SALEM DISTRICT

11 - STD

QL

QUARTERLY EXAMINATION - 2024

Time: 3.00 Hrs

MATHEMATICS

Marks: 90

Choose the correct answer:

$$(P_{ART} - I)$$

 $20 \times 1 = 20$

- For non-empty sets A and B, if $A \subset B$ then $(A \times B) \cap (B \times A)$ is equal to
 - (a) $A \cap B$
- (b) $A \times A$
- (c) $B \times B$
- (d) none of these
- 2. If the function $f: [-3,3] \to S$ defined by $f(x) = x^2$ is onto, then S is
 - (a) [-9,9]
- (b) R
- (c) [-3,3] (d) [0,9]
- 3. The number of relations from a set containing 4 elements to the set containing 3 elements is
 - (a) 2^{16}
- (b) 2^5
- (c) 2^7 (d) 2^{12}
- 4. The solution of 5x 1 < 24 and 5x + 1 > -24 is
 - (a) (4,5)
- (b) (-5, -4) (c) (-5, 5) (d) (-5, 4)
- 5. If 3 is the logarithm of 343, then the base is
 - (a) 5
- (b) 7
- (c)6
- (d) 9
- 6. If $\frac{1-2x}{3+2x-x^2} = \frac{A}{3-x} + \frac{B}{x+1}$, then the value of A + B is
 - (a) $\frac{-1}{2}$ (b) $\frac{-2}{3}$ (c) $\frac{1}{2}$

- 7. The condition that the equation $ax^2 + bx + c = 0$ may have one root which is the double the other is

 - (a) $2b^2 = 9ac$ (b) $b^2 = ac$
- (c) $b^2 = 4ac$ (d) $9b^2 = 2ac$
- 8. If $\tan 40^\circ = \lambda$, then $\frac{\tan 140^\circ \tan 130^\circ}{1 + \tan 140^\circ \tan 130^\circ} =$

- (a) $\frac{1-\lambda^2}{3}$ (b) $\frac{1+\lambda^2}{3}$ (c) $\frac{1+\lambda^2}{23}$ (d) $\frac{1-\lambda^2}{23}$
- 9. If $f(\theta) = |\sin \theta| + |\cos \theta|$, $\theta \in R$, then $f(\theta)$ is in the interval
 - (a) [0,2]
- (b) $[1, \sqrt{2}]$ (c) [1,2]
- (d) [0,1]
- 10. If $\alpha + \beta = \frac{\pi}{2}$ and $\beta + \gamma = \alpha$, then $\tan \alpha$ is equal to
 - (a) $2(\tan \beta + \tan \gamma)$ (b) $\tan \beta + \tan \gamma$
- (c) $\tan \beta + 2 \tan \gamma$ (d) $2 \tan \beta + \tan \gamma$ QL 11 sooff sib EM Page - 1

M.JEEVA. M.A.B.Ed,M.Ph Kindly Send Me Youkkey Answer to Our email id - Padasalai.net@gmail.com 11. The number of 5 digit numbers all digits of which are odd is

(a) 25

(c) 5^6

(d) 625.

12. If $a^2-aC_2 = a^2-aC_4$ then the value of 'a' is

- (a) 2.
- (b) 3

(c)4

(d) 5

13. If ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in AP the value of n can be

(a) 14

- (b) 11
- (c)9

(d)5

14. n! + (n+1)! =

- (a) n!(n+2)
- (b) (n+2)!
- (c) (2n+1)!
- (d) n!

value of n is 15. If ${}^{n}C_{10} > {}^{n}C_{r}$ for all possible r, then a

(a) 10

- (b) 21
- (c) 19.
- (d) 20.

16. The remainder when 38¹⁵ is divided by 13 is

(a) 12

(b) 1

- (c) 11
- (d) 5.

17. Sum of n terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \cdots$ is

- (b) $\frac{n(n+1)}{\sqrt{2}}$ (c) 2n(n+1)
- (d) 1

18. Which of the following equation is the locus of $(at^2, 2at)$

- (a) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (c) $x^2 + y^2 = a^2$ (d) $y^2 = 4ax$

19. The length of perpendicular from the origin to the line $\frac{x}{3} - \frac{y}{4} = 1$, is

- (a) $\frac{11}{5}$ (b) $\frac{5}{12}$ (c) $\frac{12}{5}$ (d) $-\frac{5}{12}$

20. If the two straight lines x + (2k - 7)y + 3 = 0 and 3kx + 9y - 5 = 0 are perpendicular then the value of k is

- (a) k = 3 (b) $k = \frac{1}{3}$ (c) $k = \frac{2}{3}$ (d) $k = \frac{3}{2}$

PART - II

wer any seven questions: (Q.No. 30 is compulsory)

7*2=14

$$n(P(A)) = 1024, n(A \cup B) = 15 \text{ and } n(P(B)) = 32, \text{ then find } n(A \cap B).$$

2. Let
$$f = \{(1, 4), (2, 5), (3, 5)\}$$
 and $g = \{(4, 1), (5, 2), (6, 4)\}$. Find $g \circ f$. Can you find $f \circ g$?

23.If
$$\left(x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right)^2 = \frac{9}{2}$$
, then find the value of $\left(x^{\frac{1}{2}} - x^{-\frac{1}{2}}\right)$ for $x > 1$.

24. Find the values of sin (480°).

25. Find the general solution of
$$\tan \theta = \sqrt{3}$$
.

26. Find the value of *n* if
$$\frac{1}{8!} + \frac{1}{9!} = \frac{n}{10!}$$
.

27. Find the middle terms in the expansion of $(x + y)^7$.

28. Write the
$$n^{th}$$
 term of the following sequences: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, ...

29. Show the points
$$\left(0, -\frac{3}{2}\right)$$
, $\left(1, -1\right)$ and $\left(2, -\frac{1}{2}\right)$ are collinear.

30. Resolve into partial fractions:
$$\frac{1}{x^2-1}$$
.

PART - III

Answer any seven questions: (Q.No. 40 is compulsory)

7*3=21

31. Discuss the following relations for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation
$$R$$
 defined by " xRy if $x + 2y = 1$ "

32. Find the largest possible domain of the real valued function
$$f(x) = \frac{\sqrt{4-x^2}}{\sqrt{x^2-9}}$$
.

33. If
$$\alpha$$
 and β are the roots of the quadratic equation $x^2 + \sqrt{2}x + 3 = 0$, form a quadratic polynomial with zeroes $\frac{1}{\alpha}$, $\frac{1}{\beta}$.

34. Solve the equation
$$\sqrt{6-4x-x^2}=x+4$$
.

35. Prove that
$$\cos\left(\frac{3\pi}{4} + x\right) - \cos\left(\frac{3\pi}{4} - x\right) = -\sqrt{2}\sin x$$
.

36. Prove that
$$tan\left(\frac{\pi}{4} + \theta\right) - tan\left(\frac{\pi}{4} - \theta\right) = 2 tan 2 \theta$$
.

37. Find the rank of the word GARDEN.

38. Find
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 5n + 6}$$

39. Find the equation of the straight line parallel to 5x - 4y + 3 = 0 and having x-intercept 3.

40. If
$$9P_5 + 5 \times 9P_4 = 10P_r$$
 then find r. QL 11 MATHS EM PAGE - 3

PART-IV

Answer all:

7*5=35

- 41. a) In the set Z of integers, define mRn if m n is a multiple of 12. Prove that R is an equivalence relation. (OR)
 - b) In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together.
- 42. a) If $A + B + C = \frac{\pi}{2}$, prove that $\sin 2A + \sin 2B + \sin 2C = 4\cos A\cos B\cos C$. (OR)

b) If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
, then prove that $xyz = 1$.

- 43. a) Solve: $\frac{x^2-4}{x^2-2x-15} \le 0$. (OR) b) Solve: $\sqrt{3} \sin \theta \cos \theta = \sqrt{2}$.
- 44. a) A committee of 7 peoples has to be formed from 8 men and 4 women. In how many ways can this be done when the committee consists of (i) exactly 3 women? (ii) at least 3 women? (iii) at most 3 women? (OR)
 - b) If a, b, c are in geometric progression, and if $a^{\frac{1}{z}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$, then prove that x, y, z are in arithmetic progression.
- 45. a) Using the Mathematical induction, show that for any natural number h,

$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
. (OR)

- b) Rewrite $\sqrt{3}x + y + 4 = 0$ into normal form.
- 46. a) If $\theta + \phi = \alpha$ and $\tan \theta = k \tan \phi$, then prove that $\sin (\theta \phi) = \frac{k-1}{k+1} \sin \alpha$. (OR)
 - b) If p is length of perpendicular from origin to the line whose intercepts on the axes are a and b, then show that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$.
- 47. a) If $f: [-1, \infty) \to [0, \infty)$ is defined by $f(x) = (x+1)^2$, then prove that f is bijection and find its inverse. (OR) b) Find the sum of the coefficients of all even degree terms in the expansion of $\left(x + \sqrt{x^3 1}\right)^6 + \left(x \sqrt{x^3 1}\right)^6$, (x > 1).

QL 11 MATHS EM PAGE - 4

M.JEEVA. M.A,B.Ed,M.Phil.,

Kindly Send Me Your Key Answer to Our email id Padasalai.net@gmail.com