

- Albert Einstein

NAME

STD SEC SCHOOL

EXAM NO

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. \mid

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

1

ACKNOWLEDGEMENT

> First of all, I am grate full to DHIVYA THAMBATHIGAL for guiding me in each

and every phase of my life

> I wish to express my sincere thanks to Mr. T.A.S. KRISHNAN, our honorable

secretary and our other committee members of my school for their constant

encouragement.

> I place on my sincere gratitude to my teacher Mr. V. SUNDARARAJAN, for

mentoring me all through my career.

> I take this opportunity to thanks all my family members for their unceasing

encouragement and support

> I also place on record of my sense of gratitude to one and all who, directly or

indirectly, have lent their helping hand in this venture.

LAKSHMI NARASIMHAN .G

CONTENTS

S. No.	LESSON	PAGE
01	NATURE OF THE PHYSICAL WORLD & MEASUREMENT	07
02	KINEMATICS	13
03	LAWS OF MOTION	17
04	WORK ENERGY AND POWER	23
05	MOTION OF SYTEM OF PARTICLES AND RIGID BODIES	27
06	GRAVITATTION	33
07	PROPERTIES OF MATTER	38
08	THERMAL PROPERTIES OF MATTER AND THERMODYNAMICS	45
09	KINETIC THEORY OF GASES	49
10	OSCILLATIONS	52
11	WAVES	58

01. NATURE OF PHYSICAL WORLD & MEASUREMENTS

FIVE MARKS

1. If the value of universal Gravitational constant in SI is 6.6 x 10⁻¹¹ Nm²Kg⁻², then find its value in

CGS system

G in SI system	$G_1 = M_1^a L_1^b T_1^C $ (1)				
	$G_1 = 6.6 X 10^{-11} N m^2 kg^{-2}$				
G in Cgs system	$G_2 = M_2^a L_2^b T_2^C _ (2)$				
Dimensional o	M ⁻¹ L ³ T ⁻²	a	b	С	
Formula of G		-1	3	-2	
(2) = (1)	$G_1 \begin{bmatrix} M_1^a & L_1^b & T_1^C \end{bmatrix} = G_2 \begin{bmatrix} M_2^a & L_2^b & T_2^C \end{bmatrix}$				
	$\frac{G_2}{G_1} = \left[\frac{M_1}{M_2}\right]^a \left[\frac{L_1}{L_2}\right]^b \left[\frac{T_1}{T_2}\right]^c$				
Substituting	$G_{cgs} = 6.6 X \ 10^{-8} dyne cm^2 g^{-2}$	0			

2. Convert 76cm of mercury pressure into Nm⁻² using the method of dimensions.

P in cgs system	$P_{1} = M_{1}^{a} L_{1}^{b} T_{1}^{C} $ (1) $P_{1} = h\rho g = 76 \times 13.6 \times 980 \text{ dyne cm}^{-2}$			
P in SI system	$P_2 = M_2^a L_2^b T_2^C$ (2)			
Dimensional		Δ	B	C
Dimensional		Γ	D	L
	M L ⁻¹ T ⁻²			
Formula of P				
		1	-1	-2
$\frac{(2)}{(1)}$	$\frac{P_2}{P_1} = \left[\frac{M_1}{M_2}\right]^a \left[\frac{L_1}{L_2}\right]^b \left[\frac{T_1}{T_2}\right]^c$			I
	$P_2 = 1.01 x 10^5 Pa$			

Obtain an expression for the time period T of a simple pendulum. The time period T depend upon (i) mass of the bob (ii) length of the pendulum (iii) acceleration due to gravity

Time period	$T = 2\pi M^a l^b g^c (1)$		
Sub in (1)	$T = K M^a L^{b+c} T^{-2c}$		
Equating powers		LHS	RHS
	М	1	a

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM.

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

	L	1		<i>b</i> + <i>c</i>	
	Т	-2		- <i>b</i>	
LHS = RHS	a = 0 b + c = 0 -2C = 1				
On solving		a = 0	<i>b</i> =	$\frac{1}{2}$	$c = -\frac{1}{2}$
Time period	$T = 2\pi \sqrt{\frac{1}{2}}$	- - 1			

4. The Force acting on a body moving in a circular path depends on mass of the body (m), velocity (v), and radius (r) of the circular path. Obtain the expression for the force experienced by dimensional analysis method

Force	$F = K M^a V^b r^c$	- (1)		
Sub in (1)	$MLT^{-2} = K M^a L^{b+c}$	T ^{-b}		
		LHS		RHS
Equating powers	М	1	a	
	L	1	b+c	
	Т	-2	- <i>b</i>	
LHS = RHS	<i>a</i> = 1			
	b+c=1			
	-b = -2			
On solving	a = 1	<i>b</i> = 2		c = -1
Sub in (1)	$F = K M^1 V^2 r^{-1}$			
Force	$F = \frac{MV^2}{R}$			
1	1			

5. Define error. Explain in detail the various types of error.

Error	Uncertainty in a measurement is called random errors.		
Systematic error	Reproducib Occurs due	ble inaccuracies consistently in the same direction to a problem that persists throughout the experiment	
	Туре	Instrumental	

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. |

	Imperfect technique
	Personal errors
	External causes
	Least count
	\succ Arises due to random and unpredictable conditions like pressure,
	temperature, voltage supply etc.
Random Error	Also due to person reasons
	\succ Large no. of readings are made and arithmetic mean is taken to minimize
	the error
Gross Error	Due to the carelessness of an observer
	Examples
	1. Reading an instrument without setting it properly.
	2. Recording wrong observations
	3. Using wrong values in the calculations
	> These can be minimized only when the observer is mentally alert

THREE MARKS

- 1. Write down the uses of Dimensional Analysis.
 - > Convert of physical quantity from one system of units to another.
 - > Check the dimensional correctness of a given equation
 - > Establish relations among various physical quantities
- 2. What are the Limitations of Dimensional Analysis?
 - > No information about the dimensionless constant
 - > Cannot decide whether scalar or vector
 - > Not suitable for log, trigonometric and exponential equations
 - > Can't apply for more than three physical quantities
- 3. Write a note on triangulation method for the height of an accessible object

Diagram	
Description	 Let AB = h → height of the tree / tower C → observation point (BC = x) ACB = θ (angle of elevation)
From right angled triangle	$\tan \theta = \frac{h}{x}$ $\boxed{h = x \tan \theta}$

4. RADAR METHOD

RADAR	Radio Detection and Ranging
Diagram	
Formula	Speed = distance travelled / time taken $d = \frac{v x t}{2}$

5. Error in product of two quantities

Description	$\Delta A \& \Delta B \Rightarrow$ absolute errors in A and B
Measured Value of A	$\mathbf{A} \pm \Delta \mathbf{A}$
Measured Value of B	$\mathbf{B} \pm \Delta \mathbf{B}$
Product	Z = AB(1)
Dividing by (1)	$\frac{\Delta Z}{Z} = \pm \left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right)$
Conclusion	Maximum possible error = sum of individual fractional error

6. Error in product or division of two quantities

Description	$\Delta A \& \Delta B \rightarrow$ absolute errors in A and B

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 10

www.Padasalai.Net

www.Trb Tnpsc.Com

|--|

Measured Value of A	$\mathbf{A} \pm \Delta \mathbf{A}$
Measured Value of B	$\mathbf{B} \pm \Delta \mathbf{B}$
Product	Z = A/B(1)
Calculated value of Z	$\mathbf{Z} \pm \Delta \mathbf{Z}$
Dividing by (1)	$\frac{\Delta Z}{Z} = \pm \left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right)$
Conclusion	Maximum possible error = sum of individual fractional error

7. Rules for counting Significant figures

Rule	Example	Sig fig
All Non zero digits are significant	1342	4
All Zero between non zeros are significant	2008	4
No. of significant digits doesn't depend on unit system	1.53cm, 0.0153m	3

8. Rules for rounding off

	Rule		Example
Dropping digit		Preceding digit	
Less than 5		No change	7.32 → 7.3
Greater than 5		Increased by 1	11.89 -> 11.9
	Followed by non zero	Raised by 1	7.352 -> 7.4
= 5	Followed by zeros	No change (even)	3.45 -> 3.4
		Raised by 1 (odd)	3.35 -> 3.4

TWO MARKS

1. Write down the difference between fundamental quantity and derived quantity

Fundamental	Derived
Cannot express in any other physical quantities	Can be expressed using fundamental quantities
Length, mass	Area, volume

2. What are the advantages of SI unit system?

www.Padasalai.Net

V S R [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

	Rational system
advantages	Coherent system
	metric system

www.Trb Tnpsc.Com

3. Verify by dimensional method. V = U + at

Substituting	$LT^{-1} = LT^{-1} + LT^{-2} T$
	$LT^{-1} = LT^{-1} + LT^{-1}$

4. Check the correctness of the equation $\frac{1}{2}mv^2 = mgh$ using dimensions

$ML^2T^{-2} = M L T^{-2} L$	
$ML^2T^{-2} = ML^2T^{-2}$	

5. Why is the cylinder used in defining kilogram made up of platinum – iridium alloy?

This is because platinum iridium alloy is least affected by environment and time.

6. State Principle of homogeneity

The principle of homogeneity of dimensions states that the dimensions of all terms in a physical expression should be same.

02. KINEMATICS

FIVE MARKS

1. Triangle law of vector addition

2. Properties of Scalar and Vector properties

	Scalar	Vector
Resultant	Always Scalar	Always Vector
Commutative	Obey	Doesn't obey
Distributive	Obey	Doesn't obey
Max Magnitude	Parallel ($\Theta = 0^0$)	Perpendicular ($\theta = 90^{\circ}$)
Min Magnitude	Anti parallel ($\theta = 180^{\circ}$)	Parallel ($\Theta = 0^{\circ}$)
Orthogonal ($\theta=90^{\circ}$)	Zero $(\cos 90 = 0)$	Maximum magnitude
Self Product	$\hat{\imath} \cdot \hat{\imath} = \hat{J} \cdot \hat{J} = \hat{k} \cdot \hat{k} = 1$	$\hat{\imath} x \hat{\imath} = \hat{\jmath} x \hat{\jmath} = \hat{k} x \hat{k} = 0$

3. Derive equations of motion using calculus method

Condition	For Straight line
	Uniform accelerated motion

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 13

www.Padasalai.Net

www.Trb Tnpsc.Com

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

Equations of motion	$a = \frac{dV}{dt}$	ds = v dt
	$\int_{U}^{V} dV = a \int_{0}^{t} dt$	$\int_0^s ds = U \int_0^t dt + a \int_0^t dt$
	V-U=at	$s = ut + \frac{1}{2} at^2$
	V = U + at	
	$a = \frac{dV}{dt} x \frac{ds}{ds}$	V = u + at
	$a\int_{a}^{s}ds = \int_{a}^{V}VdV$	$s = ut + \frac{1}{2} at^2$
		$v^2 - u^2 = 2as$
	$V^2 - U^2 = 2aS$	

4 Centripetal acceleration

In a circular motion , even though the velocity is tangential at every pe	
Definition	circle, the acceleration is acting towards the centre of the circle
Diagram	$\vec{r_{2}}$
Uniform circular motion	$\frac{\Delta r}{r} = -\frac{\Delta v}{v} = \theta$
Divide by t on both	$a = \frac{\Delta v}{\Delta t} = -\frac{v}{r} \left(\frac{\Delta r}{\Delta t}\right)$
sides	
Centripetal	$a = -\frac{v^2}{r} = -\omega^2 r$
acceleration	

THREE MARKS

1. Equations of motion under gravity

Free fall	Body moving towards earth under the force of gravity		
For free falling	u = 0	a =g	s = h

	v = u + at	V = gt
On substituting	$s = ut + \frac{1}{2}at^2$	$h = \frac{1}{2} gt^2$
	$2as = v^2 - u^2$	$v^2 = 2gh$

2. Discuss the different types of motion

Linear	Moving in a straight line	Free falling object
Circular	Object traversing in a circular path	Satellite motion
Rotational	Moving about an axis	Spinning of earth
Vibratory	To and fro movement	Swing motion

3. Compare the kinematic equations for linear motion and angular motion

Linear motion	Angular motion
v = u + at	$\omega = \omega_0 + \propto t$
$s = ut + \frac{1}{2} at^2$	$ heta = \omega_0 t + rac{1}{2} \propto t^2$
$v^2 - u^2 = 2as$	$\omega^2 - \omega_0^2 = 2 \propto \theta$
$s = \frac{(v+u) t}{2}$	$\theta = \frac{(\omega + \omega_0) t}{2}$

4. Relation between linear velocity and angular velocity

Diagram	$\Delta \theta$ r
Arc length	$\Delta s = r \Delta \theta$
Divide by t	$\frac{\Delta s}{\Delta t} = r \frac{\Delta \theta}{\Delta t}$
Linear velocity	$v = r\omega$
Vector form	$\vec{v} = \vec{\omega} X \vec{r}$

TWO MARKS

1. Distinguish between Scalar and Vector

Scalar	Vector
Described only by magnitude	Described by magnitude and direction
Distance, mass, Energy	Force, Velocity

2. Distinguish between distance and displacement

Distance	Displacement
Actual length travelled	Shortest distance between initial and final point
Scalar	Vector

- 3. LAWS OF MOTION
- 01 Derive an expression for acceleration of the particle moving in an inclined plane and the velocity with which it reaches the bottom.

02. Motion of vertically connected bodies

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. |

17

Free body Diagram	y T m_1 m_1g m_2g
Equation for m_1	$T - m_2 g = m_2 a - (1)$
Equation for m ₂	$m_1g - T = m_1a - (2)$
Acceleration	$a = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)g$
Tension	$T = \left(\frac{2m_1m_2}{m_1 + m_2}\right)g$

03. Motion of horizontally connected bodies

04. Explain the motion of the vehicle on a leveled circular road

18

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

05. Banking of tracks

Definition	To avoid skidding, the outer edge of the road is slightly raised compared to inner edge is called banking of roads.	
Diagram		
Equating Forces	$N\cos\theta = mg(1)$ $N\sin\theta = \frac{mV^2}{r}(2)$	
(2)/(1)=	$\tan\theta=\frac{V^2}{rg}$	
Safe speed	$v = \sqrt{rg \tan \theta}$	

THREE MARKS

1 What are the types of friction and mention the method of reducing friction?

Types	of friction
-------	-------------

Reducing method

Static friction	Polishing the surface	
Kinetic friction	Using lubricants	
Rolling friction	Usage of ball bearings	

02. Differentiate between static and kinetic friction

	Static	Kinetic
Definition	Opposes the start of motion	Opposes relative motion
Contact surface	Independent	Independent
Mag. Applied force	Dependent	Independent
Magnitude	Zero to µ₅N	Equal to µkN

03. Is it easier to push or pull an object explain

04. angle of friction

Diagram	Ř
Resultant Force	$R = \sqrt{(f_s^{max})^2 + N^2}$
From the fig.	$\tan\theta = \frac{f_s^{max}}{N} - (1)$
From Definition	$\mu_s = \frac{f_s^{max}}{N} (2)$

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 20

(1) = (2)	$\mu_s = tan \theta$

05. Angle of repose

Diagram	$rac{max}{mg} cos \theta$ $rac{mg}{mg} e$	
Normal force	$N = mg\cos\theta (1)$	
Static friction	$f_s = \mu_s N = mg \sin \theta (2)$	
$\frac{2}{1}$	$\frac{f_s}{N} = \tan\theta$	
Conclusion	Angle of repose is same as angle of friction	

06. Salient features of centripetal and centrifugal forces

	Centripetal	Centrifugal
Nature	Real force	Pseudo
Frame of reference	Both inertial and non inertial	Only in non inertial frame
Direction	Towards the axis of rotation	Away from the axis of rotation
Origin	Interaction between objects	Inertia

TWO MARKS

01 State Lami's theorem

Condition > 3 concurrent F > Coplanar forces > in equilibrium

02. Define impulse

Very large force acting for a very short time

Vector quantity

J = F.t

Unit : Ns

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

21

What are the applications of angle of repose? 03.

Antilons	 Antilons make sand traps in such a way that when an insect enter the edge of the trap, it starts to slide towards the bottom where the antilon hide itself. Angle of inclination = angle of repose.
----------	--

04. WORK ENERGY POWER

01. Work Kinetic energy theorem

Work	W = F s (1)
Newton's law	F = ma (2)
Equations of motion	$a = \frac{V^2 - U^2}{2s} (3)$
(2) in (3)	$F = ma = m \left(\frac{V^2 - U^2}{2s}\right) (4)$
(4) in (1)	$W = \frac{1}{2} MV^2 - \frac{1}{2} MU^2$ $W = \Delta KE$
Theorem	The work done by the force on the body changes its kinetic energy

02. Elastic potential energy

Diagram	$x = 0 \vec{F}_{s}$
Force	F = Kx
Potential	$U = \int_0^x \vec{F} \cdot \vec{dr}$
energy	$U=\frac{1}{2}Kx^2$
Graph	(xy-) eye Displacement (x)
Conclusion	Shaded Area = elastic potential energy

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 23

03. Arrive at an expression for elastic collision in 1D & discuss various cases

	Consider			
Description	Mass	Initial velocity	Final velocity	
	m1	u ₁	v ₁	
	m2	u ₂	V2	
LOCO P	$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 (1)$			
	$m_1(u_1 - v_1) = m_2(v_2 - u_2)(2)$			
LOCO KE	$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2V_2^2$			
	$m_1(u_1^2 - v_1^2) = m_2(v_2^2 - U_2^2)$ (3)			
⁽³⁾ /(2)	$u_1 + v_1 = v_2 + u_2$ (4)			
Final Velocity v_1	$v_{1} = \left(\frac{2m_2U_2}{m_1 + m_2}\right) + \left(\frac{m_1 - m_2}{m_1 + m_2}\right)u_1(5)$			
Final Velocity v ₂	$v_{2} = \left(\frac{2m_{1}U_{1}}{m_{1}+m_{2}}\right) + \left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right)u_{2}(6)$			

04. Expression for loss of kinetic energy in perfect inelastic collision

KE before collision	$KE_1 = \frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2$	
KE after collision	$KE_2 = \frac{1}{2} (m_1 + m_2) v^2$	
Loss of KE	$\Delta Q = KE_2 - KE_1$ $\Delta Q = \frac{1}{2} (m_1 + m_2) v^2 - (\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2)$	
On simplifying	$\Delta Q = \frac{1}{2} \frac{m_1 m_2}{(m_1 + m_2)} (u_1 - u_2)^2$	

01

THREE MARKS

Differentiate between potential and kinetic energies

Potential Energy	Kinetic energy
Energy possessed by virtue of position	Energy possessed by virtue of motion
PE = mgh	$KE = \frac{1}{2}mv^2$
Scalar	Scalar

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 24

02 Relation between momentum and kinetic energy

Kinetic energy	$KE = \frac{1}{2}mv^2 = \frac{1}{2}m(V.V)$
Multiply and divide by m	$KE = \frac{1}{2} \frac{(mV)(mV)}{m}$
	$KE = \frac{p^2}{2m}$
Magnitude of p	$p = \sqrt{2m (KE)}$

03 Comparison of conservative and non conservative forces

	Conservative Force	Non Conservative Force
	Independent of path	Dependent on path
Work done	Round trip is zero	Round trip is non zero
	Completely recoverable	Completely irrecoverable
Total Energy	Remains constant	Dissipated as heat
	$F = -\frac{dU}{dx}$ (negative gradient of PE)	No such relation exists
Examples	Gravitational Force, Magnetic force	Frictional Force, Viscous Force

04 Relation between power and velocity

Work done	$=\int dW = \int \frac{dW}{dt} dt(1)$
substituting $\frac{\vec{dr}}{dt} = \vec{V}$	$= \int (\vec{F} \cdot \vec{V}) dt (2)$
Comparing (1) and (2)	$\int \frac{dW}{dt} dt = \int (\vec{F} \cdot \vec{V}) dt$
Conclusion	$\mathbf{P} = \vec{F} \cdot \vec{V}$

05 Define collision and distinguish the types of collision

Collision	If the path of the object is influenced by the other object is called collision.	
	Elastic collision	Inelastic collision
Total momentum	Conserved	Conserved
Total Kinetic Energy	Conserved	Not conserved
Involved Forces	Conservative Force	Non conservative Force

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM.

www.Pauasalai	.Net	www.1rb 1npsc.Com
V S	R [V.SUNDARARAJAN M.Sc.,	M.Ed., M.Phil.]
Mechanical Energy	Not dissipated	Dissipated as heat , light, sound
	TWO MARKS	
Define work		
➢ Work is said to be c	lone when the force applied on a	 Scalar quantity
body displaces it.		> Unit: joule
j	$\mathbf{w} = \mathbf{F} \mathbf{ds} \mathbf{cos} \boldsymbol{\theta}$	
Define Energy		
		Scalar quantity
Filergy is defined as	s the admity to do work.	> Unit: joule
Power		
Rate of work done i	is called power.	Scalar quantity
	$P = \frac{W}{4}$	unit : watt
	L	
Define co efficient of re	estitution	
It is defined as the ratio	o of velocity of separation after coll	ision to the velocity of approach before
collision	20	
	$e = rac{velocity of seperation (b)}{velocity of approach (b)}$	after collision) efore collision)
	Had -	
	V S Mechanical Energy Define work > Work is said to be of body displaces it. Define Energy > Energy is defined a Power > Rate of work done i It is defined as the ratio collision	V S RV.SUNDARARAJAN M.Sc.,Mechanical EnergyNot dissipatedTWO MARKSDefine work> Work is said to be done when the force applied on a body displaces it. $w = F ds cos \theta$ Define Energy> Energy is defined as the ability to do work.Power> Rate of work done is called power. $\boxed{P = \frac{W}{t}}$ Define co efficient of restitutionIt is defined as the ratio of velocity of separation after collicollision $e = velocity of separation (between the separation (be$

05. SYSTEM OF PARTICLES & ROTATIONAL DYNAMICS

01 Locate the centre of mass of a uniform rod of mass M and length l.

02 Explain the concept of principle of moments

03 Bending of a cyclist in curves

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 27

At equilibrium	Net force and Net torque = zero
	$\frac{Mv^2}{r}(BC) - Mg(AB) = 0$
Bending angle	$Mg(AC\sin\theta) = \frac{Mv^2}{r} (AC\cos\theta)$
	$\tan\theta = \frac{v^2}{rg}$

04 Moment of inertia of a uniform rod

05 Moment of inertia of a uniform ring

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 28

06 Moment of inertia of a uniform Disc

07 Parallel axis theorem

Theorem	MI about any axis = MI about axis passing though centre of gravity + (mass x (distance between axis) ²) $I = I_c + Md^2$
Diagram	
Moment of inertia	$I=\sum m(x+d)^2$
On expanding	$I = \sum mx^2 + \sum md^2 + 2d \sum mx$
MI about any parallel axis	$I = I_c + Md^2$

08 Perpendicular axis theorem

Theorem	MI of plane laminar of perpendicular axis = sum of MI about two
Ineorem	$I_z = I_x + I_y$

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 29

Diagram	z udar com r y v x
MI about x axis	$I_x = \sum my^2$
MI about y axis	$I_y = \sum mx^2$
MI about z axis	$I_z = \sum mr^2 - (1)$
From fig.	$r^2 = x^2 + y^2 - (2)$
Sub(2) in(1)	$I_z = I_x + I_y$

THREE MARKS

01 Relation between torque and angular acceleration

02 Establish a relation between Angular momentum and Angular velocity

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM.

30

www.Padasalai.Net

www.Trb Tnpsc.Com

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

	$L = rp \sin\theta$	
	L = mvr	
Derivation	$L = mr^2 \omega$	
	$L = I\omega$	
	$\vec{L} = I\vec{\omega}$	

03 Work done by the torque

Diagram	
Work done	dw = F.ds(1)
Displacement	$ds = r d\theta (2)$
Sub (2) in (1)	$dw = F r d\theta$
WD by the torque	$dw = \tau \ d\theta$

04 Kinetic energy in rotation

Diagram	
Kinetic energy of the particle	$KE = \frac{1}{2} m_i v_i^2$ $KE = \frac{1}{2} m_i (r_i \omega)^2$
	$KE = \frac{1}{2} \left(\sum m_i r_i^2 \right) \omega^2$
Kinetic energy of the rigid body	$KE = \frac{1}{2} I\omega^2$

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 31

01

TWO MARKS

Torque

The moment of the external applied force about a point or axis of rotation.

 $\tau = rF sin\theta$

02 Couple

- > Two forces of equal magnitude and opposite direction
- > Separated by a perpendicular distance
- > Whose line of action don't intersect produces a turning effect
- 03 Law of conservation of angular momentum
 - > No external torque
 - > Total angular momentum
 - ➤ a constant

06. GRAVITATION

01 Variation g with altitude

Diagram	
g at the surface	$g = \frac{GM}{R^2}$
g at height h	$g_h = \frac{GM}{(R+h)^2} = \frac{GM}{R^2} (1+\frac{h}{R})^{-2}$
g at height h	$g_h = g\left(1 - \frac{2h}{R}\right)$
Conclusion	As h increases , g decreases

02. Variation of g with depth

Diagram	R CONTRACTOR OF
g at the surface of the	$g = \frac{G\rho 4\pi}{2} (R) (1)$
earth	5
g at depth	$g_d = \frac{G\rho 4\pi}{3} (R-d) (2)$
(2)/(1)	$\frac{g_d}{g} = \frac{R-d}{R} = 1 - \frac{d}{R}$
g at depth "d"	$g_d = g\left(1 - \frac{d}{R}\right)$
Conclusion	As depth increases g decreases

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 33

03. Apparent weight in elevator

Diagram			
Acc	Vector eqn	Scalar eqn	Weight comparison
<i>a</i> = 0	$-mg\hat{j}+N\hat{j}=0$	N = mg	Apparent weight $=$ actual weight
$\widehat{a} = a\widehat{j}$	$-mg\hat{j} + N\hat{j} = ma\hat{j}$	$N = m \left(g + a \right)$	Apparent weight > Actual weight
$\widehat{a} = -a\widehat{j}$	$-mg\hat{j}+N\hat{j}=-ma\hat{j}$	$N=m\left(g-a\right)$	Apparent weight < Actual weight
a = g		$N=m\left(g-g\right)$	Weightlessness

04 Define escape velocity and derive an expression for it.

Definition	Escape speed is the minimum speed required by the object to escape from gravitational field		
Total initial energy	$E_i = \frac{1}{2} M V_i^2 - \frac{GMm}{R}$		
Total Final energy	$E_f = \frac{1}{2} M V_f^2 - \frac{GMm}{(\mathbf{R}+h)}$		
LOCO E	$\frac{1}{2}mV_i^2 - \frac{GMm}{R} = \frac{1}{2}mV_f^2 - \frac{GMm}{(R+h)}$		
Escape speed	$V = \sqrt{2gR}$		

05 Derive orbital velocity

Definition	The velocity with which the satellite orbits around the planets at the specific height
Gravitational force	$F = \frac{GMm}{R^2} (1)$

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 34

www.Padasalai.Net

www.Trb Tnpsc.Com

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

Centripetal force	$F = \frac{mV^2}{(R+h)} (2)$
(1) = (2)	$F = \frac{GMm}{(R+h)^2} = \frac{mV^2}{(R+h)}$
orbital velocity	$V = \sqrt{\frac{GM}{(R+h)}}$

THREE MARKS

01 Derivation of Newton's inverse square law.

Diagram	$a = -\frac{v^2}{r}$		
Centripetal acceleration	$a=-\frac{v^2}{r}(1)$		
Velocity	$v=\frac{2\pi r}{T}(2)$		
(2) in (1)	$a=-\frac{4\pi^2 r}{T^2}$		
From Newton's II law	$F = ma = \frac{4\pi^2 mr}{T^2} (3)$		
From Kepler's III law	$\frac{r^3}{T^2} = K \ (\ constant \) (4)$		
(4) in (3)	$F = \frac{4\pi^2 mK}{r^2}$		
Newton's law	$F=-\frac{GMm}{r^2}$	$4\pi^2 k = Gm$	

02 Derive an expression for time period of a satellite

Definition	Time taken by the satellite to complete one revolution		
Speed	$\mathbf{V} = \frac{2\pi \left(R + h \right)(1)}{T}$		
Orbital velocity	$V = \sqrt{\frac{GM}{(R+h)} - (2)}$		

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 35

V S R [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

Equating (1) & (2)	$T = \frac{2\pi (R+h)^{\frac{3}{2}}}{\sqrt{GM}}$
SOBS	$T^2 = \frac{4\pi^2 R^3}{GM}$
Time Period	$T = 2\pi \sqrt{\frac{R}{g}}$

03 Derive an expression for an energy of an orbiting satellite

	The total energy of the satellite is the sum of the kinetic energy and
Definition	gravitational potential energy
Potential energy	$U = -\frac{GMm}{(R+h)}$
Kinetic energy	$KE = \frac{GMm}{2(R+h)}$
Total energy	$E = \frac{GMm}{2(R+h)} - \frac{GMm}{(R+h)}$ $E = -\frac{GMm}{2(R+h)}$
Significance	Negative sign denotes satellite is bound with the earth which can't escape

04 Geostationary satellites

- Satellites orbiting the earth have different time periods corresponding to different orbital radii.
- > As they appear to be stationary when seen from the earth and hence they are called so.
- > They are used for the purpose of telecommunication

05 Polar satellites

- \succ The satellite placed at a distance of 500 to 800 Km
- > They orbit from north pole to south pole, hence called polar satellites
- > The time period is 100 minutes.
- 06 Important features of gravitational force
 - \succ As the distance increases, the strength of the force decreases
 - It constitute an action reaction pair

> Torque experienced by the earth due to the sun is zero

Two Marks

1 Universal law of Gravitation

Strength of force	directly proportional	product of the masses
	inversely proportional	square of the distance
Expression	$F=\frac{GM_1M_2}{r^2}$	

07. Properties of Matter

Five Marks

01 Write down the expression for the elastic potential energy of a stretched wire.

	when a body is stretched
Statement	\succ work is done against the restoring force
	work done is stored as elastic energy
On substituting	$W = \int_0^l \frac{YAl}{L} dl$
On integrating	$W = \frac{YA}{L} x \left[\frac{l^2}{2}\right]_0^L$
Elastic Potential Energy	$U = \frac{1}{2} F l$
Enorgy donaity	is defined as energy per unit volume
Energy density	$U = \frac{1}{2} X \text{ stress } X \text{ strain}$

02 Define Terminal velocity. Derive an expression for terminal velocity

Terminal velocity	the maximum constant velocity acquired by a body falling through a			
	viscous liquid			
Diagram				
	Force	Equation	Direction	
Forces	Gravitational force	$F_g = \frac{4\pi}{3} r^3 \rho g$	Downward	
	Up thrust	$U=\frac{4\pi}{3}r^3\sigma g$	Upward	
	Viscous force	$F = 6\pi\eta rv$	Upward	
Not Gove	$F_g - U = F$		Downward	
Net force	$\frac{4\pi}{3} r^3 (\rho - \sigma)g = 6\pi \eta r v$			
Terminal velocity	$V = \frac{2r^2(\rho - \sigma)g}{9\eta}$		On simplification	

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 38

.03 Stokes law

$F = 6\pi \eta^x r^y v^z$	(1)	
$F = MLT^{-2}$	$n_{\nu} = ML^{-1}$	T^{-1}
r = L	$v = LT^{-1}$	
$MLT^{-2} = K l$	$\mathbf{M}^{x} \mathbf{L}^{-x+y+z} \mathbf{T}^{-x-z}$	
X=1(2)		
-X + Y + Z = 1 (3)		
-X - Z = -2 (4)		
X = 1	Y = 1	Z =1
$F = 6\pi\eta r v$		Substituting in (1)
	$F = 6\pi \eta^{x} r^{y} v^{z}$ $F = MLT^{-2}$ $r = L$ $MLT^{-2} = KL$ $X = 1 (2)$ $-X + Y + Z = 1$ $-X - Z = -2 (4)$ $X = 1$ $F = 6\pi\eta rv$	$F = 6\pi \eta^{x} r^{y} v^{z} (1)$ $F = MLT^{-2} \qquad n_{v} = ML^{-1}$ $r = L \qquad v = LT^{-1}$ $MLT^{-2} = K M^{x} L^{-x+y+z} T^{-x-z}$ $X = 1 (2)$ $-X + Y + Z = 1 (3)$ $-X - Z = -2 (4)$ $X = 1 \qquad Y = 1$ $F = 6\pi \eta r v$

04 Poisuellies equation

Description	$V = \frac{\pi}{8} \eta^a r^b \left(\frac{P}{l}\right)$	c (1)	
Dimension formula	$V = L^3 T^{-1}$	η	$= ML^{-1}T^{-1}$
	r = L		$= M L^{-2} T^{-2}$
Sub in (1)	$L^3T^{-1} = M^{a+b} L^{a+b-2c}$	T^{-a-2c}	
	a+b=0		
LHS = RHS	a+b-2c=3		
	-a-2c=-1		
On solving	a = -1	b = 4	c = 1
Poisuellies equation	$V = \frac{\pi r^4 P}{8\eta l}$		Substituting in (1)

05 Bernoulli's Theorem

Conditions	Incompressible, Non viscous liquid and Streamline flow		
Theorem	Pressure energy + kinetic energy + potential energy unit mass		
	= constant		
Diagram	A h_1 h_2 h_2		

		At A	At B
Energy per unit mass	Pressure energy	$\frac{P_A}{\rho}$	$\frac{P_B}{\rho}$
	Potential energy	gh _a	gh_b
	Kinetic energy	$\frac{v_a^2}{2}$	$\frac{{v_b}^2}{2}$
	Total energy	$\frac{P_A}{\rho} + gh_a + \frac{{v_a}^2}{2}$	$\frac{P_b}{\rho} + gh_b + \frac{v_b^2}{2}$
Bernoulli's theorem	$\frac{P}{\rho g} + h + \frac{v^2}{2g} = constant$		

06 Venturimeter

Use	Used to measure the rate of flow of incompressible liquid.
Principle	Bernoulli's theorem
Diagram	
continuity eqn	$v_2 = \frac{Av_1}{a} - (1)$
(1) in (2)	$P_1 + \rho \frac{{v_1}^2}{2} = P_2 + \frac{\rho}{2} \left(\frac{Av_1}{a}\right)^2$
Pressure difference	$\Delta P = \rho \frac{v_1^2}{2} \left(\frac{A^2 - a^2}{a^2} \right)$
Speed of fluid at A	$v_1 = \sqrt{\frac{2\Delta P a^2}{\rho (A^2 - a^2)}}$
Volume of fluid out per second at A	$V = Av_1 = A \sqrt{\frac{2\Delta P a^2}{\rho (A^2 - a^2)}}$

07 Surface tension by capillary rise method

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 40

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

Resolving ST	Horizontal component	T sin θ
0	Vertical component	Τ cos θ
Total upward force	$2\pi rT\cos\theta - (1)$	
	$V=\pi r^2h+\frac{1}{3}\pi r^3$	
Weight of liquid column	$W = \pi r^2 \left(h + \frac{r}{3}\right) \rho g - (2)$	
Net force	$2\pi rT\cos\theta = \pi r^2h + \frac{1}{3}\pi r^3$	
Surface tension	$T = \frac{hr\rho g}{2\cos\theta}$	

Three marks

01 Explain the different types of modulli

Based on the strain produced the modulli can be classified as

Young's modulus	$Y = \frac{Tensile\ stress}{Tensile\ strain}$	$Y = \frac{\sigma_t}{\epsilon_t}$
Bulk modulus	$K = \frac{Normal stress or Pressure}{Volume strain}$	$K = \frac{\Delta PV}{\Delta V}$
Rigidity modulus	$n_{PR} = \frac{shearing \ stress}{shearing \ strain}$	$n_{PR} = \frac{F}{A\theta}$

02 Explain the principle, construction and working of hydraulic lift

Principle	Pascal's law
Uses	To lift heavy load with small force
Diagram	
Derivations	$F_2 = P X A_2 = \frac{F_1}{A_1} X A_2$ $F_2 = \frac{A_2}{A_1} X F_1$

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM.

03 Continuity equation

Diagram	V_1 A a_1 B	
Mass of the liquid entering at A	$m_1 = (a_1 v_1 \Delta t) \rho$	
Mass of the liquid leaving at B	$m_2 = (a_2 v_2 \Delta t) \rho$	
LOCO M	$(a_1v_1\Delta t)\rho = (a_2v_2\Delta t)\rho$ $a_1v_1 = a_2v_2 = av = constant$	
	Area	Velocity
Conclusion	Less	More
	More	Less

04 Relation between surface energy and surface Tension

05 Excess pressure inside air bubble , liquid drop and soap bubble

	air bubble	liquid drop	soap bubble
Diagram	R R P	$(2\pi R)\sigma_s$ $(\pi R^2)\Delta P_{droplet}$	Po P1 P1 Bubble

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

Force Due to S. T	$F_T = 2\pi RT$	$F_T = 2\pi RT$	$F_T = 4\pi RT$
Force Due to	$E - D \pi D^2$	$E - D \pi D^2$	$E - D \pi D^2$
outside pressure	$r_{p_1} - r_1 n \kappa$	$r_{p_1} - r_1 n \kappa$	$r_{P1} - r_1 \pi \kappa$
Force Due to	$E = D = D^2$	$E = D = D^2$	$E = D = D^2$
inside pressure	$F_{P2} = F_2 \pi R^2$	$\mathbf{r}_{P2} = \mathbf{r}_2 \mathbf{i} \mathbf{k}^2$	$\mathbf{r}_{P2} = \mathbf{r}_2 \mathbf{n} \mathbf{k}^2$
At Equilibrium	$(P_2 - P_1)\pi R^2 = 2\pi RT$	$(\boldsymbol{P}_2 - \boldsymbol{P}_1)\boldsymbol{\pi}\boldsymbol{R}^2 = 2\boldsymbol{\pi}\boldsymbol{R}\boldsymbol{T}$	$(P_2 - P_1)\pi R^2 = 4\pi RT$
Excess pressure	$\Delta P = \frac{2T}{R}$	$\Delta P = \frac{2T}{R}$	$\Delta P = \frac{4T}{R}$

Two marks

01 Hooke's law

- For small deformation
- > Within the elastic limit
- > Stress and strain are proportional to each other
- 02 Poisson's ratio

The ratio of lateral strain to longitudinal strain

 $poisson ratio = \frac{lateral strain}{longitudinal strain}$

- 03 Which is more elastic steel or rubber?
 - Steel is more elastic.
 - > Steel produces less strain when force is applied.
 - > Hence young's modulus and elastic nature is more.
- 04 Why gas bubbles rise up in soda water?
 - > Density of g as sphere < density of soda liquid
 - ➢ Gas sphere attains terminal velocity in upward direction.
 - > That is why gas bubbles rise up in soda water.
- 05 What are the applications of viscosity?
 - > used as lubricants for heavy machinery

- > Used as brake oil in hydraulic brakes
- > Blood circulation through arteries and veins depends on the viscosity
- \succ to determine the charge of an electron.
- 06 Water bugs and water striders walk on the surface of water.
 - > The water molecules are pulled inwards.
 - > The surface water surface acts like springy stretched membrane
 - \succ This balances the weight of water bugs and enables them to walk.
- 07 What are the factors affecting surface Tension?
 - Presence of impurity
 - > Presence of dissolved substance
 - > Electrification
 - > Temperature
- 08 What are the practical applications of capillarity?
 - > Oil rises in the cotton within an earthen lamp.
 - > Sap rises from the roots of a plant
 - > Absorption of ink by a blotting paper
 - > Cotton dresses have fine pores which acts as capillaries for sweat.

08. Thermal properties and Thermodynamics

Five marks

01 Calorimetry

Calorimetry	Measurement of the amount of heat released or absorbed		
Diagram	Thermometer Stirrer Sample Insulating wood Air (insulation) Calorimeter cup		
Heat gained	$Q_{gain} = m_2 s_2 \left(T_f - T_2 \right)$		
Heat lost	$Q_{lost} = m_1 s_1 \left(T_f - T_1 \right)$		
$Q_{gain} = -Q_{lost}$	$m_2 s_2 (T_f - T_2) = -m_1 s_1 (T_f - T_1)$		
Final temperature	$T_f = \frac{m_1 s_1 T_1 + m_2 s_2 T_2}{m_1 s_1 + m_2 s_2}$		

02 Newton's law of cooling

Statement	The rate of heat loss is directly proportional to the temperature difference between that body and its surroundings.		
Expression	$\frac{dQ}{dt} \propto -(T-T_s)$		
	- ^{ve} sign denotes temperature decreases		
amount of heat lost is	$\frac{dQ}{dt} = \frac{msdT}{dt} - (1)$		
Newton's law of cooling	$\frac{dQ}{dt} = -a \left(T - T_s\right)(2)$		
Equating (1) & (2)	$-a\left(T-T_{s}\right)=\frac{msdT}{dt}$		
Rearranging &	$ln(T-T_s) = \frac{-at}{ms} + b_t$		
integrating			
Taking exponent	$T = T_s + b_2 e^{\frac{-at}{ms}}$		

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 45

03 Meyer's relation

Consider an ideal gas in a container		
Work done by the gas	W = PdV	
From I law of thermodynamics	Q = dU + W	
On Substituting	$\mu C_P dT = \mu C_V dT + P dV - (1)$	
From ideal gas equation	$PV = \mu RT$	
On differentiating	$PdV + VdP = \mu RdT$ $PdV = \mu RdT (dP = 0) - (2)$	
Sub (2) in (1)	$\mu C_P dT = \mu C_V dT + \mu R dT$	
Meyers relation	$C_p - C_V = R$	

04 Derive an expression for work done in an isothermal process

Isothermal process	Temperature constant	
	Pressure and Volume changes	
The work done by the gas	$W = \int_{V_i}^{V_f} P dV (1)$	
Ideal gas equation	$P=\frac{\mu RT}{V}(2)$	
(2) in (1)	$W = \mu RT \int_{V_i}^{V_f} \left(\frac{dV}{V}\right)$	
Work done by the gas	$W = \mu RT \ln(\frac{V_f}{V_i})$	On integrating

05 Derive an expression for work done in an adiabatic process

adiabatic process	No heat enters or leaves the system.	

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 46

www.Padasalai.Net

www.Trb Tnpsc.Com

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

Ideal gas equation	$P = \frac{constant}{V^{\gamma}} (1)$
The work done	$W = \int_{V_i}^{V_f} P dV (2)$
(1) in (2)	$W = constant \int_{V_i}^{V_f} V^{-\gamma} dV$
On integrating	$W = \frac{constant}{1-\gamma} \left[\frac{1}{V_f^{\gamma-1}} - \frac{1}{V_i^{\gamma-1}} \right]$
Work done by the gas	$W_{adia} = \frac{\mu R}{\gamma - 1} \left[T_i - T_f \right]$

06 Refrigerator

Refrigerator	A refrigerator is a Carnot's engine working in the reverse order.		
Diagram	Hot reservoir T_H Q_H Work done by heat engine $WHeat engineQ_LCold reservoirT_L$		
From I law of			
	$Q_L + W = Q_H (1)$		
thermodynamics			
	$\beta = \frac{Q_L}{W}$		
Coefficient of	Q_{L}		
performance	$p = \overline{Q_H - Q_L}$		
	$\beta = \frac{T_L}{T_H - T_L}$		

Two marks

01 Boyle's law

- > At constant Temperature
- > Pressure of the gas is inversely proportional to the volume

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 47

	www.Padasalai.Net	t www	.Trb Tnpsc.Com
	V S R	[V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]	
02	Charles law		
	At constant Pressure		VaT
	The volume of the ga	s is proportional to absolute temperature	<u>v a i</u>
03	Latent heat capacity		
	\succ amount of heat energy	gy required to change the state of a unit mass	$L=rac{Q}{m}$
			Unit : J Kg ⁻¹
04	Prevost theory of heat e	xchange	
	> all bodies emit thern	nal radiation at all temperatures	
	> above absolute zero		
	Irrespective of the na	ature of the surroundings.	
05	Stefan Boltzmann law		
	Total amount of heat rac	liated per second per unit area of a black body	is $E \alpha T^4$
	directly proportional to	the fourth nower of its absolute temperature	

06 Wien's displacement law

Wien's law states that, the wavelength of maximum intensity of emission of a black body radiation is inversely proportional to the absolute temperature of the black body.

07 Zeroth law of thermodynamics

If two systems A and B are in thermal equilibrium with a third system C, the A and B are in thermal equilibrium with each other

- 08 Conditions for reversible process
 - Process rate should be extremely slow
 - > Should be in mechanical, thermal and chemical equilibrium at all the times
 - > No dissipative forces should be present

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

 $\lambda_m = rac{b}{T}$

09. KINETIC THEORY OF GASSES

- 01 What are the postulates of kinetic theory of gases?
 - > All molecules are identical elastic spheres
 - > They are in continuous random motion
 - > Perfect elastic collision hence no kinetic energy loss
 - > They travel with uniform velocity
 - > Energy is wholly kinetic
 - > Collisions are instanteous
 - They obey Newton's law

02 Derive an expression for pressure exerted by a gas

Diagram	
Change in momentum	$-2mv_x$
By LOCO P	$2mv_x$
Average no of molecules hitting the walls	$\frac{n}{2}Av_{x}\Delta t$
Total momentum transferred	$\frac{n}{2}Av_{x}\Delta t \ X \ 2mv_{x}$
From Newton's law	$nmAv_x^2$
Pressure	nmv_x^2

03 Law of equipartition of energy

Average kinetic energy in X , Y and Z	$\frac{1}{2} \ m\overline{v^2}_x = \frac{1}{2} \ m\overline{v^2}_y = \frac{1}{2} \ m\overline{v^2}_z = \frac{1}{2} \ kT$
direction	
	The average kinetic energy of system at a temperature T
Law of equipartition of energy	is uniformly distributed to all degrees of freedom

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM.

49

	Molecule		f	Average KE
	Mono atomic		3	$\frac{3}{2}kT$
	Diatomic	Normal T	5	$\frac{5}{2} kT$
Average Kinetic Energy		High T	7	$\frac{7}{2} kT$
	Tri atomic	Normal T	5	$\frac{5}{2} kT$
		High T	7	$\frac{7}{2} kT$
		Non linear	6	3 <i>kT</i>

Two marks

01 Moon has no atmosphere. Why?

- Escape speed of moon <<< root mean square velocity of gasses</p>
- > Due to this all gasses escape from the surface of the moon
- 02 No Hydrogen in Earth's atmosphere. Why?
 - > Root mean square speed of hydrogen >>> Root mean square speed of nitrogen
 - > So hydrogen escapes easily from the surface of the earth.
- 03 Degrees of freedom

The minimum number of independent co ordinates needed to specify the position and

configuration of a thermo dynamical system in space

04 Mean Free path

The average distance travelled by the molecule between collision is called mean free path

- 05 Why the smell of hot sizzling food reaches several meters away than the smell of cold food?
 - > As the mean free path increases with increasing temperature.
 - > As temperature increases, average speed of each molecule will increase
 - > So it travels longer distances.
- 06 What is Brownian motion? what are the factors affecting Brownian motion

The random motion of pollen suspended in a liquid is called Brownian motion.

Factor affecting Brownian motion

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM.

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

50

- > Brownian motion increases with increasing temperature
- > They decreases with bigger particle size, high viscosity and density of the liquid or gas
- 07 What is the reason for Brownian motion?
 - According to kinetic theory, any particle suspended in a liquid or gas is continuously bombarded from all the directions so that the mean free path is almost negligible.
 - > This leads to the motion of the particles in a random manner.

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. |

- 9. oscillations FIVE MARKS
- 1 Discuss in detail the energy in simple harmonic motion

		The work done by the force F during a small displacement dx			
	Definition				
		stores as potential energy			
Potential Energy	Equation	$U = \int_{0}^{x} F dx = \int_{0}^{x} Kx dx$ $U = \frac{1}{2} M w^{2} x^{2}$			
	Graph	$ \begin{array}{c} U(t) \\ 0 \\ \overline{T_2} \\ T_$			
	Definition	Energy acquired by virtue of motion			
Kinetic Energy	Equation	$KE = \frac{1}{2} MV^2$ $= \frac{1}{2} M\omega^2 (A^2 - x^2)$			
	Graph	$\begin{array}{c c} KE(t) \\ \circ \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ &$			
	Definition	Total Energy = Potential Energy + Kinetic Energy			
Total Energy	Equation	$E = \frac{1}{2}M\omega^2 x^2 + \frac{1}{2}M\omega^2 (A^2 - x^2)$ $E = \frac{1}{2}M\omega^2 A^2 = constant$			
		U(t) + K(t)			
	Graph	E K(t)			
		$O \frac{T}{2} T^{T}$			

02 Derive an expression for time period and frequency of Linear / Harmonic oscillator

	Linear harmonic oscillator	Angular harmonic oscillator
--	----------------------------	-----------------------------

52

www.Padasalai.Net

salai.Netwww.Trb Tnpsc.ComV S R[V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

03 Vertical oscillations of a spring

Diagram		$L + l$ F_{g} $y = 0$	=-k/
	Force	Expression	Direction
Forces	Gravitational	Mg	Downwards
	Restoring	-КІ	Upwards
@ Equilibrium	$F_1 = mg = Kl - (1)$ $\frac{m}{K} = \frac{l}{g}$	1	1
Net force	$F = F_2 + mg$		

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM.

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

	F = -Ky - Kl + mg - (2)
	F = ma = -Ky
(1) In (2)	$\vec{a} = \frac{-K}{m} \vec{y}(3)$
Defn. of SHM	$\overrightarrow{a} = -\omega^2 y$
Angular frequency	$\omega = \sqrt{\frac{K}{m}}$
Time period	$T=rac{2\pi}{\omega}=2\pi\sqrt{rac{m}{K}}=2\pi\sqrt{rac{l}{g}}$

04 Derive an expression for oscillations of a simple pendulum.

Diagram	O θ I T mgsin θ	ngcos θ	
Resolving	Gravitational force	Vertically downwards	
	Tension	Along the string	
acceleration	$a = g \sin\theta = g \frac{s}{l} \qquad \qquad$		$\sin\theta=rac{s}{l}$
SHM definition	$\vec{a} = -\omega^2 s$		
Angular	$\omega = \sqrt{\frac{g}{2}}$		
velocity	N I		
Time period	$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}}$		

05 Types of oscillations with example

oscillation	Example
Free oscillation	 Vibration of tuning fork Vibration of stretched string
Damped	EM oscillations in tank circuit

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 54

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

	Dead beat galvanometer
Maintained	tuning fork getting energy from a battery
Forced	Sound board of stringed instruments
Resonance	Breaking of glass due to sound

THREE MARKS

Discuss Acceleration in SHM 01

Definition	The rate of change of velocity is acceleration.
Diagram	$N = \frac{1}{2} $
Derivations	$a_{c} = \frac{dV}{dt} = \frac{d(A\omega cos\omega t)}{dt}$ $a_{c} = -A\omega^{2}sin\omega t$ $a_{c} = -\omega^{2}y$
Graph	

02 Discuss the effective spring constants in series and parallel

	Series	Parallel
Diagram	v k_1 k_2 0 0 k_1 k_2 m k_2 m k_2 m	y k_1 k_2 k_2 k_2 k_2 k_2 k_3 k_2 k_3 k_2 k_3 k_3 k_4 k_2 k_3 k_3 k_4 k_5 $k_$
Net Disp /	$x = x_1 + x_2$	$F = F_1 + F_2$
Force		
On Subs	$\frac{F}{K_s} = \frac{F}{K_1} + \frac{F}{K_2}$	$K_P x = K_1 x + K_2 x$

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 55

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

k _{eff}	$\frac{1}{K_s} = \frac{1}{K_1} + \frac{1}{K_2}$	$K_P = K_1 + K_2$
" n " identical	$K_s = \frac{K}{n}$	$K_p = nK$
Conclusion	K₅ less than any K	K _p greater than any K

TWO MARKS

1 Define oscillatory motion.

Definition	When an object or a particle moves back and forth repeatedly for some duration of time its motion is said to be oscillatory.
Example	heart beat, pendulum clock

2 What are periodic motions?

Definition	Any motion which repeats itself in a fixed time interval
Example	Hands in pendulum clock, swing of a cradle, the revolution of the Earth around the Sun, waxing and waning of Moon

3 What are non periodic motions?

Definition	Any motion which doesn't repeats itself in a fixed time interval
Example	Occurrence of Earth quake, eruption of volcano, etc.

4 Define Force constant

- > Force constant is defined as the force per unit length.
- ➢ Unit : Nm⁻¹
- 5 Define Time period
 - > The time taken by a particle to complete one oscillation.
 - > Unit : s
- 6 Define Frequency
 - > The number of oscillations produced by the particle per second is frequency.
 - > Unit : Hz

11. WAVES

FIVE MARKS

1 Derive an expression for velocity of transverse waves in a stretched string

Diagram	$ \begin{array}{c} V \\ A \\ X \\ B \\ \hline P \\ \hline T \\ T \\ F \\ P \\ \hline P \\ \hline T \\ F \\ P \\ \hline P \\ \hline T \\ F \\ \hline T \\ T \\ F \\ \hline T \\ F \\ \hline T \\ T \\ T \\ F \\ \hline T \\ T \\$	T $\cos\left(\frac{\theta}{2}\right)$ Note	
Resolving T	Horizontal	T Cost	Cancels each other
_	Vertical	Tsinθ	Added up
From Tensional force	$F = \frac{T dl}{R} - (1)$	2	
Centripetal force	$F = \frac{dm V^2}{R} = \frac{V^2 \mu dl}{R}$	(2)	
(1)=(2)	$\frac{Tdl}{R} = \frac{V^2\mu dl}{R}$		
Velocity of the string	$v = \sqrt{\frac{T}{\mu}}$		

2 Closed organ pipe

	One end	is closed & a	nother open			
Description	Antinodes formed at open end Node is formed at closed end L is the length of the pipe					
	nodes	Antinodes	Vibrating length	Wavelength	Frequency	
Mode			$l=rac{n\lambda}{4}$	$\lambda = rac{4l}{n}$	$f=rac{V}{\lambda}$	
Fundamental	1	1	$\frac{\lambda}{4}$	4 <i>L</i>	$f_1 = \frac{V}{\lambda} = \frac{V}{4L}$	
Second	2	2	$\frac{3\lambda}{4}$	$\frac{4L}{3}$	$f_2 = \frac{V}{\lambda} = \frac{3V}{4L}$	

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 58

VSR [V.SUNDARARAJAN M.Sc., M.Ed., M.Phil.]

Third mode	3	3	$\frac{5\lambda}{4}$	$\frac{4L}{5}$	$f_3 = \frac{V}{\lambda} = \frac{5V}{4L}$	
Frequency of n th harmonics		s $f_n = 0$	$(2n+1)f_1$		•	
$f_1: f_2: f_3: f_4$		1:3:5	1:3:5:7			
Nature		Odd ha	rmonics			

3 Open organ pipes

Both the ends are open				AA		
 Anti nodes are formed at open ends 					N	
Nodes are formed at mid point				Α		A
L ➔length of the pipe						
Mode	nodes	antinodes	Vibrat	ing length	Wavelength	Frequency
			l	$=\frac{n\lambda}{2}$	$\lambda = \frac{2l}{n}$	$f=rac{V}{\lambda}$
Fundamental	1	2		$\frac{\lambda_1}{2}$	2L	$f_1 = \frac{V}{\lambda_1} = \frac{V}{2L}$
Second	2	3		λ ₂	L	$f_2 = \frac{V}{\lambda_2} = \frac{V}{L}$
Third mode	3	4	0	$\frac{3\lambda_3}{2}$	$\frac{2L}{3}$	$f_3 = \frac{V}{\lambda_3} = \frac{3V}{2L}$
Frequency of n th harmonics			$f_n =$	$(n)f_1$		
$f_1: f_2: f_3: f_4$ 1			1:2:3	3:4		
Natural harmonics						

4 Resonance air column

THE HR. SEC. SCHOOL FOR BOYS, SRIRANGAM. | 59

	> At particular length frequency of air column resonates with
	frequency tuning fork
First resonance	\succ Occurs at L ₁
	$\sum_{n=1}^{\infty} \frac{1}{4} = L_1 + e - (1)$
Second resonance	\succ Occurs at L ₂
	$\succ \frac{3\lambda}{4} = L_2 + e - (2)$
(2) - (1)	$\lambda = 2\Delta L$
The speed of sound	$v = f\lambda = 2f\Delta L$
•	
End correction	$e=\frac{L_2-3L_1}{2}$

5 Newton's formula for speed of sound waves in air and Laplace correction

	Newton	Laplace
Assumption	Isothermal	Adiabatic
law	Boyle's law	Poisson's law
	PV = constant	$PV^{\gamma} = constant$
Differentiating	$P = -V\frac{dP}{dV} = B$	$P\gamma = -V\frac{dP}{dV} = B$
Velocity of sound	$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{P}{\rho}}$	$ u = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma P}{\rho}} $
At NTP	v = 280 ms ⁻¹	v = 331.3 ms ⁻¹

THREE MARKS

- 1 Characteristics of wave motion
 - > Medium must possess inertia and elasticity
 - > Under go reflection, refraction, interference and diffraction
 - Wave velocity is a constant
 - > Particle velocity \rightarrow maximum at mean position
 - ➔ minimum at extremes
- 2 What are the characteristics of progressive waves?
 - > Particles vibrate about mean position with same amplitude

- > Phase changes from 0 to 2π
- > Particles will be at rest at extremes
- > Same maximum velocity while passing through mean positions
- 3 Characteristics of stationary waves
 - > Wave doesn't move forward or backward i.e., remains stationary at a place
 - > Maximum amplitude is antinodes & minimum amplitude is nodes
 - > Distance between two consecutive nodes / antinodes is $\frac{\lambda}{2}$
 - > Distance between two neighboring nodes and antinodes is $\frac{\lambda}{4}$
 - Energy transfer is zero
- 4 Laws of transverse vibration in stretched string

$$f = \frac{1}{2l} \sqrt{\frac{2}{\mu}}$$

Law	Constant			
Length	T and µ		Inversely proportional	Vibrating length
Tension	l and µ	Frequency	Proportional	$\sqrt{Tension}$
mass	l and T		Inversely proportional	\sqrt{mass} per unit length

5 Explain the construction and working of stethoscope

Principle	Multiple reflection of sound				
Construction					
Chest Piece	Ear piece	Rubber tube			
Small disc shaped diaphragm	Metal tubes	Connects ear piece & chest			
Very sound sensitive	\succ Hear sounds from chest	piece			
Amplifies the detected sound					
Working					
Heart beat sound reaches the ear piece by multiple reflections.					

TWO MARKS

1 State laws of reflection

- > Angle of incidence = angle of reflection
- > Incident wave, reflected wave, normal lie in the same plane

2 Define interference

- > Two waves superimpose
- Forming as resultant wave
- > Greater, lower or same amplitude

3 Beats

When two or more wave superimpose each other with slightly different frequencies, then a sound of periodically varying amplitude at a point is observed.

4 Define Intensity. Write its unit.

The sound power transmitted per unit area taken normal to the propagation of the sound wave.

5 Loudness

The degree of sensation of sound produced in the ear or the perception of sound by the listener.