ARIYALUR & PERAMBALUR DISTRICT

KM-1

MODEL COMMON QUATERLY EXAMINATION - 2024

XI – STD – MATHEMATICS

Time: 3.00 Hrs **Maximum Marks: 90**

> PART – I (Marks: 20)

I. Choose the correct answer:

 $20 \times 1 = 20$

1. Let A and B be subsets of the universal set N, the set of natural numbers. Then

(2) A' (3) B $A' \cup [(A \cap B) \cup B'] is$ (6) (1) A

2. If n(A) = 2 and n(BUC) = 3, then $n[(A \times B) \cup (A \times C)]$ is (9)

 $(1)2^3$

 $(2) 3^2$

(3) 6

3. The rule $f(x) = x^2$ is a bijection if the domain and the co-domain are given

by(17) $(1)\mathbb{R}$, \mathbb{R}

(2) \mathbb{R} . $(0, \infty)$ (3) $(0, \infty)$, \mathbb{R} (4) $[0, \infty)$, $[0, \infty)$

4. Given that x, y and b are real numbers X < Y, B > 0, then (2)

(1) xb < yb

 $(2) xb > yb \qquad (3) xb \le yb \qquad (4) \frac{x}{h} \ge \frac{y}{h}$

5. The number of solutions of $x^2 + |x - 1| = 1$ is (13)

(1) 1

(2) 0

(4) 3

6. The value of $\log_3 11 \cdot \log_{11} 13 \cdot \log_{13} 15 \cdot \log_{15} 27 \cdot \log_{27} 81$ is (20)

(1) 1

7. $\frac{1}{\cos 80^{\circ}} - \frac{\sqrt{3}}{\sin 80^{\circ}} =$ (1) (1) $\sqrt{2}$ (2) $\sqrt{3}$ (3) 2

(4) 4

8. If $\tan 40^{\circ} = \lambda$, then $\frac{\tan 140^{\circ} - \tan^{\circ}}{1 + \tan 140^{\circ} \tan 130^{\circ}} = (6)$

(1) $\frac{1-\lambda^2}{\lambda}$ (2) $\frac{1+\lambda^2}{\lambda}$ (3) $\frac{1+\lambda^2}{2\lambda}$ (4) $\frac{1-\lambda^2}{2\lambda}$

9. If $\tan \alpha$ and $\tan \beta$ are the roots of $x^2 + ax + b = 0$,

then $\frac{\sin(\alpha+\beta)}{\sin\alpha\sin\beta}$ is equal to (13)

(1) $\frac{b}{a}$ (2) $\frac{a}{b}$ (3) $-\frac{a}{b}$ (4) $-\frac{b}{a}$

10.If $f(\theta) = [\sin \theta] + [\cos \theta]$, $\theta \in R$, then $f(\theta)$ is in the interval (15)

(1) [0,2] (2) $[1,\sqrt{2}]$ (3) [1,2]

(4) [0,1]

11. The number of 5 digit numbers all digits of which are odd is (4)

Mr.K. MURUGANANDHAM. MSc. MEd. MPhil. PG-ASST IN MATHS

+91-98431-51302 1 | Page

ARIYALUR & PERAMBALUR DISTRICT

KM-1

(1) 25

 $(2) 5^6$

(3)625

 $(4) 5^5$

12. Number of sides of a polygon having 44 diagonals is (14)

(1) 4

(2) 4!

(3) 11

(4) 22

 $13.1 + 3 + 5 + 7 + \dots + 17$ is equal to (24) (1)101

(2) 81 (3) 71

(4) 61

14. The coefficient of x^6 in $(2 + 2x)^{10}$ is (2)

(1) $^{10}C_6$

 $(2) 2^6$

 $(3)^{-10}C_6 2^6$

 $(4)^{10}C_6 2^{10}$

15. The sequence $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}+\sqrt{2}}$, $\frac{1}{\sqrt{3}+2\sqrt{2}}$, form an **(8)**

(1)AP

(2) GP

(3) HP

(4) AGP

16. The value of $1 - \frac{1}{2} \left(\frac{2}{3}\right) + \frac{1}{3} \left(\frac{2}{3}\right)^2 - \frac{1}{4} \left(\frac{2}{3}\right)^3 + \cdots is$ (20)

(1) $\log\left(\frac{5}{3}\right)$ (2) $\frac{3}{2}\log\left(\frac{5}{3}\right)$ (3) $\frac{5}{3}\log\left(\frac{5}{3}\right)$ (4) $\frac{2}{3}\log\left(\frac{2}{3}\right)$ Which of the following point lie on the locus of 17. Which of the following point lie on the locus of

 $3x^2 + 3y^2 - 8x - 12y + 17 = 0$ (3)

(1)(0,0)

(2)(-2, 3) (3)(1,2)

(4)(0,-1)

18. The length of \perp from the origin to the line $\frac{x}{3} - \frac{y}{4} = 1$, is (17)

 $(1)^{\frac{11}{5}}$

 $(2)\frac{5}{12}$

(3) $\frac{12}{5}$ (4) $-\frac{5}{12}$

19. The area of the triangle formed by the lines $x^2 - 4y^2 = 0$ and x = a is (22)

(1) $2a^2$

 $(2)\frac{\sqrt{3}}{2}a^2 \qquad (3)\frac{1}{2}a^2 \qquad (4)\frac{2}{\sqrt{3}}a^2$

20.0 is acute angle between the lines $x^2 - xy - 6y^2 = 0$, then $\frac{2\cos\theta + 3\sin\theta}{4\sin\theta + 5\cos\theta}$ is (24)

(1)1

 $(2) - \frac{1}{9}$

 $(3)^{\frac{5}{0}}$

 $(4)^{\frac{1}{6}}$

PART - II (Marks: 14)

II. Answer any 7 Questions. Question No. 30 is compulsory. $7 \times 2 = 14$

21. If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, find $n((A \cup B) \times (A \cap B) \times (A \triangle A)$

(B)(Eg. 1.8)

22. If $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = 2x^2 - 1$ find the pre-image of 17,4 and -2.

(Eg. 1. 18)

23. Solve $\frac{1}{5} |10x - 2| < 1$. (Ex. 2.2-5)

Mr.K. MURUGANANDHAM. MSc. MEd. MPhil. PG-ASST IN MATHS

+ 91-98431-51302

ARIYALUR & PERAMBALUR DISTRICT

KM-1

- 24. Prove that $\tan 315^{\circ} \cot(-405^{\circ}) + \cot(495^{\circ}) \tan(-585^{\circ}) = 2$ (**Eg. 3. 13**)
- 25. If $a \cos(x + y) = b \cos(x y)$, show that

$$(a + b) \tan x = (a - b) \cot y$$
. (Ex. 3.4 – 10)

- 26.If $^{n+2}P_4 = 42 \times {}^{n}P_2$, find n. (Eg 4.26)
- 27. Find the last two digits of the number 3^{600} (**Ex. 5. 1 8**)
- 28.Find $\sqrt[3]{65}$ (**Eg**. **5**. **23**)
- 29. Find the path traced out by the point $\left(ct, \frac{c}{t}\right)$ here $t \neq 0$ is the parameter and c is constant. (Eg. 6.2)
- 30. Rewrite $\sqrt{3}x + y + 4 = 0$ in to normal form. (*Eg*. **6.20**)

PART – III (Marks: 21)

- III. Answer any 7 Questions. Question No. 40 is compulsory. 7×3=21
 - 31.P.T $((A \cup B' \cup C) \cap (A \cap B' \cap C')) \cup ((A \cup B \cup C') \cap (B' \cap C')) = (B' \cap C') (Eg. 1.3)$
 - 32.prove that $\sqrt{3}$ is an irrational number (Ex. 2.1-2)
 - 33. show that $\sin^2\frac{\pi}{18} + \sin^2\frac{\pi}{9} + \sin^2\frac{7\pi}{18} + \sin^2\frac{4\pi}{9} = 2$. (Ex. 3. 3 6)
 - 34. Prove that $\sin x = 2^{10} \sin \left(\frac{x}{2^{10}}\right) \cos \left(\frac{x}{2}\right) \cos \left(\frac{x}{2^2}\right) \dots \cos \left(\frac{x}{2^{10}}\right)$ (Eg. 3.25)
 - 35. Prove that $32(\sqrt{3})\sin\frac{\pi}{48}\cos\frac{\pi}{48}\cos\frac{\pi}{24}\cos\frac{\pi}{12}\cos\frac{\pi}{6} = 3$. (Ex, 3.5 11)
 - 36.If ${}^{10}P_{r-1} = 2 \times {}^{6}P_r$ find r. (Ex. 4. 2 2)
 - 37. Expand $(2x^2 3\sqrt{1 x^2})^4 + (2x^2 3\sqrt{1 x^2})^4$ (**Ex. 5. 1 1**(**ii**))
 - 38. If $y = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$ then show that $x = y \frac{y^2}{2!} + \frac{y^3}{3!} \frac{y^4}{4!} + \cdots$ (Ex. 5. 4 7)
 - 39. Express the equation $\sqrt{3}x y + 4 = 0$ in the following equivalent form: (i) slope and intercept form (ii) intercept form (iii) Normal form. (**E**g. 6. 19)
 - 40. The slope of one of the straight lines $ax^2 + 2hxy + by^2 = 0$ is twice that of the other, show that $8h^2 = 9ab$. (Ex. 6.4 8)

ARIYALUR & PERAMBALUR DISTRICT

KM-1

PART – IV (Marks: 35)

IV. Answer all the questions.

 $7 \times 5 = 35$

41. If $A \times A$ has 16 elements, $S = \{(a, b) \in A \times A : a < b\}$; (-1,2) and (0,1) are two elements of S, then find the remaining elements of S. (Ex. 1.1 - 10) (OR)

Let $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x - 3 prove that f is a bijection and find its inverse. (Eg. 1.30)

- 42. A manufacturer has 600 liters of a 12 percent solution of acid. How many liters of a 30 percent acid solution must be added to it so that the acid content in the resulting mixture will be more than 15 percent but less than 18 percent? (Ex. 2. 3 6) (OR) Find all values of x that satisfies the inequality $\frac{2x-3}{(x-2)(x-4)} < 0$ (Ex. 2. 8 2)
- 43. Prove that $\log_{10} 2 + 16 \log_{10} \frac{16}{15} + 12 \log_{10} \frac{25}{24} + 7 \log_{10} \frac{81}{80} = 1$ (Ex. 2. 12 7) (OR)

If $x = \sum_{n=0}^{\infty} \cos^{2n}\theta$, $y = \sum_{n=0}^{\infty} \sin^{2n}\theta$ and $z = \sum_{n=0}^{\infty} \cos^{2n}\theta \sin^{2n}\theta$, $0 < \theta < \frac{\pi}{2}$ then show that xyz = x + y + z.

(**hint**: use the formula $1 + x + x^2 + \dots = \frac{1}{1-x}$, where |x| < 1) (Ex. 3.1-7)

- 44. Show that $\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}$ (Ex. 3.6-4). (OR) Prove that $^{24}C_4 + \sum_{r=0}^4 {}^{(28-r)}C_3 = {}^{29}C_4$ (Eg. 4.48)
- 45. prove that $3^{2n+2} 8n 9$ is divisible by 8 for all $n \ge 1$. (**Eg. 4. 66**) (**OR**)

 If the binomial coefficients of three consecutive terms in the expansion of $(a + x)^n$ are in the ratio 1:7:42, then find n. (**Ex. 5. 1 14**)
- 46. prove that $\sqrt[3]{x^3 + 7} \sqrt[3]{x^3 + 4}$ is approximately equal to $\frac{1}{x^2}$ when x is large.

(Eg. 5.25) (OR)

Find the value of

$$\sum_{n=1}^{\infty} \frac{1}{2n-1} \left(\frac{1}{9^{n-1}} + \frac{1}{9^{2n-1}} \right). \quad (Ex. 5. 4 - 10)$$

47. Rewrite $\sqrt{3}x + y + 4 = 0$ in to normal form. (**Eg. 6.20**) (**OR**) Show that the equation $9x^2 - 24xy + 16y^2 - 12x + 16y - 12 = 0$ represents a pair of parallel lines. Find the distance between them. (**Ex. 6.4-14**)

Mr.K. MURUGANANDHAM. MSc. MEd. MPhil. PG-ASST IN MATHS

+91-98431-51302 4 | Page