Class: 12

Time: 3.00 Hours

Answer all the questions.

Marks: 90

 $20 \times 1 = 20$

Reg.No

QUARTERLY EXAMINATION - 2024

MATHEMATICS

PART - I

1.	If $adjA = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$ and $adjB = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then	nen adj	(AB) is	
	1) $\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix}$ 2) $\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix}$	3) [-	7 7 -1 -9	$4)\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$
	If A is a 3 x 3 non-singular matrix such that 1) A 2) B If $\rho(A) = \rho([A B])$, then the system $AX = B$	3) I ₃		$A^{-1} A^{T}$, then $BB^{T} = 4) B^{T}$
	 consistent and has a unique solution consistent and has infinitely many solution 			2) consistent 4) inconsistent
4.	If $\left z - \frac{3}{z}\right = 2$, then the least value of z is			
	.1) 1	3) 3		4) 5
5	If $\alpha = ais \frac{2\pi}{a}$ then the number of distinct a	oot of	$z+1$ ω	$\begin{bmatrix} \omega^2 \\ 1 \end{bmatrix} = 0$
J. 1	If $\omega = \operatorname{cis} \frac{2\pi}{3}$, then the number of distinct r	001 01	ω^2 1	$z + \omega$
	1) 1 2) 2,	3) 3		4) 4
6.	The area of the triangle formed by the comp			z + iz in the Argand's diagram is
	1) $\frac{1}{2} z ^2$ 2) $ z ^2$	3) $\frac{3}{2}$	$ z ^2$	4) $2 z ^2$
7. The number of positive zeros of the polynomial $\sum_{r=0}^{n} nC_r(-1)^r x^r$ is				
	1) 0 2) n	3) <	n ·	4) <i>r</i>
8.	$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is equal to			
	1) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ 2) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$	3) $\frac{1}{2}$	$\tan^{-1}\left(\frac{3}{5}\right)$	4) $\tan^{-1}\left(\frac{1}{2}\right)$
9.	If $\sin^{-1} x = 2 \sin^{-1} \alpha$ has a solution, then			
	1) $ \alpha \le \frac{1}{\sqrt{2}}$ 2) $ \alpha \ge \frac{1}{\sqrt{2}}$	3) α	3/ /	$ \alpha > \frac{1}{\sqrt{2}}$
10	. If cot ⁻¹ 2 and cot ⁻¹ 3 are two angles of a tri			
	1) $\frac{\pi}{4}$ 2) $\frac{3\pi}{4}$			가 그 하게 하고 하지 않아 그렇게 그는 그 때문을 다 했다.
11	. The locus of a point whose distance from	(-2,0) i	$\frac{2}{3}$ times its dis	stance from the line $x = \frac{-9}{2}$ is.
	(1) a parabola (2) a hyperbola		(3) an ellipse	(4) a circle
	2. The length of the diameter of the circle whether through the point (2, 3).			그 사람은 그 얼마를 보고 말하는 것 같아. 그를 내려가 되는 것이다.
	(1) $\frac{6}{5}$ (2) $\frac{5}{3}$	(3) =	3	$\frac{(4)^{2}}{5}$ 12-Maths-Page-1
	Kindly Send Me Vour Key Answer t	to Our	email id - Pad	Scanned with OKEN S

13. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ having centr at (0, 3) is

(1)
$$x^2 + y^2 - 6y - 7 = 0$$
 (2) $x^2 + y^2 - 6y + 7 = 0$ (3) $x^2 + y^2 - 6y - 5 = 0$ (4) $x^2 + y^2 - 6y + 5 = 0$

14. The coordinates of the point where the line $\vec{r} = (6\hat{i} - \hat{j} - 3\hat{k}) + t(-\hat{i} + 4\hat{k})$ meets the plane $\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 3$ are

$$(2)(7,-1,-7)$$

$$(3)(1,2,-6)$$

$$(4)(5,-1,1)$$

(1) (2,1,0) (2) (7,-1,-7) (3) (1,2,-6) (4) (5,-1,1)15. If the planes $\vec{r} \cdot (2\hat{i} - \lambda \hat{j} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{i} + \hat{j} - \mu \hat{k}) = 5$ are parallel, then the value of λ and μ are

(1)
$$\frac{1}{2}$$
, -2 (2) $\frac{-1}{2}$, 2 (3) $-\frac{1}{2}$, -2 (4) $\frac{1}{2}$, 2

$$(2) \frac{-1}{2}, 2$$

$$(3) - \frac{1}{2}, -2$$

$$(4)\frac{1}{2},2$$

16. If a vector α lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then

$$(1) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 1 \qquad (2) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = -1 \qquad (3) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 0 \qquad (4) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 2$$

(2)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$$

$$(3) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 0$$

$$(4) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = 2$$

.17. If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 6$, then the value of $|z_1| + |z_2| + |z_3|$ is

18. A zero of $x^2 + 4$ is

$$4) -2$$

19. $tan(sin^{-1} x)$, |x| < 1 is equal to

1)
$$\frac{x}{\sqrt{1-x^2}}$$

1)
$$\frac{x}{\sqrt{1-x^2}}$$
 2) $\frac{1}{\sqrt{1-x^2}}$ 3) $\frac{1}{\sqrt{1+x^2}}$

3)
$$\frac{1}{\sqrt{1+x^2}}$$

4)
$$\frac{x}{\sqrt{1+x^2}}$$

20. If $A = \begin{bmatrix} \tan \theta & \sec \theta \\ \sec \theta & \tan \theta \end{bmatrix}$ and $A(\text{adj}A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then k = 0

PART - II

Answer any seven questions. Question No.30 is compulsory.

 $7 \times 2 = 14$

21. If A is a non-singular matrix of odd order, prove that |adj|A| is positive.

22. Find the rank $\begin{bmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1 \end{bmatrix}$

23. Write the following in the rectangular form: $\overline{3i} + \frac{1}{2-i}$.

24. Find the product $\frac{3}{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$. $6 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$ in rectangular from.

25. If α , β , and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta x}$ in terms of the coefficients.

26. Find the value of $\sec^{-1}\left(-\frac{2\sqrt{3}}{3}\right)$

27. Determine whether x + y - 1 = 0 is the equation of a diameter of the circle $x^2 + y^2 - 6x + 6$ 4y + c = 0 for all possible values of c.

28. Prove that $[\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] = 0$

- 29. Find the acute angle between the planes $\vec{r} \cdot (2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) = 11$ and 4x 2y + 2z = 15.
- 30. Find the period and amplitude of $y = -4 \sin(2x + 3)$.

PART - III

Answer any Seven questions. Question No.40 is compulsory.

 $7 \times 3 = 21$

- 31. Verify the property $(A^T)^{-1} = (A^{-1})^T$ with $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$.
- 32. Solve the following systems of linear equations by Cramer's rule: 5x 2y + 16 = 0, x + 3y 7 = 0.
- 33. If |z| = 3, show that $7 \le |z + 6 8i| \le 13$.
- 34. If $\omega \neq 1$ is a cube root of unity, show that $\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2} + \frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} = -1$.
- 35. Solve the equation $x^4 9x^2 + 20 = 0$
- 36. Prove that $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$
- 37. If the normal at the point ' t_1 ' on the parabola $y^2 = 4ax$ meets the parabola again at the point ' t_2 ', then prove that $t_2 = -\left(t_1 + \frac{2}{t_1}\right)$
- 38. Prove that the length of the latus rectum of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$
- 39. Find the magnitude and the direction cosines of the torque about the point (2,0,-1) of a force $2\hat{i} + \hat{j} \hat{k}$ whose line of action passes through the origin.
- 40. Show that, if p, q, r are rational and p + q + r = 0, then the roots of the equation $4px^2 + 3qx + 2r = 0$ are rational.

PART-IV

Answer all the questions.

 $7 \times 5 = 35$

41. (a) Investigate for what values of λ and μ the system of linear equations $x + 2y + z = 7, x + y + \lambda z = \mu, x + 3y - 5z = 5$

has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

(OR)

- (b) The prices of three commodities A,B and C are $\exists x,y$ and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of B. Person B purchases 2 units of B and sells 3 units of B and one unit of B. Person B purchases one unit of B and sells 3 unit of B and one unit of B. In the process, B, B, and B are B and B are B and B are B are B and B are B are B are B and B are B and B are B are B and B are B are
- 42.(a) If z = x + iy and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$ show that $x^2 + y^2 = 1$.

(OR)

- (**b**) Find the value of $\left(\frac{1+\sin\frac{\pi}{10}+i\cos\frac{\pi}{10}}{1+\sin\frac{\pi}{10}-i\cos\frac{\pi}{10}}\right)^{10}$
- 43. (a) Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135$ if it is known that 1 + 2i and $\sqrt{3}$ are two of its zeros.

(b) Find the domain of
$$f(x) = \sin^{-1}\left(\frac{|x|-2}{3}\right) + \cos^{-1}\left(\frac{1-|x|}{4}\right)$$

12-Maths-Page-3

44. (a) Find the equation of the circle passing through the points (1,1), (2,-1) and (3,2).

(OR)

- (b) A semielliptical archway over a one-way road has a height of 3m and a width of 12m. The truck has a width of 3m and a height of 2.7m. Will the truck clear the opening of the archway?
- 45. (a) Using vector method, prove that $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$.

(OR)

- (b) Find the non-parametric form of vector equation, and Cartesian equations of the plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x + 6y + 6z = 9.
- 46. (a) Find the vertex, focus, equation of directrix and length of the latus rectum of the following parabola $x^2 4y + 2 = 0$

(OR)

- (b) Find the shortest distance between the lines $\vec{r} = (1 \lambda)\vec{i} + (\lambda 2)\vec{j} + (3 2\lambda)\vec{k}$ and $\vec{r} = (\mu + 1)\vec{i} + (2\mu 1)\vec{j} (2\mu + 1)\vec{k}$.
- 47. (a) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.
 - (b) If $a_1, a_2, a_3, \dots a_n$ is an arithmetic progression with common difference d, prove that $\tan \left[\tan^{-1}\left(\frac{d}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{d}{1+a_2a_3}\right) + \dots + \tan^{-1}\left(\frac{d}{1+a_na_{n-1}}\right)\right] = \frac{a_n-a_1}{1+a_1a_n}$