Tirupathur District – Quarterly Examination – Sep - 2024 11th Std Chemistry – Answer Key

Part – I

15 x 1 = 15

Q.	Answer	Q.	Answer
No		No	
1	c) Displacement	9	a) CH₃ - CH = CH – CH₃
2	c) Ununbium	10	b) Dimethyl ether
3	a) Chlorine	11	b) 5
4	c) CO + H ₂	12	b) Pent – 3 – en – 1 – yne
5	c) 8.3 J mol ⁻¹ K ⁻¹	13	d) 8.4
6	a) -2.48 KJ	14	c) H ₃ O ⁺
7	b) 2	15	a) sp ²
8	c) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$.		

Part – II

Ansv	ver any 6 questions and question No. 24 is compulsory. 6 x 2	2 = 12	2
16	Define equivalent mass.		
	Gram equivalent mass is defined as the mass of an element (compound or	2	2
	ion) that combines or displaces 1.008 g hydrogen or 8 g oxygen or 35.5 g chlorine.		
17	State Hund's rule?		
	It states that electron pairing in the degenerate orbitals does not take place	2	2
	until all the available orbitals contains one electron each.		
18	What are isoelectronic ions? Give examples.	1	
	lons of different elements having the same number of electrons are called	1	2
	isoelectronic ions. Eg: Na ⁺ , Mg ²⁺ , Al ³⁺ , F ⁻ , O ²⁻ (all having 10 electrons)	1	
19	Explain the exchange reactions of deuterium.	1	
	$CH_4 + 2D_2 \longrightarrow CD_4 + 2H_2$	1	2
	$2NH_3 + 3D_2 \longrightarrow 2ND_3 + 3H_2$	1	
20	Explain why aerated water bottles are kept under water during summer?		
	As the temperature rises during the summer, the aerated water bottles		
	containing CO ₂ gas expands and the pressure increases (according to Gay-Lussac's	2	2
	Law). The aerated water bottle is likely to explode due to increase in pressure. To		
	avoid this, soft drinks are kept in water.		
21	Write Graham' s Law of Diffusion?		
	The rate of diffusion or effusion is inversely proportional to the square root of		
	molar mass.	2	2
	(or) Rate of diffusion $\propto \frac{1}{\sqrt{M}}$		
22	Show the heterolysis of covalent bond by using curved arrow notation and		
	complete the following equations. Identify the nucleophile is each case.		
	i) CH₃ – Br + KOH → CH₃ – OH + KBr		
	Here OH ⁻ is the nucleophile.	1/2	
	Step-1: $CH_3 \xrightarrow{-Br} + CH_3 + Br^-$	1/2	2
	Step-2: ${}^+CH_3 + K^+ - OH^- \longrightarrow CH_3 - OH + KBr$		
	ii) CH₃ – OCH₃ + HI → CH₃OH + CH₃ – I		
	Here I ⁻ is the nucleophile.	1/2	

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

		-	
	Step-1; $CH_3 - \widetilde{OCH}_3 \longrightarrow {}^+CH_3 + {}^-OCH_3$		
	Step-2; $*CH_3 + I \longrightarrow CH_3 - I$	1/2	
23	Explain how will you predict the direction of an equilibrium reaction.		
	The direction of the reaction can be predicted by comparing Q with K_c .		
	 If Q = Kc, the reaction is in equilibrium state. 		
	• If Q > K _c , the reaction will proceed in the reverse direction i.e., formation of	2	2
	reactants.		
	• If Q < Kc, the reaction will proceed in the forward direction i.e., formation of		
	products.		
24	Give the IUPAC names for the following compounds.	1	
	i) t – butyl alcohol = 2 – methyl prop – 2 – ol		2
	ii) m – dinitro benzene = 1,3 – dinitro benzene	1	

Part – III

Ans	wer any 6 questions and question No. 33 is compulsory. 6	x 3 = '	18
25	Balance the following equations by oxidation number method		
	$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O (Mar-23)$		
	0 +5 +2 +4	1	
	$\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i$		3
	↓ 20- 10- (sumber of electrons gained or leat)	1	Ŭ
	Cu + 2HNO ₂ \longrightarrow Cu(NO ₂) ₂ + NO ₂ + H ₂ O		
	$C_{11} + 411NO_{11} + C_{11}(NO_{11}) + 2NO_{11}(211O_{11})$	1	
	$Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$		
26	Give the electronic configuration of Cu and Cr.		
	$_{29}$ Cu: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹	1½	3
	$_{24}$ Cr: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹	1½	
27	Explain the pauling method for the determination of ionic radius.		
	 Pauling assumed that ions present in a crystal lattice are perfect spheres, and 	1	
	they are in contact with each other. Therefore, $d = r_{C^+} + r_{A^-} \dots \dots$		
	(or)		
	 Where d is the distance between the centre of the nucleus of cation C⁺ and anion A⁻ 	1	
	(or)		
	• r_{C^+} , r_{A^-} are the radius of the cation and anion respectively.	1/2	
	Pauling also assumed that the radius of the ion having noble gas electronic		
	configuration is inversely proportional to the effective nuclear charge felt at the	1	2
	periphery of the ion. (or)		3
	$r_{C^+} \propto \frac{1}{Z_{\text{eff}}(C^+)}$ (2)	1/2	
	$r_{A^{-}} \propto \frac{1}{Z_{\text{eff}}(A^{-})}$ (3)	1/2	
	Where Z_{eff} is the effective nuclear charge and $Z_{eff} = Z - S$		
	Dividing the equation 2 by 3		
	$\frac{r_{C^+}}{Z_{eff}(A^-)} $ (4)	1	
	$r_{A} - Z_{eff}(C^{+})$ (4)		
	On solving equation (1) and (4) the values of r_{C^+} and r_{A^-} can be obtained.		

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

28	How do you convert para hydrogen into ortho hydrogen?				
20	The para-form can be catalytically transformed into ortho-form by				
	Adding platinum or iron catalyst				
	By passing an electric discharge	v	3		
	 By passing an electric discharge. Heating above 800°C 	1	5		
	 Mixing with paramagnetic molecules such as O₂ NO NO₂ 	'			
	• Mixing with paramagnetic molecules such as 02, NO, NO2.				
20	By adding hascent/atomic hydrogen.				
29	The phonomenon of lowering of temperature when a real is made to expand				
	adjustically from a region of high process into a region of low process is known	3	3		
	adiabatically from a region of high pressure into a region of low pressure is known				
20	Write down the Born Haber evels for the formation of NaCl2				
30					
	Now $1 \text{ Class} \qquad \Delta H_{\text{f}}$				
	$\operatorname{Na}(s) + \frac{1}{2}\operatorname{Cl2}(g) \longrightarrow \operatorname{NaCl}(s)$				
		3			
	$Cl_{(g)} \xrightarrow{\Delta H_4} Cl_{(g)}$				
	+				
	$Na_{(a)} \xrightarrow{\Delta H_2} Na^+_{(a)}$		3		
	ΔH_f = heat of formation of sodium chloride	1			
	ΔH_1 = heat of sublimation of Na(g)	'			
	ΔH_2 = ionisation energy of Na(g)				
	$\Delta H_3 = dissociation energy of Cl_2(g)$				
	$\Delta H_4 = \text{Electron affinity of CI(S)}$				
04	U = lattice energy of NaCl				
31	State Le-Chateller principle.				
	It states that "If a system at equilibrium is disturbed, then the system shifts	3	3		
22	Explain inductive effect with evitable exemple. (Mar 22)				
<u>حد</u>	Explain muutive effect with suitable example. (Mar-23)	1			
	Inductive effect is defined as the change in the polarisation of a covalent bond				
	a permanent phenomenon				
	a permanent phenomenon. $\delta \delta_{+} \delta_{+} \delta_{-}$	1			
	• Eg. Ethylchiolide (or) $CH_3 \rightarrow CH_2 \rightarrow CI$				
	- We know that oblaring is more electronogative than earbon, hence it attracts the		3		
	We know that chiofine is more electronegative than carbon, hence it attracts the shared pair of electrone between C. Cl in ethyl ebleride towards itself. This		5		
	develops a slight pagetive oberge on oblering and a slight positive oberge on	1			
	carbon to which chloring is attached				
	To components it the C, drows the shored pair of electrons between itself and				
	• To compensate it, the C1 draws the shared pair of electrons between itself and C2. This effect is greatest for the adiacent bands, but they also be falt for the r				
22	away. 0.24a of an organic compound gave 0.287 a of silver chloride in the carius				
55	method Calculate the nercentage of chloring in the compound		2		
	Weight of the organic substance $(W) = 0.284$ g				
	worght of the organic substance (w) = 0.207 g				

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

Weight of AgCl is $(x) = 0.287$ g		
% of chlorine = $\frac{35.5}{143.5} \times \frac{x}{W} \times 100$ (or)	2	
$=\frac{35.5}{143.5} \times \frac{0.287}{0.24} \times 100$		
= 29.58%	1	

Part – IV

Answer all the questions.

5 x 5 = 25

	a) A Compound on analysis gave Na = 14.31% S = 9.97% H= 6.22% and O=							
	69.5% calcula	te the molecul	ar formula of	the compour	nd, if all the h	ydrogen in		
	the compound	d is present in	combination	with oxygen	as water of			
	crystallization. (molecular mass of the compound is 322). (5)							
	Element	Percentage	Atomic mass	Relative number of moles	simple ratio	whole number		
	Na	14.31	23	$\frac{14.31}{23}$ = 0.62	$\frac{0.62}{0.31} = 2$	2	2	
	S	9.97	32	$\frac{9.97}{32} = 0.31$	$\frac{0.31}{0.31} = 1$	1		
	Н	6.22	1	$\frac{6.22}{1} = 6.22$	$\frac{6.22}{0.31} = 20$	20		5
	0	69.5	16	$\frac{69.5}{16} = 4.34$	$\frac{4.34}{0.31} = 14$	14	1	
34	Emperical formula = Na ₂ SH ₂₀ O ₁₄							
0.	Molar mass							
	^{11 –} Calculated empirical formula mass							
	$N_{22}SH_{22}O_{11} = (2)$	$(1\sqrt{3}) \pm (1\sqrt{3}) \pm (1\sqrt{3})$	$(20 \times 1) \pm (14 \times 16)$	s) - 46 + 32 + 20	0 + 224 - 322		1	
	$11a_{2}S11_{20}O_{14} = (2x_{2}S) + (1x_{3}S_{2}) + (20x_{1}) + (14x_{1}O) = 40 + 32 + 20 + 224 = 322$ 322							
	$=\frac{1}{322}=1.$							
	Molecular formula= Na ₂ SH ₂₀ O ₁₄							
	All the hydrogen in the compound present as water, molecular formula is = $Na_2SO_4.10H_2O_1$.							
	(or) b) i) Azimuthal Quantum number (<i>l</i>) or subsidiary quantum number (3)							
	• It is represe	ented by the lett	er ' <i>l</i> ', and ca	n take integral	values from zo	ero to n-1,	1	
	where n is the principal quantum number							
	• Each <i>i</i> value represents a subshell (orbital). $I = 0, 1, 2, 3$ and 4 represents the s,						1	5
	 The maximum number of electrons in a given subshell (orbital) is 2(27 ±1) 						1	
	 It is used to calculate the orbital angular momentum using the expression. Angular 							
	momentum	$h = \sqrt{l(l+1)} \frac{h}{2\pi}$	-			-		

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

	ii) Spin quantum number (m _s) (2)			
	•	It represents the spin of the electron and is denoted by the letter 'ms'	1	
	•	The electron in an atom revolves not only around the nucleus but also spins in its		
		own axis either in a clockwise direction or in anti-clockwise direction.		
	•	Corresponding to the clockwise and anti-clockwise spinning of the electron,		
		maximum two values are possible for this quantum number.		
	•	The values of 'ms' is equal to $+\frac{1}{2}$ and $-\frac{1}{2}$	1	
	a)	i) Define Electron Affinity? (2)		
		It is defined as the amount of energy released, when an electron is added to	2	
	the	e valence shell of an isolated neutral gaseous atom in its ground state to form its	-	
	an	ion. It is expressed in kJ mol ⁻¹ .		-
	ii)	Explain the periodic trend of ionisation potential. (3)		
	Ре	riodic Trends in Ionisation Energy:		
	•	The ionisation energy usually increases along a period with few exceptions.		
	•	when we move from left to right along a period, the valence electrons are added	1½	
		to the same shell, at the same time protons are added to the nucleus.	- / -	_
	•	This successive increase of nuclear charge increases the electrostatic attractive		5
		force on the valence electron		
	•	Thus, more energy is required to remove the valence electron resulting in high		
	Β.	ionisation energy.		
	Ре	riodic variation in group:		
	•	The ionisation energy decreases down a group.		
	•	As we move down a group, the valence electron occupies new snells.	11⁄2	
	•	The distance between the nucleus and the valence electron increases.		
	•	So, the nuclear forces of attraction on valence electron decreases		
35	•	() b) i) Give the uses of hydrogen? (2)		
	1	Over 90 % hydrogen produced in industry is used for synthetic applications		
	2	Unsaturated fatty oils can be converted into saturated fats called vanaspati by the		
		reduction reaction with Pt / H_2 .		
	3.	In metallurgy, it can be used to reduce many metal oxides to metals at high	2x1	
		temperatures.		
	4.	Atomic hydrogen and oxy-hydrogen torches are used for cutting and welding.		
	5.	Liquid hydrogen is used as a rocket fuel.		
	6.	Hydrogen is also used in fuel cells for generating electrical energy.		
	ii)	Define hydrogen bonding? Explain the types of hydrogen bonding? (3)		5
	•	When a hydrogen atom (H) is covalently bonded to a highly		_
		electronegative atom such as fluorine (F) or oxygen (O) or nitrogen (N),		
		the bond is polarized.	1	
	•	Due to this effect, the polarized hydrogen atom is able to form a weak electrostatic		
		interaction with another electronegative atom present in the vicinity. This		
	• •	interaction is called as a hydrogen bond. They are two types,		
	Int	ramolecular Hydrogen Bond		
	•	Intramolecular hydrogen bonds are those which occur within a single molecule.	4	
	•	Eg: Ortno-Nitrophenol, Salicilaidenyde		

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

$$\frac{\sqrt{k}}{3\sqrt{c}} = \frac{\frac{F}{2\sqrt{c}}}{\frac{R}{p_{c}}}$$

$$\frac{V_{c}}{3} = b$$
i.e. $V_{c} = 3b$ (10)
the value of Vc is substituted in equation (8),
 $3V_{c}^{2} = \frac{a}{p_{c}}$

$$P_{c} = \frac{a}{3V_{c}^{2}} = \frac{a}{3(3b^{2})} = \frac{a}{3 \times 9b^{2}} = \frac{a}{27b^{2}}$$

$$P_{c} = \frac{a}{27b^{2}} \dots \dots (11)$$
substituting the values of Vc and Pc in equation (7)
 $3 V_{c} = b + \frac{RT_{c}}{P_{c}}$

$$3 (3b) = b + \frac{RT_{c}}{P_{c}}$$

$$3 (3b) = b + \frac{RT_{c}}{P_{c}}$$

$$Bb = \frac{T_{c} R 27b^{2}}{a}$$

$$Bb = \frac{T_{c} R 27b^{2}}{a}$$

$$R_{c} = \frac{aa}{27 R b^{2}} = \frac{a}{27 R b}$$

$$T_{c} = \frac{aab}{27 R b^{2}} = \frac{a}{27 R b}$$

$$T_{c} = \frac{ab}{27 R b^{2}} = \frac{a}{27 R b}$$

$$T_{c} = \frac{ab}{27 R b} \dots \dots (12)$$
The critical constants can be calculated using the values of van der waals constant of a gas and vice versa.

$$a = 3 V_{c}^{2} P_{c} \text{ and } b = \frac{V_{c}}{3}$$
(or) b) Derive the relation between ΔH and ΔU for an ideal gas. (5)
Consider a closed system of gases which are chemically reacting to form gaseous products at constant temperature and pressure with V*i* and V*i* as the total volumes of the reactant and products, then, For reactants (initial state),

$$PV_{i} = m_{i}RT \dots (1)$$
For products (final state),

$$PV_{i} = m_{i}RT \dots (2)$$
eqn. (2) - eqn. (1),

$$P(V_{i} - V_{i}) = (m - m) RT$$

$$P\Delta V = \Delta m_{0} RT \dots (3)$$
As we know, $\Delta H = \Delta U + \Delta A_{0} RT \dots (5)$

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

-			
	 a) State the various statements of second law of thermodynamics. (5) 1. Entropy statement: The entropy of an isolated system increases during a 	1	
	 Entropy is a measure of the molecular disorder (randomness) of a system 		
	2. Kelvin-Planck statement: It is impossible to construct a machine that absorbs heat from a hot source and converts it completely into work by a cyclic process without transferring a part of heat to a cold sink.	2	
	(or) Efficiency = $\frac{\text{work performed}}{\text{heat absorbed}}$; Efficiency = $\left[1 - \frac{T_{c}}{T_{h}}\right] \times 100$	1	
	3. Clausius statement: It is impossible to transfer heat from a cold reservoir to a hot reservoir without doing some work.	2	
	(or) b) Derive the relation between K _P and K _c . (5) Let us consider the general reaction in which all reactants and products are ideal		
	The equilibrium constant, Kc is $[C]^{l} [D]^{m}$	1⁄2	
	$K_{C} = \frac{[C] - [D]}{[A]^{x} - [B]^{y}}$ (1) and Kp is,	1	
	$K_{P} = \frac{P_{C}^{1} \times P_{D}^{m}}{P_{A}^{x} \times P_{B}^{y}} \dots \dots \dots (2)$	1	
37	The ideal gas equation is,		5
	$PV = nRT$ (or) $P = \frac{1}{V}RT$	1/2	
	Since, Active mass = molar concentration = n/V P = active mass × (RT)		
	$P_A^x = [A]^x (RT)^x$		
	$P_{\rm B}^{\rm y} = [{\rm B}]^{\rm y} \ ({\rm RT})^{\rm y}$		
	$P_{C}^{l} = [C]^{\prime} (RT)^{\prime}$		
	$P_D^m = [D]^m (RT)^m$		
	On substitution in Eqn. 2,		
	$K_{P} = \frac{[C]^{l} [RT]^{l} [D]^{m} [RT]^{m}}{[A]^{x} [RT]^{x} [B]^{y} [RT]^{y}} \dots \dots \dots (3)$		
	$K_{P} = \frac{[C]^{l} [D]^{m} (RT)^{l+m}}{[A]^{x} [B]^{y} (RT)^{x+y}}$	1	
	$K_{P} = \frac{[C]^{l} [D]^{m}}{[A]^{x} [B]^{y}} (RT)^{(l+m) - (x+y)} \dots (4)$		
	By comparing equation (1) and (4), we get $K_{P} = K_{C} (RT)^{\Delta ng}$		
	where, Δng is the difference between the sum of number of moles of products and the sum of number of moles of reactants in the gas phase. The following relations become immediately obvious. When $\Delta ng = 0$ $K_P = K_C (RT)^0$ so, $K_P = K_C$	1	

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

Class: 11			Register Number	Τ		
COMMON OUA	RTERLY EX	KA	MINATION	202	4 - 25	
Time Allowed : 3.00 Hours]	CHEMI	ST	RY	14040-14030-1409-440-1-440	[Max. Marl	cs : 70
I. Answer the following:					15	x1=15
1. An ion (or atom) in a compour	nd is replaced by an a	tom	(or ion) of another el	emen	t are called	a 19 years 19 19 19 19
reactions.						
a) Oxidation b)	Reduction	C)	displacement	d)	Disproportionat	e
2. What would be the IUPAC nar	me for an element wit	h ato	mic number 112?			
a) Nilnilbium O b)	Unbibium	C)	Ununbium	d)	Bibibium	
3. Which of the following element	nt will have the highes	tele	ctron affinity?		المراجع والمراجع	
a) Chlorine b)	Nitrogen	C)	Cesium	d)	Fluorine	
4. Water gas is					COLN	
a) $H_2O(g)$ b)	CO+H2O	C)	CO + H,	(0)	CO + M ₂	
5. The value of the gas constant l	R is			(h	8 era mol ⁻¹ K ⁻¹	
a) 0.082 dm ³ atm b)	0.987 cal mol ⁻¹ K ⁻¹	C)	8.3 J mortka		reacts with hydro	chlori
 I he work done by the liberated 	gas when 55.85 g of ir	on (n	nolar mass 55.85 g ii			
acid in an open beaker at 25%	- 		+ 2 22 41	d)	+ 2.48 kJ	
a) -2.48 kJ b)	- 2.22 KJ	1 2	T 2.22 NJ	-,		
a) 2 b)	(g) (g) (g) (g) (g)	² (g) ¹		d)	0	
8 In which of the following equili	prium K and K are	eque	12	Sec.	A she was	
a) $N(q) + 3H(q) - 2NH(q)$	f(a) + O(a)	b)	250(a) + 0(a)		$\Rightarrow 2SO_{(a)}$	
c) $H(q) + I(q) = 2HI(q)$	(3(9)) = 2(9)	d)	$PCL(q) \longrightarrow F$	CI.(q	$) + Cl_{a}(a)$	
9. Select the molecule which has o	nly one π bond.			3.0	, 20,	
a) $CH_{-}CH = CH_{-}CH$		b)	$CH_{-}CH = CH -$	CH =	CH.	
c) $CH_{-}CH = C = C - CH_{-}$		d)	All of these			
10. The isomer of ethanol is			Contractor Page			
a) Acetaldehyde b)	Dimethyl ether	C)	Acetone	ď	Methyl carbin	ol
11. In a chemical equilibrium, the	rate constant for the	e for	ward reaction is 2.	5 × 1	0 ² and the equi	ilibriur
constant is 50. The rate consta	int for the reverse rea	ction	1 is			19.36
a) 11.5 b)	5	c)	2 × 10 ²	d)	2 × 10-3	
2. The IUPAC name of the compo	und CH,-CH=CH-	C≡(CH is	and a second		
a) Pent - 4 - yn-2-ene		b)	Pent -3-en-I-vne			
c) pent - 2- en - 4 - yne		d)	Pent - 1 - yn -3 -	-ene	er 44 - 4	
3. Volume strength of 1.5N H,O, is	;					
a) 1.5 b)	4.5	c)	16.8	رل ال	84	
4. Which of the following species	is not electrophilic in	nati	ure?		S. Stray Street	
a) Cl⁺ b)	BH.	c)	H.O*	d)	*NO	
5. What is the hybridisation state	of benzvl carbonium	ion				
a) sp ² b)	spd ²	c)	sp ³	d)	en ² d	
~ /	PART -	. 1		- 4)	No. Contraction	
Answer any 6 questions. (Que	estion number 24 fe	5 COI	npulsorv)		-	w2-41
Define equivalent mass			Sec. Sec.		a na sa	182-14
State Hund's rule						
What are isoelectronic ione? Git	ve examples			5- 1 -		
Explain the exchange reactions	of deuterium			80		Cl -211
. Explain the exchange reactions	ordeatendin				Y/11/	Che/I
	and the second	10-17-18-18-18-18-18-18-18-18-18-18-18-18-18-		ALCONG CONTRACTOR OF STRATES	an an an ann an an tha New York an an Anna an an Anna.	ALC: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STAL WE

		ter during summ	ner?
20.	Explain why aerated water bottle	s are kept under water utility -	1
21.	Write Graham's law of diffusion	arrow notation a	nd complete the following equations.
22.	Show the heterolysis of covalent b	ond by using curved and	, 그의 가 그가 먹을 가 물거들을 통하는 것
	Identify the nucleophile is each c		
	i) CH, - Br + KOH \rightarrow ii)	CH ₃ = 0-CH ₃ + Th	
23.	Explain how will you predict thed	rection of a equilibria	
24.	Give the IUPAC names for the following	owing compounder	
	i) t-butyl alcohol II)	PART - III	6x3=18
	0	tion number 33 is compulsory.	
	Answer any 6 questions. Quest	vovidation number method	
25.	Balance the following equations L		
	$Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO_3$	r_{12}	
26.	Give the electronic configuration of	determination of ionic radius.	
27.	Explain the pauling method for the	- into ortho hydrogen?	
28.	How do you convert para hydroge	n mu braie i yale a	
- 29.	What is Joule-Thomson effect?	sauthe formation of NaCl	
30 \	Write down the Born-Haber cycle	for the formation of Hade	
31	State Le-Chatelier principle		Contract
32 F	Explain inductive effect with suitab	ble example.	is method. Calculate the percentage
33 (24g of an organic compound gave	e 0.287 g of silver chilonde in the care	
55. 0	f chlorine in the compound.		
		PART – IV	5x5=25
а 34. а)	A Compound on analysis ga molecular formula of the com with oxygen as water of cryst	nve Na = 14.31% S = 9.97% H= 0 npound, if all the hydrogen in the co tallization. (molecular mass of the (OR)	ompound is present in combination compound is 322).
	the laught	um number (3)	
b)	Explain i) Azimutnai quant ii) Spin quantum nu	imber (2)	
35 a)	i) Define electron affinity(2)	cientication potential. (3)	
	ii) Explain the periodic trend		
ь)	i) Write the uses of Hydrogeii) Define H-bonding. Explain	n. (2) the types of H-bonding with exam	ples.(3)
		enstants in terms of van der Waals	s constants.
36. a)	Derive the values of critical co	(OR)	
		All for an ideal das.	
b)	Derive the relation between Δ	H and 20 for all local get	
37. a)	State the various statements o	f second law of thermody	
b)	Derive the relation between K	and K _c .	
28 2)	i) What are enantiomers? Giv		
50. aj	ii) Write any five possible ison		
		(UK)	
	auto and botween electron	ohiles & nucleophiles (3)	
b)	i) Difference between close of	(2)	
	ii) Write note on Resonance.	, -,	11/11/Ch-/2