QUARTERLY EXAMINATION - 2024

Class: 11

Time: 3.60 Hours

MATHEMATICS

Reg.No

Total Marks: 90

PART - I

Answer	all	the	q	ues	ilons	,

 $20 \times 1 = 20$

The rule $f(x) = x^3$ is a bijection if the domain and the co-domain are given by 1.

1) [
$$0,\infty$$
),[$0,\infty$)

3)
$$(0, \infty)$$
, R

 $4)R, (0, \infty)$

The function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \frac{(x^2 + cos)(1 + x^4)}{(x - sin x)(2x - x^3)} + e^{-|x|}$ 2.

1) an odd function

2) neither an odd function nor an even function

3) an even function

4) both odd function and even function

If $A = \{(x, y) : y = \sin x, x \in \mathbb{R}\}$ and $B = \{(x, y) : x = \cos x, x \in \mathbb{R}\}$ then $A \cap B$ contains 3.

1) no element

2) infinitely many elements 3) only one element 4) cannot be determined

If $|x + 2| \le 9$, then x belongs to 4.

1)
$$(-\infty, -7)$$

3)
$$(-\infty, -7) \cup [11, \infty)$$

$$4)(-11,7)$$

The number of solutions of $x^2 + |x - 1| = 1$ is 5.

1) 1

4)3

The value of log3 11 · log11 13 · log13 15 · log15 27 · log27 81 is 6.

1) 1

4)4

Which of the following is true? 7.

1)
$$sin\theta = 2$$

2)
$$cos\theta = -3$$

3)
$$tan \theta = 25$$

4)
$$\sec \theta = \frac{1}{4}$$

If $\sin \alpha + \cos \alpha = b$, then $\sin 2\alpha$ is equal to 8.

1)
$$b^2 - 1$$
, if $b \le \sqrt{2}$ 2) $b^2 - 1$, if $b > \sqrt{2}$

2)
$$b^2 - 1$$
, if $b > \sqrt{2}$

3)
$$b^2 - 1$$
, if $b \ge 1$

4)
$$b^2 - 1$$
, if $b \ge \sqrt{2}$

If $\pi < 2\theta < \frac{3\pi}{2}$, then $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$ equal to 9.

1)
$$-2\cos\theta$$

$$2) - 2 \sin \theta$$

4) 2 sin 0

If ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in AP the value of n can be 10.

1) 14

3)9

4)5

The product of first n odd natural numbers equals 11.

1)
$$^{2n}C_n \times ^nP_n$$

2)
$$\left(\frac{1}{2}\right)^n \times {}^{2n}C_n \times {}^{n}P_n$$

3)
$$\left(\frac{1}{4}\right)^n \times {}^{2n}C_n \times {}^{2n}P_n$$

4)
$${}^{n}C_{n} \times {}^{n}P_{n}$$

Number of diagonals of a polygon having 10 sides is 12.

1) 30

2) 35

3) 45

The sum of the digits at the 10th place of all numbers formed with the help of 2, 4, 5, 7 taken all at a 13. time is

1) 432

2) 108

3) 36

4) 18

11-Mathematics-Page-1

14.	The remainder wh	en 38 ¹⁵ is divided by	, 13 is		•	
•	1) 12	2) 1	3) 1	1	4) 5	
15.		um of n terms of an A			the value of	
· [4]	$S_n - 2S_{n-1} + S_{n-2}$ is		• 2	And the second display	W. Tal	
F. C.	1)0	2) 2d	3) 4	d	4) d ²	
16.	If $(1+x^2)^2(1+x)^2$	$a_0 = a_0 + a_1 x + a_2 x^2 + a_3 x^2 + a_4 x^3 + a_5 x^4 + a_5 x^2 + a_5 x^3 + a_5 x^4 + a_5 x^2 + a_5 x^3 + a_5 x^4 + a_5 x^5 + a_5 $	+ x^{n+4} and if a_0	a_1, a_2 are in AP ,	then n is	
	1) 1	2) 2	3) 3	4) 4		
17.	Which of the follo	wing point lie on the	$1 - \cos x^2 + y^2$	= 5		
	_. 1) (1,1)	2) (0, -1)	3)(1,2)	4) (-2,3)	
18.	The slope of the li	ne which makes an a	ngle 45° with the	line $3x - \dot{y} = -5$ ar	re	ì
	1) 1, -1	2) $\frac{1}{2}$, -2	. 3) 1,		4) 2, $-\frac{1}{2}$	
19.	The equation of th	ne line with slope 2 ar		*.	om the origin equal t	to √5
	is	2 3				
	1) $x - 2y = \sqrt{5}$	2) $2x - y = \sqrt{5}$	3) 2:	x - y = 5	4) x - 2y - 5 =	= 0
20.	If one of the lines	given by $6x^2 - xy + 4$	$3cy^2 = 0 \text{ is } 3x + 4y$	= 0, then c equals	s to	
	1) -3	2) -1	3) 3	0	4) 1	
			PART – II		•	
•	Answer any se	ven questions. Qi	uestion No.30 i	s compulsory.	$7 \times 2 = 14$	
21.	Let $X = \{a, b, c, d\}$	and $R = \{(a, a), (b, b)\}$	(b), (a, c) . Write d	lown the minimun	n number of ordered	pairs
	to be included to I		reflexive	(ii) symmetric		
22	Let A and B be twe	o sets such that $n(A)$:	= 3 and $n(B) = 2.1$	If (x, 1), (y, 2), (z,	1) are in $A \times B$,	
	find A and B , whe	re x, y, z are distinct e	elements.			
22	3(x-2)	5(2-x)	•		- ·	•
23.	Solve: (i) $\frac{3(x-2)}{5}$	3		. 12		
24.	Simplify: $\sqrt{x^2-1}$	0x+25.		·		•
25.	If $n! + (n-1)! = 3$	0, then find the value	e of n.			
26.		idates for an examina		are appearing for	mathematics examir	nation
	while the remaining	ng 8 are appearing for	different subjects	. In how many wa	ays can they be seate	d in a
		mathematics candida	•			
27.		rms of the exponentia				
28.		straight lines (i) Perp		allel to $3x + 4y - 1$	2 = 0_	, •
		he straight line passin		-		of
29.	•		is unough the pon	(2,7) and (7,2)	,	
	inclination of the l	ine with the x-axis.			11-Mathematics-pa	age-2
	in the second		-	•	,	

30. Find the general solution of $\cos \theta = -\frac{\sqrt{3}}{2}$.

PART - III

Answer any Seven questions. Question No.40 is compulsory.

 $7 \times 3 = 21$

- 31. If A and B are two sets so that $n(B-A)=2n(A-B)=4n(A\cap B)$ and if $n(A\cup B)=14$, then find n(P(A)).
- 32. From the curve $f(x) = x^2$, draw $f(x) = x^2 + 1$, $f(x) = (x + 1)^2$.
- 33. If the difference of the roots of the equation $2x^2 (a+1)x + a 1 = 0$ is equal to their product, then prove that a = 2.
- 34. ' solve: $log_2 x 3 log_{\frac{1}{2}} x = 6$.
- 35. A train is moving on a circular track of 1500 m radius at the rate of 66 km/hr. What angle will it turn in 20 seconds?
- 36. Prove that $\tan \left(\frac{\pi}{4} + \theta\right) \tan \left(\frac{3\pi}{4} + \theta\right) = -1$.
- 37. Find the rank of the word "GARDEN"
- 38. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and n^{th} hour?
- 39. Show that $4x^2 + 4xy + y^2 6x 3y 4 = 0$ represents a pair of parallel lines.
- 40. Find the coefficient of x^5 in the expansion $(3-2x)^{10}$.

Answer all the questions.

 $7 \times 5 = 35$

41. (a) In the set Z of integers, define mRn if m-n is divisible by 7. Prove that R is an equivalence relation.

(OR)

- (b) Find the largest possible domain of the real valued function $f(x) = \frac{\sqrt{9-x^2}}{\sqrt{x^2-1}}$.
- 42. (a) A simple cipher takes a number and codes it, using the function f(x) = 3x-4. Find the inverse this function, determine whether the inverse is also a function and verify the symmetrical property about the line y = x (by drawing the lines).

(OR)

- (b) Solve: $\frac{x+1}{x+3} < 3$
- 43. (a) Resolve into partial fractions: $\frac{x+1}{x(x-1)^2}$

11-Mathematics-page-3

(OR)

(b) Prove that
$$\cos A \cos 2A \cos 2^2 A \cos 2^3 A \dots \cos 2^{n-1} A = \frac{\sin 2^n A}{2^n \sin A}$$

- 44. (a) Prove that $\tan 315^{\circ} \cot (-405^{\circ}) + \cot 495^{\circ} \tan (-585^{\circ}) = 2$ (OR)
 - (b) Prove that $^{24}C_4 + \sum_{r=0}^{4} ^{(28-r)}C_3 = ^{29}C_4$
- 45. (a) By the principle of mathematical induction, prove that, for $n \ge 1$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}.$$
(OR)

- (b) Find seven numbers A_1, A_2, \ldots, A_7 so that the sequence 4. A_1, A_2, \ldots, A_7 . 7 is in arithmetic progression and also 4 numbers G_1, G_2, G_3, G_4 so that the sequence 12, $G_1, G_2, G_3, G_4, \frac{3}{8}$ is in geometric progression.
- 46. (a) Prove that $\sqrt{\frac{1-x}{1+x}}$ is approximately equal to $1-x+\frac{x^2}{2}$ when x is very small.

(OR)

- (b) The coordinates of a moving point P are $\left(\frac{a}{2}(\cos ec\theta + \sin\theta), \frac{b}{2}(\cos ec\theta \sin\theta)\right)$ where θ is a variable parameter. Show that the equation of the locus P is $b^2x^2 a^2y^2 = a^2b^2$.
- 47. (a) Find the distance
 - (i) between two points (5, 4) and (2, 0)
 - (ii) from a point (1, 2) to the line 5x + 12y 3 = 0
 - (iii) between two parallel lines 3x + 4y = 12 and 6x + 8y + 1 = 0.

(OR)

(b) Show that the equation $2x^2 - xy - 3y^2 - 6x + 19y - 20 = 0$ represents a pair of intersecting lines. Show further that the angle between them is $\tan^{-1}(5)$.

M.Poovarasan M.Sc B.Ed
PG Asst in Chemistry
Dharmapuri district

11-Mathematics-page-4