QUARTERLY EXAMINATION - 2024

CLASS: 12 TIME: 3.00 Hrs.				PHYSICS			Reg.No: MARKS: 70	
			The state of					
			,	PART-I		10 Sec. 11	15 × 1 =	
Not	(ii) Choose t	he most i	estions appropriate ar esponding ans	nswer from wer	the given four	alternative	es and write the option	
1.	Stars twinkle due to						, T	
2.	object from the mirror s a) 2f and c	uch that to	he image forme c and ∞	ed is real an	th of f and the r d magnified. f and O	naximum ar d)	polarization and minimum distance of a None of these	
3,	A hallow conducting spl			arge +q on	its surface. Wh	at is the elec	tric potential within the	
	sphere at a distance $\frac{R}{3}$ fr						1 0-	
	a) zero	b)	$\frac{1}{4\pi\varepsilon_o}\frac{3q}{R}$	c)	$\frac{1}{4\pi\varepsilon_o}\frac{q}{R}$	d)	$\frac{1}{4\pi\varepsilon_0}\frac{9q}{R^2}$	
4.	radii of inside and outside of the spiral is	de turns a	re a = 50 mm a	and $b = 100$	mm respectivel	y. The magn	3 mA (milli ampere). The netic induction at the cent	
	a) 5 μT	b)	7 μΤ	c)		(d)	10 μΤ	
5.	If a wire is stretched to		1					
	a) become 4 times	b)	become $\frac{1}{4}$ tir	nes c)	become 16 ti	mes d)	remains the same	
5.	In Joule's heating law, vegraph is	vhen I an	d t are constant	, if the H is	taken along the	y axis and I	² along the x axis, the	
	a) straight line		parabola	c)	circle	d)	ellipse	
7.	induction of the coil is	es from +					1. The co-efficient of self	
	a) 0.2 H	b)	0.4 H	c)	0.8 H	d)	0.1 H	
3.	What is the current out	of the batt	ery?					
	a) 1 A c) 3 A	b) d)	2 A 4 A			εv	••••••••••	
							Andreadors beauty along alternative by a control of a control of	
9.	In an inductor of inductar	nce L = 10 b)	0 mH a current 10 J	of $I = 10 A$	is flowing. The	energy stored d)	1 in the inductor is	
10	a) 5 J Which of the following			100				
	a) microwave	b)	gamma rays	c)	X-rays	d)	infrared rays	
11.	If voltage applied on a c a) Q remains the sam	apacitor i	s increased from	m V to 2V, b)	Q is doubled,	ect conclusion C doubled	on.	
	a) Q remains the sam c) C remains same, Q			d)	Both Q and C		ie	
2.	The area enclosed by a h	ysteresis	loop is a meas	ure of		- 1		
	a) retentivity In an oscillating LC circ	b)	susceptibility		permeability	charge on t	he capacitor when the	
3.	energy is stored equally	between t	the electric and	magnetic f	ields is			
	a) $\frac{Q}{2}$	b)	$\frac{\sqrt{3}}{\sqrt{3}}$	c)	$\frac{Q}{\sqrt{2}}$	d)	Q	
4.	if \vec{E} and \vec{B} represent e propagation of electroma			eld, vectors	of the electro	magnetic w	vave, then the direction	
	a) \vec{E}	b) -	\vec{B}		$\vec{B} \times \vec{E}$	d)	$\vec{E} \times \vec{B}$	
5.	Let $E = E_0 \sin(10^6 x -$	wt) be th	e electric field	of plane el	ectromagnetic v	vave, the va	lue of ω is	
	a) $0.3 \times 10^{-14} rad s$	· -1		b)	$3 \times 10^{-14} rc$	$1d s^{-1}$		
	c) $0.3 \times 10^{14} rad s^{-1}$	14 ()		d)	$3 \times 10^{14} rad$	IS.	12-PHYSICS-PAG	

 $6 \times 2 = 12$

 $6 \times 3 = 18$

PART-II

Answer any six questions. Question no. 24 is compulsory:

- 16. Define electric field, Mention its unit.
- 17. What is Seebeck effect?
- 18. State Fleming's left hand rule.
- 19. A capacitor blocks DC but it allows AC. Why?
- 20. If the resistance of coil is 3 Ω at 20° C and α = 0.004° C then determine its resistance at 100°C.
- 21. Mention the conditions to achieve total internal reflection.
- 22. The coil of a moving coil galvanometer has 5 turns and each turn has an effective area of 2 × 10 2 m2. It is suspended in a magnetic field whose strength is 4 × 10⁻¹ Wb m⁻². If the torsional constant K of the suspension fibre is 4×10^{-9} N m deg 1. Find its current sensitivity
- 23. What is displacement current?
- 24. If the focal length is 150 cm for a lens, what is the power of the lens?

PART - III

Answer any six questions. Question no. 32 is compulsory:

- 25. Obtain the expression for capacitance for a parallel plate capacitor.
- 26. Explain equivalent resistance of parallel resistor network.
- List out the properties of electromagnetic waves.
- 28. Calculate the electric potential at points P and Q as shown in the figure.
- 29. How will you induce an emf by changing the area enclosed by the coil?

- 31. Differentiate Coulomb's law and Biot-Savart's law.
- 32. An ideal transformer has 460 and 40,000 turns in the primary and secondary coils respectively. Find the voltage developed per turn of the secondary if the transformer is connected to a 230 V AC mains. The secondary is given to a load of resistance $10^4 \Omega$. Calculate the power delivered to the load.
- Obtain the relation between focal length (f) and radius of curvature (R) of the spherical mirror.

PART-IV

 $5 \times 5 = 25$

Answer all the questions:

b)

Obtain the condition for bridge balance in Wheatstone's bridge.

M.Poovarasan M.Sc B.Ed PG Asst in Chemistry

- (i) State Coulomb's law in electrostatics.
- (ii) Deduce Gauss law from Coulomb's law.

Explain the working of Cyclotron in detail. 35. a)

- Show mathematically that the rotation of a coil in a magnetic field over one rotation induces an alternating b) emf of one cycle.
- Calculate the electric field due to an electric dipole on its axial line. 36. a)

(Or)

- bi Using Ampere's law, obtain an expression for magnetic field due to the current carrying wire of
- Derive an expression for phase angle between the applied voltage and current in a series RLC circuit. 37. 3)

- Obtain Lens maker formula and mention its significance. b)
- What is emission spectrum? Explain the types of emission spectrum. 38. a)

- (i) Derive the equation for angle of deviation produced by a prism.
 - (ii) A monochromatic light is incident on an equilateral prism at an angle 30° and is emergent at an angle of 75°. What is the angle of deviation produced by the prism?