PRACTICE SHEET – 1

LINIT 1	ELECTROSTATICS
	ELECTRUSTATICS

1. AXIAL LINE:

Diagram:

Explanation:

 \vec{E}_+ = \vec{E}_{-} = \vec{E}_{total} = By Superposition principle, \vec{E} total = \vec{p} 2. EQUATORIAL LINE: Explanation: Diagram: \vec{E} total = $\left| \vec{E}_{+} \right| = \left| \vec{E}_{-} \right| =$ $\cos \theta =$

p =

3. POTENTIAL AT A POINT DUE TO DIPOLE:

Diagram: Explanation:

Φ_E =

E.

=

E =

 \vec{E} =

	UNIT 1	ELECTROSTATICS	PRACTICE SHEET - 2	
5. GAUSS LAW: SP	PHERICAL S	SHELL:		
Gauss law : d	Þ _E =			
At a point outsid	de the shell:	\vec{E} =		
At a point on the	e shell:	\vec{E} =		
		→		
At a point inside	e the shell:	E =		- Au
6. CAPACITOR FI	LLED WITH	DIELECTRIC: BAT	TERY DISCONNECTED:	
1. Charge:		Q =		
2. Voltage:		V =		
				0
3. Electric field:		E =		
			S	
4. Capacitance:		C =		
5 Energy:		U=		
o. Enorgy.			0	
7. CAPACITORS I	N SERIES		CAPACITORS	IN PARALLEL
1.	- same		1.	– same
	- differs			- differs
2. V =			2. Q =	
4				
3. V =			3. Q =	
4. If C_s is the			4. If C _P is th	e O -
then, v =			tnen,	u –
$5\frac{1}{-}$ -			5 C	
$J. \frac{1}{C_S}$ -			J. Op -	

www.Padasalai.Net

)

8. VAN DE GRAAFF GENERATOR:

Produces an electrostatic potential difference =

Principle: 1.

Diagram:

2.

Explanation:

WOR	KING:

Near the comb D: Due to			
	Charges are repelled to	owards the and	
	Charges are attracted	towards the	
Near the comb E: Due to			
	Charges are induced in	n the comb E	
	Charges are distributed	d on the	
Prevention of leakage: filled	chamber	at a high	
Use: To accelerate	charged	(
for the purpose of	disintegration.		
READ ALL THE BOOKBACK ONE WO	RD QUESTIONS AND A	ANSWERS	
*** Coulomb's law in electrostatics:	F =		
Electrostatic force is directly proportio	nal to the		and
Inversely proportional to the	of the	between the charge	es.
Gravitational force is directly proportion	nal to the		and
Inversely proportional to the	of the	between them.	
Electrostatic force depends on the	of the		
Gravitational force does not depend o	n the		

UNIT 2 CURRENT ELECTRICITY

1. OHM'S LAW - MICROSCOPIC FORM

Diagram:

Explanation:

PRACTICE SHEET – 1

- same

- differs

4. RESISTORS IN SERIES

1.	– same	1.
	- differs	
2. V =		2. l =
3. V =		3. I =
4. If R_s is the		4. 4. If R _P is the

then, V =

5. R_s =

5. METER BRIDGE:

Diagram:

RESISTORS IN PARALLEL

then, I =

 $5.\frac{1}{R_P} =$

FORMULA: Unknown resistance:

 $\frac{P}{Q}$ = = $\frac{P}{Q} =$

P =

Specific resistance: ρ=

UNIT 2 CURRENT ELECTRICITY

6. WHEATSTONE'S BRIDGE:

Diagram:

PRACTICE SHEET – 2

Explanation:

KCR: Junction B:	
Junction D:	
KVR: ABDA:	
ABCDA:	
	= 0
I ₁ P =	
la Q =	
Bridge balance condition:	
7. COMPARISON OF EMF: POTENTIOM	ETER

Diagram:

www.Padasalai.Net

www.Trb Tnpsc.Com

Primary circuit:

Secondary circuit:

 $\epsilon_1 =$

 $\varepsilon_2 =$

 $rac{arepsilon_1}{arepsilon_2} =$

8. INTERNAL RESISTANCE OF A CELL: POTENTIOMETER

→ 2

Diagram:

εα $\frac{\varepsilon R}{R+r} \alpha$

1/2

r = R (