Centum team

QUARTERLY EXAMINATION - 2024-25

12th Standard

Maths

Date : 10-09-

Total Marks : 1

20 x 1 =

Exam Time : 03:00 Hrs

I. CHOOSE THE CORRECT ANSWER

If |adj(adj A)| = |A|⁹, then the order of the square matrix A is
 (a) 3 (b) 4 (c) 2 (d) 5

2) If A, B and C are invertible matrices of some order, then which one of the following is not true?

(a) $adj A = |A|A^{-1}$ (b) adj(AB) = (adj A)(adj B) (c) $det A^{-1} = (det A)^{-1}$ (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

- 3) If ρ (A) = ρ([A| B]), then the system AX = B of linear equations is
 (a) consistent and has a unique solution
 (b) consistent
 (c) consistent and has infinitely many solution
 (d) inconsistent
- 4) The area of the triangle formed by the complex numbers z, iz and z+iz in the Argand's diagram is

(a)
$$\frac{1}{2}|z|^2$$
 (b) $|z|^2$ (c) $\frac{3}{2}|z|^2$ (d) $2|z|^2$

5) If |z| = 1, then the value of $\frac{1+z}{1+\bar{z}}$ is (a) z (b) \bar{z} (c) $\frac{1}{z}$ (d) 1

6) If $\omega \neq 1$ is a cubic root of unity and $(1 + \omega)^7 = A + B\omega$, then (A, B) equals (a) (1, 0) (b) (-1, 1) (c) (0, 1) (d) (1, 1)

- A polynomial equation in x of degree n always has
 (a) n distinct roots
 (b) n real roots
 (c) n complex roots
 (d) at most one root
- 8) The number of real numbers in $[0, 2\pi]$ satisfying $\sin^4 x 2\sin^2 x + 1$ is (a) 2 (b) 4 (c) 1 (d) ∞
- 9) $\sin^{-1}(\cos x) = \frac{\pi}{2} x$ is valid for (a) $-\pi \le x \le 0$ (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (d) $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$
- 10) The equation $\tan^{-1} x \cot^{-1} x = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right)$ has (a) no solution (b) unique solution (c) two solutions (d) infinite number of solutions
- 11) The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line 3x-4y = m at two distinct points if (a) 15 < m < 65 (b) 35 < m < 85 (c) -85 < m < -35 (d) -35 < m < 15
- 12) If P(x, y) be any point on $16x^2 + 25y^2 = 400$ with foci F₁ (3, 0) and F₂ (-3, 0) then PF₁ + PF₂ is (a) 8 (b) 6 (c) 10 (d) 12
- 13) If the two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles then the locus of P is (a) 2x + 1 = 0 (b) x = -1 (c) 2x - 1 = 0 (d) x = 1

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Padasalai.Net

14) If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then

(a)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$$
 (b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$ (c) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$ (d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$

- 15) The angle between the line $\vec{r} = (\hat{i} + 2\hat{j} - 3\hat{k}) + t(2\hat{i} + \hat{j} - 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{i} + \hat{j}) + 4 = 0$ is (a) 0° (b) 30° (c) 45° (d) 90°
- 16) If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, then the value of λ is (a) $2\sqrt{3}$ (b) $3\sqrt{2}$ (c) 0 (d) 1
- 17) Cramer's rule is applicable only when _

(a) $\Delta \neq 0$ (b) $\Delta = 0$ (c) $\Delta = 0$, $\Delta_x = 0$ (d) $\Delta_x = \Delta_y = \Delta_z = 0$

18) The value of $(1+i)^4 + (1-i)^4$ is

(a) 8 (b) 4 (c) -8 (d) -4

19)
$$tan^{-1}\left(tan\frac{9\pi}{8}\right)$$

(a) $\frac{9\pi}{8}$ (b) $\frac{-9\pi}{8}$ (c) $\frac{\pi}{8}$ (d) $\frac{-\pi}{8}$

20) The equation of tangent at (1, 2) to the circle $x^2 + y^2 = 5$ is _____

(a) x + y = 3 (b) x + 2y = 3 (c) x - y = 5 (d) x - 2y = 5

II. ANSWER ANY SEVEN OUESTIONS QUESTION NUMBER 30 IS COMPULSORY

21) If A is a non-singular matrix of odd order, prove that |adj A| is positive

- 22) Find the rank of the following matrices by minor method:
 - $egin{array}{ccc} -1 & 3 \ 4 & -7 \ 3 & -4 \end{array}$
- 23) Find the square roots of 4+3i
- 24) Show that the equation $2x^2 - 6x + 7 = 0$ cannot be satisfied by any real values of x.
- 25) Find the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ (in radians and degrees).
- 26) Find the general equation of the circle whose diameter is the line segment joining the points (-4, -2) and (1, 1) is $x^2+y^2+5x+3y+6=0$
- 27) Find the vertex, focus, equation of directrix and length of the latus rectum of the following: $x^2 = 24y$
- 28) A particle is acted upon by the forces $(\hat{3}i - \hat{2}j + \hat{2}k)$ and $(\hat{2}i + \hat{j} - \hat{k})$ is displaced from the point (1, 3, -1) to the point (4, -1, λ). If the work done by the forces is 16 units, find the value of λ .
- 29) Find the angle between the line $\vec{r} = (2\hat{i} - \hat{j} + \hat{k}) + t(\hat{i} + 2\hat{j} - 2\hat{k})$ and the plane $\vec{r} = (6\hat{i} + 3\hat{j} + 2\hat{k}) = 8$
- 30) Find the value of the complex number $(i^{25})^3$.

III. ANSWER ANY SEVEN QUESTIONS QUESTION NUMBER 40 IS COMPULSORY

- 31) If $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -3 \\ 5 & 2 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$
- 32) Simplify $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$ into rectangular form
- 33) Which one of the points 10 - 8i, 11 + 6i is closest to 1 + i.

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

7 x 3 =

7 x 2 =

www.Padasalai.Net

www.Trb Tnpsc.Com

7x5 =

- 34) If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units. Find the volume of the cuboid.
- 35) If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z < 1, show that $x^2 + y^2 + z^2 + 2xyz = 1$
- 36) Find the equation of the hyperbola with vertices $(0, \pm 4)$ and foci $(0, \pm 6)$.
- The equation of the ellipse is $\frac{(x-11)^2}{484} + \frac{y^2}{64} = 1$. (x and y are measured in centimeters) where to the nearest centimeter, should the patient's kidney stone be placed so that the reflected sound hits the kidney stone?
- ³⁸⁾ Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force $(\hat{2i} + \hat{j} \hat{k})$, whose line of action passes through the origin
- 39) Find the vector equation of a plane which is at a distance of 7 units from the origin having 3,-4, 5 as direction ratios of a normal to it.
- 40) Solve by matrix inversion method x + y = 3, 2x + 3y = 8.
- IV. ANSWER ALL THE QUESTIONS
- 41) a) If $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, show that $A^{-1} = \frac{1}{2} (A^2 - 3I)$.

(OR)

42) a)

43)

A boy is walking along the path $y = ax^2 + bx + c$ through the points (-6, 8), (-2, -12) and (3, 8). He wants to meet his friend at P(7, 60). Will he meet his friend? (Use Gaussian elimination method.)

(OR)

b) If
$$z = x + iy$$
 and $\arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, then show that $x^2 + y^2 + 3x - 3y + 2 = 0$

a) Solve the equation $6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution

b)

Two coast guard stations are located 600 km apart at points A(0, 0) and B(0, 600). A distress signal from a ship at P is received at slightly different times by two stations. It is determined that the ship is 200 km farther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the ship.

(OR)

(OR)

44)

- a) Solve: (x 4)(x 7)(x 2)(x + 1) = 16
- b) Find the non-parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9
- 45) a) Find the domain of $f(x) = \sin^{-1}(\frac{|x|-2}{3}) + \cos^{-1}(\frac{1-|x|}{4})$

(OR)

- b) Find the equation of the plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x y + z = 3 and at a distance $\frac{2}{\sqrt{3}}$ from the point (3, 1 -1)
- 46) a) Find the value of $tan\left[\frac{1}{2}sin^{-1}\left(\frac{2a}{1+a^2}\right) + \frac{1}{2}cos^{-1}\left(\frac{1-a^2}{1+a^2}\right)\right]$

(OR)

b) Find the equation of the circle passing through the points (1, 1), (2, -1) and (3, 2).

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

b) Find the cube roots of unity.

47) a) Identify the type of conic and find centre, foci, vertices, and directrices of each of the following : $18x^2+12y^2-144x+48y+120 = 0$

(OR)

b) Using vector method, prove that $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

S Balakrishnan M.sc Bed maths S/o Sampangiraman PWD VEPPANAPALLI KRISHNAGIRI-Dt Pin-635121 Cell -9159652220