane, the boron is SP³ hybridised
- The bridging hydrogen atoms are in a plane
- B–H–B bond formed by overlapping the half filled hybridised orbital of one boron, the empty hybridised orbital of the other boron and the half filled s orbital of hydrogen.
- It is also called as banana bond.

35.A.i. Explain the manufacture of chlorine by Deacon's process

A mixture of air and HCl is passed through cuprous chloride chamber to form chlorine.

$$4HC1 + O_2 \xrightarrow{\quad 400^{0}C \quad} 2H_2O + Cl_2 \uparrow$$

35.A.ii. Give the uses of chlorine

- · Chlorine is used in Purification of drinking water
- · Bleaching of cotton textiles, paper and rayon
- · Extraction of gold and platinum

35.B. Compare lanthanoids and actinoids.

	Lanthanoids	Actinoids
1.	Colourless	Coloured
2.	They show less tendency to form complexes.	They show greater tendency to form complexes
3.	They do not form executions	They do form oxocations
4.	Differentiating electrons enters in 4f orbital.	Differentiating electrons enters in 5forbital.
5.	Binding energy of 4f orbitals are higher	Binding energy of 5f orbitals are lower
6.	Oxidation state +2, +3, +4	Oxidation state +2, +3, +4, +5, +6, +7

36.A. (i) Metal excess defect

Arises due to presence of more number of metal ions as compared to anions

Ex: NaCl, ZnO

(ii) Metal deficiency defect

Arises due to the presence of less number of cations than the anions

Ex: FeC

36.B. Derive integrated rate law for a first order reaction

A
$$\longrightarrow$$
 Products

Rate = K[A]¹ (K - rate constant)

$$\frac{-d[A]}{dt} = k [A]^{1}$$

$$\frac{-d[A]}{dt} = k [A]^{1}$$

$$\frac{-d[A]}{[A]} = k dt$$

$$At, t = 0 \Rightarrow [A] = [A_0]$$

$$t = t \Rightarrow [A] = [A]$$

$$\int_{[A_0]}^{[A]} \frac{-d[A]}{[A]} = k \int_{0}^{t} dt$$

$$(-\ln[A])_{[A_0]}^{[A]} = k (t)_{0}^{t}$$

$$-\ln[A] - (-\ln[A_0]) = k (t-0)$$

$$-\ln[A] + \ln[A_0] = k (t-0)$$

$$\ln[A] + \ln[A_0] = k (t-0)$$

$$\ln[A] - \ln[A] - \ln[A] = k (t)_{0}^{t}$$

$$\ln[A] - \ln[A] - \ln[A] = k (t)_{0}^{t}$$

$$\ln[A] - \ln[A] - \ln[A] = k (t)_{0}^{t}$$

$$\ln[A] - \ln[A] - \ln[A] = k (t-0)$$

$$\ln[A]$$

37.A. Derive Henderson – Hasselbalch equation

$$\begin{aligned} HA + H_2O &\rightleftharpoons [H_3O^+] + [A^-] \\ \Big[H_3O^+\Big] &= K_a \frac{[acid]_{eq}}{[base]_{eq}} \\ due to common ion effect \\ [Acid]_{aq} &= [Acid] ; [Base]_{aq} &= [Salt] \\ \Big[H_3O^+\Big] &= K_a \frac{[acid]}{[salt]} \end{aligned}$$

Reverse the sign on both sides

$$-\log [H_3O^+] = -\log K_a - \log \frac{[acid]}{[salt]}$$

We know that

$$pH = -\log [H_3O^+] \text{ and } pK_a = -\log K_a$$

$$pH = pK_a - \log \frac{[acid]}{[salt]}$$

$$pH = pK_a + \log \frac{[salt]}{[acid]}$$

Similarly for a basic buffer

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

37.B. Derive an expression for the hydrolysis constant and degree of hydrolysis of salt of strong acid and weak base

- The reactions between a strong acid and a weak base, $HCl_{(aq)} + NH_4OH_{(aq)} \Rightarrow NH_4Cl_{(aq)} + H_2O_{(l)}$ $NH_4Cl_{(s)} \rightarrow NH_4^+$ $(aq) + Cl_{(aq)}^-$
- NH₄⁺ is a strong conjugate acid of the weak base NH₄OH and it has a tendency to react with OH⁻ from water to produce unionised NH₄OH
 NH₄⁺(aq) + H₂O(l) ⇒ NH₄OH (aq) + H⁺(aq)
- There is no such tendency shown by Cl and therefore [H⁺] > [OH] the solution is acidic and the pH is less than 7.
- The relationship between the Kh and Kb as

$$\mathbf{K_h} \cdot \mathbf{K_b} = \mathbf{K_w}$$

$$\mathbf{K_h} = \frac{\mathbf{K_w}}{\mathbf{K_b}}$$

ullet Let us calculate the K_h value in terms of degree of hydrolysis (h) and the concentration of salt

$$\begin{split} K_{h} &= h^{2}C \quad \text{wind} \quad [H^{+}] = \sqrt{K_{h}.C} \\ [H^{+}] &= \sqrt{\frac{K_{w}}{K_{b}}.C} \\ pH &= -\log \left[H^{+}\right] \\ &= -\log \left(\frac{K_{w}.C}{K_{b}}\right)^{\frac{1}{2}} \\ &= -\frac{1}{2} \log K_{w} - \frac{1}{2} \log C + \frac{1}{2} \log K_{b} \\ pH &= 7 - \frac{1}{2} pK_{b} - \frac{1}{2} \log C. \end{split}$$

38.A.i Kolbe's (or) Kolbe's Schmit reaction (Preparation of Salicyclic acid from Phenol)

Phenol NaOH Sodium CO_2 Sodium H^+/H_2O Salicyclic acid salicylate

38.A.ii. How will you prepare Phenolphthalein (or) Write a note on Phthalein reaction. Phenol + Phthalic anhydride con. H₂SO₄ Phenolphthalein

38.B. Mechanism of Cannizaro reaction (disproportionation reaction)

Cannizaro reaction is a characteristic reaction of aldehyde having no α – hydrogen. C₆H₅CHO + C₆H₅CHO <u>dil NaOH</u> C₆H₅CH₂OH + C₆H₅COONa

Step 1: Attack of OH on the carbonyl carbon.

$$C_6H_5$$
 — C_6H_5 —

Step 2: Hydride ion transfer

$$C_6H_5 - C - H + C_6H_5 - C - H \xrightarrow{slow} C_6H_5 - C + C_6H_5CH_2O$$

Step 3: Acid - base reaction.

$$\begin{array}{c} C_{6}H_{5}-C_{6}-C_{6}+C_{6}H_{5}-C_{6}+C_{6}H_{5}-C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_{6}H_{5}+C_{6}+C_$$

S. RATHINAVEL M.Sc., B.Ed., M.Phil.,

PG ASSITANT IN CHEMISTRY

GHSS- KULLANCHAVADI

CUDDALORE DT.