## COMMON QUARTERLY EXAMINATION - 2024

|     | *                                                                                 | Stand                                            | ard XI                                | Reg.No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-----|-----------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     |                                                                                   | MATHE                                            | MATICS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Tim | e: 3.00 hrs                                                                       | Pa                                               | rt - I                                | Marks: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1.  | Choose the corre                                                                  | ct answer:                                       |                                       | 20 x 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 1.  | The rule $f(x) = x^2$ is a bijection if the domain and the co-domain are given by |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | a) R, R                                                                           | b) R, (0, ∞)                                     | c) (0, ∞), R                          | d) (0, ∞), [0, ∞)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 2.  | Let R be the univer                                                               | sal relation on a set                            | x with more than on                   | e element. Then R is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|     | a) not reflexive                                                                  | b) not symmetric                                 | c) transitive                         | d) none of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 3.  | If $n(A) = 2$ and $n(B)$                                                          | $\cup$ C) = 3, then n[(A x                       | B) $\cup$ (A x C)] is                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | a) 2 <sup>3</sup>                                                                 | b) 3 <sup>2</sup>                                | c) 6                                  | d) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 4.  | The solution of 5x -                                                              | -1 < 24 and 5x + 1 >                             | - 24 is                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | a) (4,5)                                                                          | b) (-5,-4)                                       | c) (-5,5)                             | d) (-5,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 5.  | If a and b are the re                                                             | eal roots of the equat                           | $ion x^2 - kx + c = 0, t$             | hen the distance between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|     | the points (a,0) and                                                              | d (b,0) is                                       |                                       | Land to the second seco |  |  |  |  |
|     | a) $\sqrt{k^2-4c}$                                                                | b) $\sqrt{4k^2-c}$                               | c) $\sqrt{4c-k^2}$                    | d) √k-8c *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 6.  | The value of logab                                                                | log <sub>b</sub> c log <sub>c</sub> a is         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | a) 2                                                                              | b) 1                                             | c) 3                                  | d) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 7,  | The maximum valu                                                                  | $e of 4\sin^2 x + 3\cos^2 x$                     | $+\sin\frac{x}{2}+\cos\frac{x}{2}$ is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | a) $4 + \sqrt{2}$                                                                 | b) $3+\sqrt{2}$                                  | c) 9                                  | d) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 8.  | Which of the follow                                                               | ing is not true?                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | a) $\sin\theta = -\frac{3}{4}$                                                    | b) $\cos \theta = 25$                            | c) $\tan \theta = \frac{1}{4}$        | d) $\sec \theta = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 9.  |                                                                                   | $s\theta$ , $\theta \in R$ , then $f(\theta)$ is |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|     | a) [0,2]                                                                          | b) 1, \( \sqrt{2} \)                             | c) [1,2]                              | d) [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 10. | A wheel is spinning complete rotations                                            |                                                  | d. How many secon                     | ds will it take to make 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     | a) 10π seconds                                                                    | b) $20\pi$ seconds                               | c) $5\pi$ seconds                     | d) 15π seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 11. | In 3 fingers, the nur                                                             | mber of ways four rin                            | gs can be worn is _                   | ways.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|     | a) $4^3 - 1$                                                                      | b) 3 <sup>4</sup>                                | c) 68                                 | d) 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 12. | There are 10 points                                                               | in a plane and 4 of th                           | em are collinear. Th                  | ne number of straight line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|     | joining any two poir                                                              | nts                                              |                                       | HE CALL OF SALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|     | a) 45                                                                             | b) 40                                            | c) 39                                 | d) 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |

c) 39

d) 38

2

XI Maths

|                                                                                        | 13.                                                                                                  | Number of sides of a polygon having 44 diagonals is                              |                                           |       |         |                  |            |  |  |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|-------|---------|------------------|------------|--|--|--|--|
|                                                                                        |                                                                                                      | a) 4                                                                             | 0) 4!                                     | c)    | 11      | d) 22            |            |  |  |  |  |
|                                                                                        | 14.                                                                                                  | 1+3+5+7+                                                                         | + 19 is equal to                          |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | a) 100                                                                           | o) 81                                     |       | 71      |                  |            |  |  |  |  |
|                                                                                        | 15.                                                                                                  | 15. If a is the arithmetic mean and g is the geometric mean of two numbers, then |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      |                                                                                  | o) a≥g                                    | c)    | a = g   | d) a > g         |            |  |  |  |  |
| 16. The remainder when 38 <sup>15</sup> is divided by 13 is                            |                                                                                                      |                                                                                  |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | a) 12                                                                            | o) 1                                      | c)    | 11      |                  |            |  |  |  |  |
| 17. The sum of an infinite G.P is 18. If the first term is 6, the common ratio is      |                                                                                                      |                                                                                  |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | a) ½                                                                             | b) $\frac{2}{3}$                          | c)    | 1/6     | d) 3/4           |            |  |  |  |  |
| 18. Which of the following point lie on the locus of $3x^2 + 3y^2 - 8x - 12y + 17 = 0$ |                                                                                                      |                                                                                  |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | a) (0,0)                                                                         | b) (-2,3)                                 | c)    | (1,2)   | d) (0,-1)        |            |  |  |  |  |
|                                                                                        | 19.                                                                                                  | The image of the po                                                              | int (2,3) in the line y                   | = -   | x is    |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | a) (-3,-2)                                                                       | b) (-3,2)                                 | c)    | (-2,-3) | d) (3,2)         |            |  |  |  |  |
|                                                                                        | 20. If a vertex of a square is at the origin and its one side lies along the line $4x + 3y - 20 = 0$ |                                                                                  |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | then the area of the                                                             | square is                                 |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | a) 20 sq.units                                                                   |                                           |       |         | d) 4 sq.units    |            |  |  |  |  |
| Part - II                                                                              |                                                                                                      |                                                                                  |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        | 11.                                                                                                  | Answer any 7 ques                                                                |                                           |       |         | 15 15 A          | 7 x 2 = 14 |  |  |  |  |
|                                                                                        | 21                                                                                                   | . Let A = {a,b,c}. Wha                                                           |                                           |       |         | cardinality on A | ? vvnat is |  |  |  |  |
|                                                                                        |                                                                                                      | the equivalence rela                                                             |                                           | nalit | y on A? |                  |            |  |  |  |  |
|                                                                                        | 22                                                                                                   | . Solve:  5x – 12  < –                                                           | 2                                         |       |         |                  |            |  |  |  |  |
|                                                                                        | 23                                                                                                   | 3. Evaluate: $\left( (256)^{-\frac{1}{2}} \right)^{-\frac{1}{2}}$                | $\left(\frac{1}{2}\right)^{-\frac{1}{4}}$ |       |         |                  |            |  |  |  |  |
|                                                                                        |                                                                                                      | Find the value of sin                                                            |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        | 25                                                                                                   | 5. Show that tan 45° +                                                           | $A = \frac{1 + \tan A}{1 - \tan A}$       |       |         |                  |            |  |  |  |  |
|                                                                                        | 26                                                                                                   | 6. If $\frac{1}{7!} + \frac{1}{8!} = \frac{A}{9!}$ , then 1                      | ind the value of A.                       |       |         |                  |            |  |  |  |  |
|                                                                                        | 27. Evaluate the following: i) 10C <sub>3</sub> ii) 100C <sub>99</sub>                               |                                                                                  |                                           |       |         |                  |            |  |  |  |  |
|                                                                                        | 28. Find the middle term in the expansion of (x + y) <sup>6</sup>                                    |                                                                                  |                                           |       |         |                  |            |  |  |  |  |

29. Write the first 6 terms of the exponential series e-2x

3

XI Maths

30. Find the perpendicular distance from the origin to the line x + y = 1

## Part - III

III. Answer any 7 questions. (Q.No.40 is compulsory)

 $7 \times 3 = 21$ 

- 31. Let f, g: R  $\rightarrow$  R be defined as f(x) = 2x |x| and g(x) = 2x + |x|. Find fog.
- 32. Resolve into partial fractions :  $\frac{x}{(x+3)(x-4)}$
- 33. If  $\alpha$  and  $\beta$  are the roots of the quadratic equation  $x^2 + \sqrt{2}x + 3 = 0$ , form a quadratic polynomial with zeros  $\frac{1}{\alpha}$ ,  $\frac{1}{\beta}$ .
- 34 Show that  $\frac{\sin 75^{\circ} \sin 15^{\circ}}{\cos 75^{\circ} + \cos 15^{\circ}} = \frac{1}{\sqrt{3}}$
- 35. Find the distinct permutations of the letters of the word MISSISSIPPI.
- 36. Prove that  $10C_2 + 2(10C_3) + 10C_4 = 12C_4$
- 37. Write the first 6 terms of the sequences whose n<sup>th</sup> term is  $a_n = \begin{cases} 1 & \text{, if } n = 1 \\ 2 & \text{, if } n = 2 \\ a_{n-1} + a_{n-2} & \text{, if } n > 2 \end{cases}$
- 38. Compute the sum of first n terms of the following series : 6 + 66 + 666 + 6666 + .......
- 39. Show the points  $\left(0, \frac{-3}{2}\right)$ ,  $\left(1, -1\right)$  and  $\left(2, \frac{-1}{2}\right)$  are collinear.
- 40. Find the value of  $\tan^{-1}\sqrt{3} + \cos^{-1}\frac{\sqrt{3}}{2}$

Part - IV

IV. Answer all the questions.

 $7 \times 5 = 35$ 

41. a) Write the values of f at -4, 1, -2, 7, 0 if

$$f(x) = \begin{cases} -x + 4 & \text{if } -\infty < x \le -3 \\ x + 4 & \text{if } -3 < x < -2 \\ x^2 - x & \text{if } -2 \le x < 1 \\ x - x^2 & \text{if } 1 \le x < 7 \\ 0 & \text{otherwise} \end{cases}$$

(OR)

b) If  $A + B = 45^{\circ}$ , show that  $(1 + \tan A) (1 + \tan B) = 2$ 

4

XI Maths

42. a) If  $(n+2)C_7$ :  $(n-1)P_4 = 13:24$ , find n. (OR)

- b) Find all values of x that satisfies the inequality  $\frac{2x-3}{(x-2)(x-4)} < 0$
- 43. a) The slope of one of the straight lines  $ax^2 + 2hxy + by^2 = 0$  is twice that of other, show that  $8h^2 = 9ab$ .

(OR)

- b) By the principle of mathematical induction, prove that, for all integers  $n \ge 1$   $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
- 44. a) If A x A has 16 elements  $S = \{(a,b) \in A \times A : a < b\}, (-1,2) \text{ and } (0,1) \text{ are two elements of } S$ , then find the remaining elements of S.

(OR)

- b) If the equation  $\lambda x^2 10xy + 12y^2 + 5x 16y 3 = 0$  represents a pair of straight lines, then find the value of  $\lambda$  and the separate equations of the lines.
- 45. a) If  $\log_2 x + \log_4 x + \log_{16} x = \frac{7}{2}$ , find the value of x.

(OR)

- b) Find the equations of parallel line and perpendicular line passing through the point (1,2) to the line 3x + 4y = 7
- 46. a) Prove that  $\sqrt[3]{x^3+7} \sqrt[3]{x^3+4}$  is approximately equal to  $\frac{1}{x^2}$  when x is large.

(OR)

- b) If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 4 sinA sinB sinC
- 47. a) Find the co-efficient of  $x^2$  and the co-efficient of  $x^6$  in  $\left(x^2 \frac{1}{x^3}\right)^6$

(OR)

b) Find the largest possible domain for the real valued function given by

$$f(x) = \frac{\sqrt{9 - x^2}}{\sqrt{x^2 - 1}}$$

\*\*\*\*\*