VIRUDHUNAGAR DISTRICT COMMON EXAMINATIONS COMMON QUARTERLY EXAMINATION - SEPTERMBER 2024

STD: XII COMPUTER SCIENCE

PART - I

- I. Answer all and Choose the best answer:
- 1. d. Interpreter
- 2. d. Abstract data type
- 3. b. Protected members
- 4. a. Algorithmic solution
- 5. a.#
- 6. a. for
- 7. b.Recursive
- 8. a. Required
- 9. c. Immutable
- 10. d. third argument of slice operation
- 11. b.8
- 12. c. extend()
- 13. d. __del__()
- 14. d. Instantiation
- 15. b. else

PART - II

- II. Answer ANY 6 of the following and question no. 33 is compulsory: $6 \times 2 = 12$
- 16. What is Subroutine?
 - Subroutines are small sections of code that are used to perform a particular task that can be used repeatedly.

17. Differentiate Constructors and Selectors.

CONSTRUCTORS	SELECTORS	
Constructors are functions that build	Selectors are functions that retrieve	
the abstract data type.	information from the data type.	
Constructors create an object, bundling	Selectors extract individual pieces of	
together different pieces of information	information from the object.	

18. How Python represents the private and protected Access specifiers?

Python prescribes a convention of adding a prefix ___(double underscore) results in a variable name or method becoming private.

Example: self.__n2=n2

• Adding a prefix _ (single underscore) to a variable name or method makes it protected.

Example: self._sal = sal

19. Write the phases of performance evaluation of an algorithm.

A Priori estimates: This is a theoretical performance analysis of an algorithm. Efficiency of an algorithm is measured by assuming the external factors.

A Posteriori testing: This is called performance measurement. In this analysis, actual statistics like running time and required for the algorithm executions are collected.

20. What are the different operators that can be used in Python? Operators that can be used in Python:

- Operators are special symbols which represent computations, conditional matching in programming.
- Operators are categorized as Arithmetic, Relational, Logical, Assignment and Conditional.

21. Write note on break statement.

break statement:

The **break** statement terminates the loop containing it.

Control of the program flows to the statement immediately after the body of the loop.

22. What are the main advantages of function? Main advantages of functions are ,

- It avoids repetition and makes high degree of code reusing.
- It provides better modularity for your application.

23. How will you delete a string in Python?

- Python will not allow deleting a particular character in a string.
- Whereas you can remove entire string variable using del command.

Example:

del str1[2]

24. Write the syntax of creating a Tuple with n number of elements.

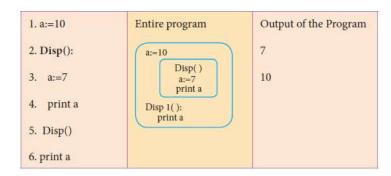
Syntax:

Tuple_Name = (E1, E2, E2 En) # Tuple with n number elements
Tuple_Name = E1, E2, E3 En # Elements of a tuple without parenthesis

PART - III

III. Answer ANY 6 of the following and question no. 33 is compulsory: $6 \times 3 = 18$

25. Differentiate concrete data type and abstract data type.


Pure functions	Impure functions
Pure functions will give exact result	Impure functions never assure you
when the same arguments are passed.	that the function will behave the same every time it's called.
Dung function does not course any side	
Pure function does not cause any side	Impure function causes side effects to
	effects to its output. its output.
The return value of the pure functions	The return value of the impure
solely depends on its arguments	functions does not solely depend on
passed.	its arguments passed.
They do not modify the arguments	They may modify the arguments
which are passed to them.	which are passed.
Example: strlen(), sqrt()	Example: random(), Date()

26. . Define Global scope with an example.

Global scope

- A variable which is declared outside of all the functions in a program is known as global variable.
- $oldsymbol{\omega}$ Global variable can be accessed inside or outside of all the functions in a program.

Example:

27. List the characteristics of an algorithm.

Characteristics	Meaning		
Input	Zero or more quantities to be supplied.		
Output	At least one quantity is produced.		
Finiteness	Algorithms must terminate after finite number of steps.		
Definiteness	All operations should be well defined.		
Effectiveness	Every instruction must be carried out effectively.		
Correctness	The algorithms should be error free.		
Simplicity	Easy to implement.		
Unambiguous	Algorithm should be clear and unambiguous. Each of its steps		
	should be clear and must lead to only one meaning.		
Feasibility	Should be feasible with the available resources.		
Portable	An algorithm should be generic, independent and able to		
	handle all range of inputs.		
Independent	An algorithm should have step-by-step directions, which		
	should be independent of any programming code.		

28. Explain Ternary operator with examples.

Ternary operator:

- Ternary operator is also known as conditional operator that evaluates something based on a condition being true or false.
- It simply allows testing a condition in a single line replacing the multiline if-else making the code compact.

Syntax:

Variable Name = [on_true] if [Test expression] else [on_false]

Example:

min = 50 if 49<50 else 70 # Output: min = 50

29. Write a program to display.

```
A
A B
A B C D
A B C D E
```

CODE:

```
a=['A','B','C','D','E']
for i in range(0,6):
    for j in range(0,i):
        print(a[j],end=" ")
    else:
        print()
```

30. Write the rules of local variable.

Rules of local variable:

- A variable with local scope can be accessed only within the function/block that it is created in.
- When a variable is created inside the function/block, the variable becomes local to it.
- A local variable only exists while the function is executing.
- The formal arguments are also local to function.

31. Write a note about count() function in python.

Count() function in python:

- Returns the number of substrings occurs within the given range.
- Remember that substring may be a single character.
- Range (beg and end) arguments are optional. If it is not given, python searched in whole string.
- Search is case sensitive.

SYNTAX:

```
Count(str, beg, end)
```

EXAMPLE:

```
>>> str1="Raja Raja Chozhan"
>>> print(str1.count('Raja'))
```

OUTPUT:

2

32. How do define constructor and destructor in Python? CONSTRUCTOR:

- init" is a special function begin and end with double underscore in Python act as a Constructor.
- Constructor function will automatically executed when an object of a class is created.

General format of constructor:

```
def ___init__(self, [args ......]):
<statements>
```

DESTRUCTOR:

 Destructor is also a special method gets executed automatically when an object exit from the scope.

In Python, __del__() method is used as destructor.

General format of destructor:

```
def __del__(self):
<statements>
```

33. what will be the output of the following code?

```
list=[2**x for x in range(5)]
print(list)
```

output;

1 2 4 8 16

PART - IV

34. a. 1. What are called Parameters and write a note on

- (i) Parameter without Type (ii) Parameter with Type
- Parameters are the variables in a function definition
- Arguments are the values which are passed to a function definition.

Two types of parameter passing are,

- 1. Parameter Without Type
- 2. Parameter With Type
- 1. Parameter Without Type:

• Lets see an example of a function definition of Parameter Without Type:

(requires: b>=0)

(returns: a to the power of b)

let rec pow a b:=

if b=0 then 1

else a * pow a (b-1)

- In the above function definition variable "b" is the parameter and the value passed to the variable "b" is the argument.
- The precondition (requires) and postcondition (returns) of the function is given.
- We have not mentioned any types: (data types). This is called parameter without type.
- In the above function definition the expression has type "int", so the function's return type also be "int" by implicit.

2. Parameter With Type:

- Now let us write the same function definition with types,
- In this example we have explicitly annotating the types of argument and return type as *"int*".
- Here, when we write the type annotations for "a" and "b" the parantheses are mandatory.
- This is the way passing parameter with type which helps the compiler to easily infer them.

Or

How will you facilitate data abstraction? Explain it with suitable example.

- Data abstraction is supported by defining an abstract data type (ADT), which is a collection of constructors and selectors.
- To facilitate data abstraction, you will need to create two types of functions:

a) Constructor:

- Constructors are functions that build the abstract data type.
- © Constructors create an object, bundling together different pieces of information. For example, say you have an abstract data type called city.
 - This city object will hold the city"s name, and its latitude and longitude.
 - To create a city object, you"d use a function like city = makecity (name, lat, lon).
 - Here makecity (name, lat, lon) is the constructor which creates the object city.

b) Selectors:

- Selectors are functions that retrieve information from the data type.
- Selectors extract individual pieces of information from the object.
- To extract the information of a city object, you would use functions like
 getname(city)

- ✓ getlat(city)
- ✓ getlon(city)

These are the selectors because these functions extract the information of the city object.

35. Explain the types of scopes for variable or LEGB rule with example.

SCOPE:

Scope refers to the visibility of variables, parameters and functions in one part of a program to another part of the same program.

TYPES OF VARIABLE SCOPE:

- Local Scope
- Enclosed Scope
- Global Scope
- Built-in Scope

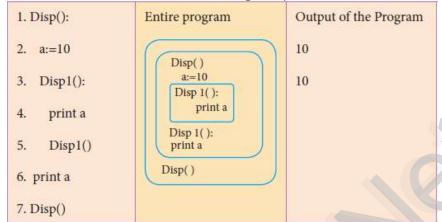
LEGB RULE:

- The **LEGB** rule is used to decide the order in which the scopes are to be searched for scope resolution.
- The scopes are listed below in terms of hierarchy (highest to lowest).

Local(L)	Defined inside function/class	
Enclosed(E)	Defined inside enclosing functions (Nested function concept)	
Global(G)	Defined at the uppermost level	
Built-in (B) Reserved names in built-in functions (modules)		

i) LOCAL SCOPE:

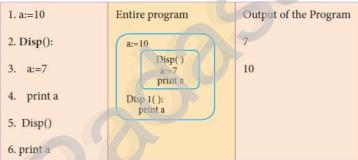
- Local scope refers to variables defined in current function.
- A function will always look up for a variable name in its local scope.
- Only if it does not find it there, the outer scopes are checked.


Example:

• On execution of the above code the variable **a** displays the value 7, because it is defined and available in the local scope.

ii) ENCLOSED SCOPE:

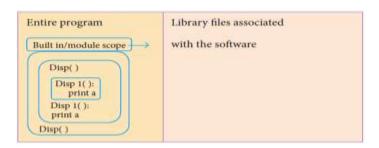
- A variable which is declared inside a function which contains another function definition with in it, the inner function can also access the variable of the outer function. This scope is called enclosed scope.
- When a compiler or interpreter searches for a variable in a program, it first search Local, and then search Enclosing scopes.



• In the above example Disp1() is defined within Disp(). The variable "a" defined in Disp() can be even used by Disp1() because it is also a member of Disp().

iii) GLOBAL SCOPE:

- A variable which is declared outside of all the functions in a program is known as global variable.
- Global variable can be accessed inside or outside of all the functions in a program.


Example:

On execution of the above code the variable **a** which is defined inside the function displays the value 7 for the function call Disp() and then it displays 10, because **a** is defined in global scope.

iv) BUILT-IN-SCOPE:

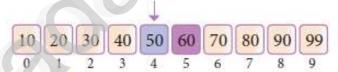
- The built-in scope has all the names that are pre-loaded into the program scope when we start the compiler or interpreter.
- Any variable or module which is defined in the library functions of a programming language has Built-in or module scope.

OR

What is Binary search? Discuss with example.

BINARY SEARCH:

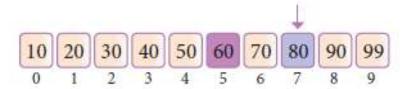
- Binary search also called half-interval search algorithm.
- It finds the position of a search element within a sorted array.
- The binary search algorithm can be done as divide-and-conquer search algorithm and executes in logarithmic time.


Binary Search Working principles with example:

- List of elements in an array must be sorted first for Binary search.
- The array is being sorted in the given example and it is suitable to do the binary search algorithm.
- Let us assume that the search element is 60 and we need to search the location or index of search element 60 using binary search.

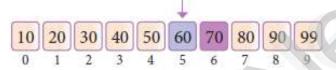
• First, we find index of middle element of the array by using this formula:

$$mid = low + (high - low) / 2$$


• Here it is, 0 + (9 - 0)/2 = 4. So, 4 is the mid value of the array.

© Compare the value stored at index 4 with target value, which is not match with search element.

As the search value 60 > 50.


- Now we change our search range low to mid + 1 and find the new mid value as index 7.
- We compare the value stored at index 7 with our target value.
- ullet Element not found because the value in index 7 is greater than search value . (80 > 60)

 So, the search element must be in the lower part from the current mid value location

Now we change our search range low to mid - 1 and find the new mid value as index 5

- Now we compare the value stored at location 5 with our search element.
- We found that it is a match.

- We can conclude that the search element 60 is found at location or index 5.
- 36. Explain input () and print() function with examples.

Input and Output Functions

A program needs to interact with the user to accomplish the desired task; this can be achieved using

Input-Output functions.

- The input() function helps to enter data at run time by the user
- The output function **print()** is used to display the result of the program on the screen after execution.

1) print() function

• In Python, the **print()** function is used to display result on the screen. **Syntax for print()**:

```
Example
print ("string to be displayed as output")
print (variable)
print ("String to be displayed as output", variable)
print ("String1", variable, "String 2", variable, "String 3" .....)
 Example
>>> print ("Welcome to Python Programming")
       Welcome to Python Programming
>>> x = 5
>>> y = 6
>>> z = x + y
>>> print (z)
      11
>>> print ("The sum = ", z)
      The sum = 11
>>> print ("The sum of", x, " and ", y, " is ", z)
       The sum of 5 and 6 is 11
```

- The print () evaluates the expression before printing it on the monitor.
- The print () displays an entire statement which is specified within print().
- Comma (,) is used as a separator in print () to print more than one item.

2) input() function

• In Python, input() function is used to accept data as input at run time.

The syntax for input() function is,

Variable=input("prompt string)

"Prompt string" in the syntax is a message to the user, to know what input can be given.

- If a prompt string is used, it is displayed on the monitor; the user can provide expected data from the input device.
- The input() takes typed data from the keyboard and stores in the given variable.
- If prompt string is not given in input(), the user will not know what is to be typed as input.

```
Example 1:input() with prompt string

>>> city=input ("Enter Your City: ")
Enter Your City: Madurai
>>> print ("I am from ", city)
I am from Madurai

Example 2:input() without prompt string
>>> city=input()
Rajarajan
>>> print (I am from", city)
I am from Rajarajan
```

Example:

Input() using Numerical values:

- The input () accepts all data as string or characters but not as numbers.
- The int() function is used to convert string data as integer data explicitly.

Example:

```
x = int (input("Enter Number 1:"))
y = int (input("Enter Number 2: "))
print ("The sum = ", x+y)
Output:
      Enter Number 1: 34
      Enter Number 2: 56
      The sum = 90
```

OR

Write a detail note on if..elif....else statement with suitable example. Nested if .. elif ... else statement:

- When we need to construct a chain of if statement(s) then "elif" clause can be used instead of "else".
- "elif" clause combines if .. else-if .. else statements to one if .. elif ... else.
- "elif" can be considered to be abbreviation of "else if".
- In an "if" statement there is no limit of "elif" clause that can be used, but an "else" clause if used should be placed at the end.

Syntax:

```
if <condition-1>:
      statements-block 1
elif <condition-2>:
      statements-block 2
else:
      statements-block n
```

- In the syntax of if .. elif .. else mentioned above, condition-1 is tested if it is true then statementsblock1 is executed.
- Otherwise the control checks condition-2, if it is true statements-block2 is executed and even if it fails statements-block n mentioned in else part is executed.

Example:

```
m1=int (input("Enter mark in first subject : "))
m2=int (input("Enter mark in second subject : "))
avg= (m1+m2)/2
if avg>=80:
```

print ("Grade: A")
elif avg>=70 and avg<80:
 print ("Grade: B")
elif avg>=60 and avg<70:
 print ("Grade: C")
elif avg>=50 and avg<60:
 print ("Grade: D")

else:

("Grade : E")

Output:

Enter mark in first subject: 34 Enter mark in second subject: 78

Grade: D

37. Explain the following built-in functions.

(a) id() (b) chr() (c) round() (d) type() (e) pow() **Function** Description Example Syntax Return the "identity" of an x=15 y= 'α' object. i.e. the address of the object in memory. print ('address of x is :',id (x)) id (object) id () print ('address of y is :',id (y)) Output: address of x is : 1357486752 address of y is : 13480736 Returns the Unicode c=65 character for the given print (chr chr(i) chr() ASCII value. (c)) Output: Α Returns the nearest x = 17.9print ('x value is rounded to', integer to its input. round 1. First argument round (x)round() (number (number) is used to Output: [,ndigits]) specify the value to be X value is rounded to 18 rounded Returns the type of x = 15.2object for the given single print (type type object. (x)) type() (object) Output: <class

			'float'>
	Returns the computation		α= 5
	of a,b i.e. (a**b) a raised		b= 2
pow()	to the power of b.	pow(a,b)	print (pow (a,b))
			Output:
			25

OR

b. Explain about string operators in python with a suitable example.

STRING OPERATORS:

- Python provides the following string operators to manipulate string.
- (i) Concatenation (+)
 - Joining of two or more strings using plus (+) operator is called as Concatenation.

Example

```
>>> "welcome" + "Python"
```

Output:

'welcomePython'

(ii) Append (+ =)

• Adding more strings at the end of an existing string using operator += is known as append.

Example:

```
>>> str1="Welcome to "
>>> str1+="Learn Python"
>>> print (str1)
```

Output:

Welcome to Learn Python count(str, beg, end

(iii) Repeating (*)

The multiplication operator (*) is used to display a string in multiple number of times.

Example:

```
>>> str1="Welcome "
>>> print (str1*4)
```

Output:

Welcome Welcome Welcome

(iv) String slicing

- Slice is a substring of a main string.
- A substring can be taken from the original string by using [] slicing operator and index values.
- Using slice operator, you have to slice one or more substrings from a main string.

General format of slice operation:

str[start:end]

- Where **start** is the beginning index and **end** is the last index value of a character in the string.
- Python takes the end value less than one from the actual index specified.

Example: slice a single character from a string

```
>>> str1="THIRUKKURAL"
```

>>> print (str1[0])

Output:

Т

(v) Stride when slicing string

- When the slicing operation, you can specify a third argument as the stride, which refers to the number of characters to move forward after the first character is retrieved from the string.
- The default value of stride is 1.
- Python takes the last value as n-1
- You can also use negative value as stride, to prints data in reverse order.

Example:

```
>>> str1 = "Welcome to learn Python"
>>> print (str1[10:16])
>>> print(str1[::-2])
```

Output:

Learn

nhy re teolW

38. Explain the different set operations supported by python with suitable example.

A Set is a mutable and an unordered collection of elements without duplicates.

Set Operations:

• The set operations such as Union, Intersection, difference and Symmetric difference.

(i) Union:

• It includes all elements from two or more sets.

- The operator | is used to union of two sets.
- The function union() is also used to join two sets in python.

Example:

Output:

(ii) Intersection:

- It includes the common elements in two sets.
- The operator & is used to intersect two sets in python.
- The function intersection() is also used to intersect two sets in python.

Example:

Output:

(iii) Difference:

- It includes all elements that are in first set (say set A) but not in the second set (say set B).
- The minus (-) operator is used to difference set operation in python.
- The function difference() is also used to difference operation.

Example:

Output:

$$\{2, 4\}$$

(iv) Symmetric difference

- It includes all the elements that are in two sets (say sets A and B) but not the one that are common to two sets.
- The caret (^) operator is used to symmetric difference set operation in python.
- The function symmetric_difference() is also used to do the same operation.

Example:

Output:

OR

Write a program using class to accept three sides of a triangle and print its area.

a = float(input('Enter first side: '))

b = float(input('Enter second side: '))

c = float(input('Enter third side: '))

s = (a + b + c) / 2.

area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

print('The area of the triangle is %0.2f' %area)

output:

Enter first side: 3

Enter second side: 4

Enter third side: 5

The area of the triangle is 6.00

Mrs. GEETHAMARIMUTHU, M.Sc., B.Ed.
P.G. Computer Science
VMG RR SRI SARADA SAKTHI MHSS
VIRUDHUNAGAR