COMMON QUARTERLY EXAMINATION - 2024

Standard XII **MATHEMATICS**

Reg.No.			

Time: 3.00 hrs

Part - I

Marks: 90 20 x 1 = 20

Choose the correct answer:

1. If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I_2 - A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$

- a) A-1
- b) $\frac{A^{-1}}{2}$
- c) 3A-1

2. If A is non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^{T})^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$

a) $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ d) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$ 3. If $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

- a) $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$ b) $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$

4. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is

a) 17 b) 14 c) 19 , d) 21
5. The area of the triangle formed by the complex numbers z, iz and z+iz in the Argand's a) $\frac{1}{2}|z|^2$ b) $|z|^2$ c) $\frac{3}{2}|z|^2$

d) 2|z|2

6. If |z| = 1, then the value of $\frac{1+z}{1+\overline{z}}$ is

- a) z
- b) =
- c) 1

d) 1

7. The principal argument of (sin40° + icos40°)5 is

- c) 70°

d) 110°

a) -110° b) -70° 8. Choose the wrong statement.

- a) $|z|^2 = 1 \Rightarrow \frac{1}{z} = \overline{z}$
- b) Re(z) ≤ |z|
- c) $||z_1|-|z_2|| \ge |z_1+z_2|$
- d) $|z^n|=|z|^n$

9. If α , β and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{\alpha}$ is

- a) -q
- b) $\frac{-p}{r}$ c) $\frac{q}{r}$
- $d) -\frac{q}{2}$

				2			XII	Maths				
10.	0. The number of positive zeros of the polynomial $\sum_{r=0}^{n} nC_r (-1)^r x^r$											
	a) 0 The period of y = co	b)	n			d) r						
12.	a) π The value of $\sin^{-1}(c)$			c)	3π	d) 4π						
	a) π-x			c)	$\frac{\pi}{2}$ - x	d) x - π						
13.	$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$	is e	qual to									
	a) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$	b)	$\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$	c)	$\frac{1}{2} \tan^{-1} \left(\frac{3}{5} \right)$	d) $\tan^{-1}\left(\frac{1}{2}\right)$						
14.	if $\sin^{-1} \frac{x}{5} + \cos ec^{-1}$	$\left(\frac{5}{4}\right) =$	$\frac{\pi}{2}$, then the value	e of	cis							
15.	a) 4 The radius of the ci	b) rcle	5 $3x^2 + by^2 + 4bx -$	c) - 6by	$2 + b^2 = 0$ is	d) 3						
	a) 1 An ellipse has OB a angle. Then the eco	b) as s	3 emi minor axes, I	c) Fan	√10	d) $\sqrt{11}$ the angle FI	BF' is	s a right				
*	a) $\frac{1}{\sqrt{2}}$				1/4	d) $\frac{1}{\sqrt{3}}$						
17.	The locus of a poin	t ŵh	ose distance from	n (-2	$(2,0)$ is $\frac{2}{3}$ times	its distance t	rom	the line				
	$x = \frac{-9}{2}$ is		X									
18.	a) a parabola If a vector $\overline{\alpha}$ lies in		a hyperbola plane of \overline{R} and \overline{v}			d) a circle						
	a) $\left[\overline{\alpha}, \overline{\beta}, \overline{\gamma}\right] = 1$					d) $\left[\overline{\alpha}, \overline{\beta}, \overline{\gamma}\right] = 2$						

19. If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, where \vec{a} , \vec{b} , \vec{c} are any three vectors such that \vec{b} . $\vec{c} \neq 0$ and

 $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are

a) perpendicular

b) parallel

c) inclined at an angle $\frac{\pi}{3}$ d) inclined at an angle $\frac{\pi}{6}$

20. Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is

a) 0

d) 3

3

XII Maths

Part - II

II. Answer any 7 questions. (Q.No.30 is compulsory)

7x2=14

- 21. Find the rank by minor method : $\begin{bmatrix} -1 & 3 \\ 4 & -7 \\ 3 & -4 \end{bmatrix}$
- 22. Prove that $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ is orthogonal.
- 23. Write in rectangular form : (5+9i)+(2-4i)
- 24. Show that |z-2-i| = 3 represent a circle, and find its centre and radius.
- 25. If α and β are the roots of the quadratic equation $17x^2 + 43x 73 = 0$, construct a quadratic equation whose roots are $\alpha + 2$ and $\beta + 2$
- 26. Find a polynomial equation of minimum degree with rational coefficients having 2i+3 as a root.
- 27. Find all the values of x such that $-10\pi \le x \le 10\pi$ and sinx = 0
- 28. Find the general equation of the circle whose diameter is the line segment joining the points (-4,-2) and (1,1)
- 29. If $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} 2\hat{k}$, $\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$
- 30. Prove that $\sum_{n=1}^{204} (i^{n+1} + i^{n+2}) = 0$

Part - III

III. Answer any 7 questions. (Q.No.40 is compulsory)

 $7 \times 3 = 21$

- 31. Solve by matrix inversion method: 2x y = 8, 3x + 2y = -2
- 32. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$ by reducing it to a row-echelon form.
- 33. If |z| = 3, show that $7 \le |z + 6 8i| \le 13$
- 34. If $\omega \neq 1$ is a cube root of unity, show that $(1 + \omega + \omega^2)^6 + (1 + \omega \omega^2)^6 = 128$
- 35. Solve: $x^3 3x^2 33x + 35 = 0$
- 36. Find the exact number of real and imaginary zeros of the polynomial $x^9 + 9x^7 + 7x^5 + 5x^3 + 3x$
- 37. Find the value of $\tan^{-1}(-1) + \cos^{-1}(\frac{1}{2}) + \sin^{-1}(\frac{-1}{2})$
- 38. Prove that $\cos^{-1}(\cos 10) = 4\pi 10$
- 39. A particle acted on by constant forces $8\hat{i} + 2\hat{j} 6\hat{k}$ and $6\hat{i} + 2\hat{j} 2\hat{k}$ is displaced from the point (1,2,3) to the point (5,4,1), prove that work done by forces is 80 units.
- 40. Find the equations of the tangent and normal to the circle $x^2 + y^2 = 25$ at P(-3.4)

4

XII Maths

Part - IV

IV. Answer all the questions.

 $7 \times 5 = 35$

41. a) If
$$F(\alpha) = \begin{vmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{vmatrix}$$
, show that $[F(\alpha)]^{-1} = F(-\alpha)$ (OR)

b) If 2 + i and $3 - \sqrt{2}$ are roots of the equation $x^6 - 13x^5 + 62x^4 - 126x^3 + 65x^2 + 127x - 140 = 0$. Find all roots.

42. a) If z_1 , z_2 and z_3 are three complex numbers such that $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|z_1 + z_2 + z_3| = 1$. Show that $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 6$ (OR)

b) Find the domain of f(x) =

$$f(x) = \sin^{-1}\left(\frac{|x|-2}{3}\right) + \cos^{-1}\left(\frac{1-|x|}{4}\right)$$

43. a) If z = x + iy is a complex number such that $Im\left(\frac{2z+1}{iz+1}\right) = 0$. Show that the locus of z is $2x^2 + 2y^2 + x - 2y = 0$

b) If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq'-p'q}{q-q'}$ or $\frac{q-q'}{p'-p}$

44. a) Find the vertex, focus, directrix and length of latus rectum of the parabola $x^2 - 4x - 5y - 1 = 0$ (OR)

b) Prove by vector method : $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$.

45. a) Investigate the values of λ and μ the system of linear equation 2x + 3y + 5z = 9, 7x + 3y - 5z = 8, $2x + 3y + \lambda z = \mu$, have (i) no solution (ii) a unique solution (iii) an infinite number of solutions. (OR)

b) Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight line

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$$
 and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$

46. a) Evaluate: $\sin \left[\sin^{-1} \left(\frac{3}{5} \right) + \sec^{-1} \left(\frac{5}{4} \right) \right]$ (OR)

b) Solve by Cramer's rule: 3x + 3y - z = 11, 2x - y + 2z = 9, 4x + 3y + 2z = 25

47. a) A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre on either sides. (OR)

b) If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$, show that,

i)
$$xy - \frac{1}{xy} = 2i\sin(\alpha + \beta)$$
 ii) $x^my^n + \frac{1}{x^my^n} = 2\cos(m\alpha + n\beta)$