www.Padasalai.Net

www.Trb Tnpsc.Com

12 Time : 3.00 hrs. Time : 3.00 hrs. DIAL COLMBATORE Quarterly Examination - 2024 MATHEMATICS PART - A Reg. No.
Answer all the questions. Choose the correct answer $20 \times 1 = 20$ 1. If A is a non-singular matrix such that $41 = \begin{bmatrix} 5 & 3 \end{bmatrix}$
a) $\begin{bmatrix} -5 & 3 \\ -5 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 5 & 3 \\ -1 & -3 \end{bmatrix}$ c) $\begin{bmatrix} -1 & -3 \\ -2 & -1 \end{bmatrix}$ then $(A^T)^{-1}$ is
$\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} d \\ 3 & -1 \end{bmatrix}$ $2 k = \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix} [k 0]$
2. If $A = \begin{bmatrix} -\sin\theta & \cos\theta \end{bmatrix}$ and $A(adjA) = \begin{bmatrix} 0 & k \end{bmatrix}$ then $k = a = a = 0$ b) $\sin\theta = c \cos\theta = d = 1$
3. If $A = \begin{bmatrix} 4 & 2 \end{bmatrix}$ then $9I_2 - A = a$) A^{-1} b) $\frac{A^{-1}}{2}$ c) $3A^{-1}$ d) $2A^{-1}$ 4. If $ Z - 2 + i \le 2$ then the
5. $i^{n} + i^{n+1} + i^{n+2} + i^{n+3}$ is a) 0 b) 1 c) -1 d) i 6. If $(1 + i) (1 + 2i) (1 + 3i) \dots (1 + ni) = x + iy$ then 2.5.10 $(i + n^{2})$ is a) 1 b) i c) $x^{2} + y^{2}$ d) $1 + n^{2}$ 7. A zero of $x^{3} + 64$ is a) 0 b) 4 c) 4i d) -4
8. If α , β , γ are the zeros of $x^3 + px^2 + qx + r$ then $\sum \frac{1}{\alpha}$ is a) $\frac{-q}{r}$ b) $\frac{-p}{r}$ c) $\frac{q}{r}$ d) $\frac{-q}{p}$ 9. If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$, then $\cos^{-1}x + \cos^{-1}y$ is equal to a) $\frac{2\pi}{r}$, π is π
10. $\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) = a)\frac{\pi}{2}b)\frac{\pi}{3}c)\frac{\pi}{4}d)\frac{\pi}{6}$
11. If $\sin^{-1}x + \cot^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$ then x is equal to a) $\frac{1}{2}$ b) $\frac{1}{\sqrt{5}}$ c) $\frac{2}{\sqrt{5}}$ d) $\frac{\sqrt{3}}{2}$
13. If $x + y = k$ is a normal to the parabola $y^2 = 12x$ then the value of k is a) 3 b) -1 c) 1 d) 9
14. The eccentricity of the ellipse $(x - 3)^2 + (y - 4)^2 = \frac{y}{9}$ is a) $\frac{\sqrt{3}}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{3\sqrt{2}}$ d) $\frac{1}{\sqrt{3}}$ 15. If $\frac{1}{3}$ and $\frac{1}{3\sqrt{2}}$ d) $\frac{1}{\sqrt{3}}$
16. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}] = 3$ then $\{[\vec{a}, x, \vec{b}, \vec{b}, x, \vec{c}, \vec{c}, x, \vec{a}]\}^2$ is equal to a) 81 b) 9 c) 27 d) 18
17. The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$, $z = 2$ and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$ 18. If A is square matrix of order n then adjA is a) $ A ^2$ b) $ A ^n$ c) $ A ^{n-1}$ d) $ A $
20. If $x^2 + y^2 = 1$, then the value of $\frac{1+x+iy}{1+x-iy}$ is a) $x - iy$ b) $2x = c$) $-2iy = d$ $x + iy$
PART - B Answer any seven questions. Question number 30 is compulsory. 7 x 2 = 14
21. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$ by reducing it to a row-echelon form.
22. If $z_1 = 3 - 2i$ and $z_2 = 6 + 4i$, find $\frac{z_1}{z_2}$ in the rectangular form. $\int z (10 - 24?)$ 23. Which one of the points $10 - 8i$, $11 + 6i$ is closest to $1 + i$. $11 + 6i$? 24. Solve the equation $x^4 - 14x^2 + 45 = 0$
25. Find the value of $\sec^{-1}\left(\frac{-2\sqrt{3}}{3}\right) = \frac{5\pi}{6} \times E^{-1}\left(\frac{-2\sqrt{3}}{3}\right) = \frac{5\pi}{6} \times E^{-1}$
26. Obtain the equation of the circle for which (3, 4) and (2, -7) are the ends of a diameter.

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Padasalai.Net

www.Trb Tnpsc.Com

- x-2y+8=0 27. Find the equation of the tangent at t = 2 to the parabola $y^2 = 8x$. 28. The volume of the parallelopiped whose conterminus edges are $7\hat{i}+\lambda\hat{j}-3\hat{k}, \hat{i}+2\hat{j}-\hat{k}, -3\hat{i}+7\hat{j}+5\hat{k}$ Find the value of λ . Find the acute angle between the planes $\vec{r} \cdot (2i+2j+2k) = 11$ and 4x - 2y + 2z = 1529. cosθ $-\sin\theta$ Prove that 30. is orthogonal. sinA cosθ PART - C Answer any seven questions. Question number 40 is compulsory. 31. Solve by matrix inversion method 2x - y = 8; 3x + 2y = -2.
- 32. Test for consistency. 2x + 2y + z = 5, x y + z = 1, 3x + y + 2z = 4 In cons. No-solution
- 33. Find the values of the real numbers x and y of the complex numbers (3 i) x (2 i) y + 2i + 5 and
- 2x + (-1 + 2i)y + 3 + 2i are equal. $\chi = -1/2$ Y = 1
- 34. Solve the equation $9x^3 36x^2 + 44x 16 = 0$, if the roots form a arithmetic progression.
- 377-10 35. Simplify : sin^{-1} (sin10)
- 36. If y = 4x + c is a tangent to the circle $x^2 + y^2 = 9$, find c.

37. Find centre, foci, vertices and directrices of $\frac{x^2}{25} + \frac{y^2}{2} = 1$

38. Forces of magnitudes $5\sqrt{2}$ and $10\sqrt{2}$ units acting in the directions 3i+4j+5k and 10i+6j-8k respectively, act on

a particle which is displaced from the point with position vector 4i-3j-2k to the point with position vector 6i+j-3k. Find the work done by the forces.

39. Prove that
$$[a \times b, b \times c, c \times a] = [a \ b \ c]^2$$

40. If |z| = 2, show that $8 \le |z + 6 + 8i| \le 12$

Answer all the questions.

41. a) Solve by Cramer's Rule. 3x + 3y - z = 11, 2x - y + 2z = 9, 4x + 3y + 2z = 25 (OR) b) Investigate the value of λ and μ the system of linear equation 2x + 3y + 5z = 9, 7x + 3y - 5z = 8 $2x + 3y + \lambda z = \mu$ have i) No solution ii) Unique solution iii) an infinite number of solutions.

42. a) If z = x + iy is a complex number such that Im $\left| \frac{2z+1}{iz+1} \right| = 0$, show that the locus of z is $2x^2 + 2y^2 + x - 2y = 0$ (OR)

PART - D

b) Show that $\left[\frac{19+9i}{5-3i}\right]^{15} - \left[\frac{8+i}{1+2i}\right]^{15}$ is purely imaginary.

43. a) Find all zeros of the polynomial $x^6 - 3x^5 - 5x^4 + 22x^3 - 39x^2 - 39x + 135$, if it is known that 1 + 2i and $\sqrt{3}$ are two of at $\frac{1}{3}$ is a solution. $\frac{1}{3}, \frac{3}{2}, \frac{-1}{2}$

ts zeros. (OR) b) Solve the equation
$$6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0$$
 if it is known that

- a) Solve : $\tan^{-1}\left[\frac{x-1}{x-2}\right] + \tan^{-1}\left[\frac{x+1}{x+2}\right] = \frac{\pi}{4}$ (OR) b) Find the domain of $\sin^{-1}\left[\frac{|x|-2}{3}\right] + \cos^{-1}\left[\frac{1-|x|}{4}\right]$
- 45. a) Find the equation of the circle passing through the points (1, 1), (2, -1) and (3, 2) (OR) $\chi^2 + y^2 5\chi y 4 = 0$ b) Find the vertex, focus, directrix and length of latus rectum of the parabola $x^2 4x 5y 1 = 0$ 46. a) By vector method prove that $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$ (OR)
- b) On lighting a rocket craker it gets projected in a parabolic path and reaches a maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Find the angle of projection.

(a) If
$$\vec{a} = 2i+3j-k$$
, $\vec{b} = 3i+5j+2k$, $\vec{c} = -i-2j+3k$, verify that $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$

b) Find the parametric vector, non-parametric vector and carteasian form of the equations of the plane passing through the three non-collinear points (3, 6, -2), (-1, -2, 6) and (6, 4, -2) $\vec{\gamma} = 3 + 6 - 2 \cdot \vec{k} + s(-4i - 8i + 8i - 2i + 13i + 13i - 2i + 13i + 13i$

7. (161+241 +32 K)=120

12 - Mathematics - 2

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

7 x 3 = 21

 $7 \times 5 = 35$

US

is 90 cubic units