

SEC

STD

SCHOOL

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM \mid

1

EXAM NO

www.Radasalah

www.Radasalah

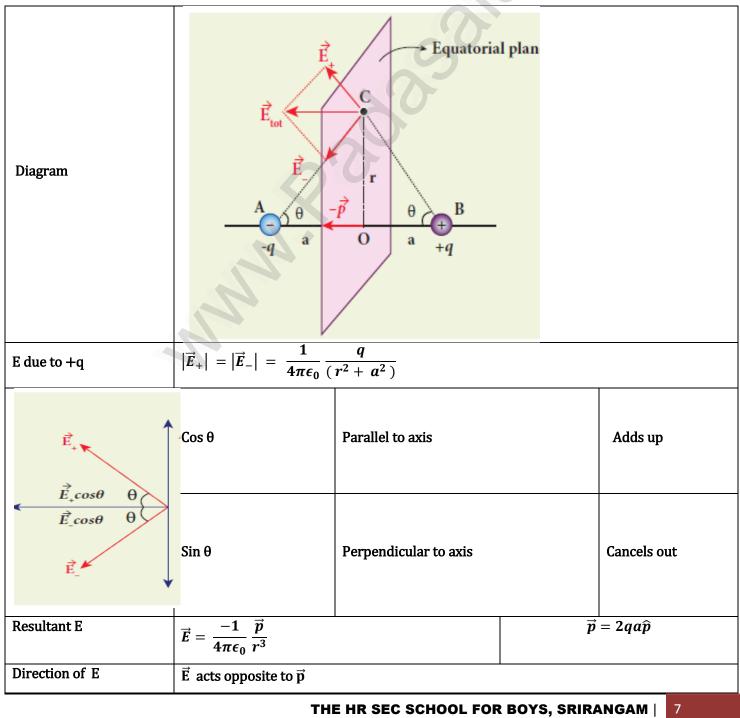
		X	
		7	
•			
	•		

S. No.	LESSON	PAGE
01	ELECTROSTATICS	07
02	CURRENT ELECTRICITY	13
03	MAGNETISM AND MAGNETIC EFFECTS OF ELECTRIC CURRENT	17
04	ELECTROMAGNETIC INDUCTION & ALTERNATING CURRENT	25
05	ELECTROMAGNETIC WAVES	31
06	RAY OPTICS	33
07	WAVE OPTICS	37
08	DUAL NATURE OF RADIATION AND MATTER	41
09	ATOMS AND NUCLEI	45
10	SEMICONDUCTORS AND COMMUNICATON SYSTEMS	49

CONTENTS

www.Radasalah

www.Radasalah


ELECTROSTATICS

FIVE MARKS

1. Calculate the electric field due to a dipole on its Axial line

Diagram	$A \xrightarrow{\overrightarrow{p}} B (\overrightarrow{L} \overrightarrow{E} \overrightarrow{E} \overrightarrow{E} \overrightarrow{E} \overrightarrow{E} \overrightarrow{E} \overrightarrow{E} E$
E due to +q	$\vec{E}_{+} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-a)^2} \widehat{p}$
E due to –q	$\vec{E}_{-} = \frac{-1}{4\pi\epsilon_0} \frac{q}{(r+a)^2} \hat{p}$
Resultant E	$\vec{E} = \vec{E}_+ + \vec{E}$
	$\vec{E} = \frac{1}{4\pi\epsilon_0} \left\{ \frac{2\vec{p}}{r^3} \right\} \qquad \qquad 2aq\hat{p} = \vec{p}$
Direction of E	\vec{E} acts along \vec{p}

2. Calculate the electric field due to a dipole on its Equatorial line

3. Torque experienced by the electric dipole

Diagram	\vec{E} $+q \oplus \vec{B} = q\vec{E}$ a a $2a \sin\theta$ a $-q\vec{E} + \frac{2a \sin\theta}{6}$ a $-q\vec{E} + \frac{2a \sin\theta}{6}$ a $-q\vec{E} + \frac{2a \sin\theta}{6}$ a		
F on +q	F = qE (Direction of E)		
F on –q	F = -qE (opposite to E)		
Net Torque	$\tau = pE\sin\theta \qquad \qquad p = qX2a$		
Vector form	$\vec{\tau} = \vec{p} x \vec{E}$		

4. Electric potential due to an electric dipole

Diagram	$\begin{array}{c} P \\ r_{2} \\ r \\ r \\ r_{1} \\ r \\ r_{1} \\$		
Potential due to +q			
	$\overline{4\pi\epsilon_0} \ \overline{r_1}$		
Potential due to -q	-1 q		
	$4\pi\epsilon_0 r_2$		
	$\frac{1}{r_1} = \frac{1}{r} \left\{ 1 + \frac{a}{r} \cos \theta \right\} \qquad \qquad \frac{1}{r_2} = \frac{1}{r} \left\{ 1 - \frac{a}{r} \cos \theta \right\}$		
Net Potential	$V = \frac{q}{4\pi\epsilon_0} \left\{ \frac{1}{r_1} - \frac{1}{r_2} \right\} (1)$		
	$v = \frac{p \cos \theta}{4\pi\epsilon_0 r^2}$		

5. Obtain the expression for electric field due to an infinitely long charged wire.

	Gauss law states that the total flux enclosed by the surface is $\frac{1}{\epsilon_0}$ times the net	
Gauss law	charge enclosed by the surface	(1M)
Diagram		(1M)

www.Padasalai.Net V S R

www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

From flux definition		$\phi = $	$E.2\pi rl-(1)$	
From Gauss law	$\phi = \frac{q}{\varepsilon_0} = \frac{\lambda l}{\varepsilon_0}(2)$			
(1)=(2)	$E.2\pi rl = \frac{\lambda l}{\varepsilon_0}$			(1M)
Electric Field		$\mathbf{E}=rac{\lambda}{2\piarepsilon}$	$_{0}r$	(1M)
Direction	+ ^{ve} Charge		Radially outward	
	-ve Charge		Radially inward	

6. Expression for energy of a capacitor

Conscitor	Stores charges	
Capacitor	Stores Electrostatic potential energy	N .
	dW = v. dq	
work done	$W = \int_0^q \frac{q}{C} dq$	
Energy		$U = \frac{Q^2}{2C}$
2	$U = \frac{1}{2} C V^2$	
Energy Density	$\mathbf{U} = \frac{1}{2} \varepsilon_0 \mathbf{E}^2$	

7. Van de Graff generator

uses	 Produces a potential of 10⁷ V To accelerate positive charges 		
Principle	Electrostatic induction & action of points		
Diagram	Rubber belt Insulating stand		
Construction	 A → hollow sphere on insulating stand B → pulley at the centre of sphere C → pulley at the bottom E & D → metallic comb near the pulleys Comb D is at 10⁴ V 		
Prevention	> By enclosing gas filled steel chamber at very high pressure.		

THREE MARKS

1. What are the differences between Coulomb force and gravitational force

	Coulomb	Gravitational
Nature of force	attractive and repulsive	Attraction
Constant	$K = 9 X 10^9 Nm^2C^{-2}$	$G = 6.67 X 10^{-11} Nm^2 Kg^{-2}$
Medium dependence	Dependent	Independent
By virtue of	Charges	Masses

2. State the rules for drawing electric field line for the representation of electric field.

	Start	Positive charge
	End	Negative charge
	Direction	Direction of tangent
	More density	Strong E
Electric field lines	Less density	Weak E
	Two lines	Never intersect
	Positive charge	Radially outward
	Negative charge	Radially inward
	No of lines	Proportional with magnitude of Q

3. Derive an expression for electrostatic potential due to a point charge.

Diagram	r p q
Electric potential at P	$V = -\int_{\infty}^{r} \vec{E} \cdot \vec{dr}$
Electric Field at P	$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$
On integration	$\mathbf{V} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$

4. Obtain Electric field due to uniformly charged spherical shell

Diagram	
From flux definition	$\emptyset = E A = E \cdot 4\pi r^2 (1)$
From Gauss law	$\emptyset = \frac{q}{\varepsilon_0}(2)$
(1)=(2)	$E \cdot 4\pi r^2 = \frac{q}{\varepsilon_0}$

ww.Padasalai Net V S R [V.

Electric Field at outside	$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{Q}}{\mathbf{r}^2}$
Electric Field at the surface	$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{R^2} \hat{r}$
Electric inside the surface	E = 0

5. Distinguish between Polar and Non polar molecules

	POLAR	NON POLAR
Centre of gravities of positive & negative charges	Doesn't coincide	Coincide
Example	H ₂ O, N ₂ O, HCl	H ₂ , N ₂ , O ₂
Permanent dipole moment	Yes	No

6. Obtain the expression for capacitance of a parallel plate capacitor

Diagram	Area A A A B B B C C C C C C C C C C C C C C
Electric field between the plates	$E = \frac{Q}{A\varepsilon_0}$
Potential difference between the plates	$\mathbf{V} = \mathbf{E}\mathbf{d} = \frac{\mathbf{Q}\mathbf{d}}{A\varepsilon_0}$
Capacitance	$C = \frac{Q}{V} = \frac{\varepsilon_0 A}{d}$

7. Write down the applications of capacitor

	Flash in camera
Applications of a capacitor	Defibrillator
Applications of a capacitor	Ignition system
	Power transmission

8. Derive the expression for capacitance in series and parallel

	Series	Parallel	
Diagram	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V = \begin{array}{cccc} & Q_1 & Q_2 & Q_3 \\ & C_1 & C_2 & C_3 \end{array}$	
Conservation theorem	$V = V_1 + V_2 + V_3$	$Q = Q_1 + Q_2 + Q_3$	
Effective capacitance	$\frac{1}{C_{s}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}$	$C_p = C_1 + C_2 + C_3$	

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 11

TWO MARKS

1. State Coulomb's law

Force is	Directly proportional to	Product of charges	
	Inversely proportional to	Square of distance between the charges	
Vector form		$\vec{F} = \frac{K q_1 q_2}{r^2} \hat{r}$	

- 2. Define Electric dipole.
- > Two equal and opposite charges
- > Separated by a small distance

- Water, ammonia, HCl
- 3. What is the general definition of electric dipole moment?
- Product of any one charge and distance between the charges

 $\mathbf{p} = 2\mathbf{q}\mathbf{a}$

- 4. Write the properties of equipotential surface.
- > The work done to move a charge in an equipotential surface is zero.
- > The electric field is normal to an equipotential surface
- 5. Define electric Flux
- > No of electric lines of force
- Crossing given area
- Normal to field lines
- 6. State Gauss law

Gauss law states that the total flux enclosed by the surface is $\frac{1}{\epsilon_0}$ times the net charge

enclosed by the surface

7. What is Polarization?

Total dipole moment per unit volume of the dielectric

- $\vec{P} = \ \aleph \overrightarrow{E_{ext}}$
- 8. Define Capacitance. Write its unit.

Ratio of charge to the potential developed between the plates

$$c = \frac{Q}{V}$$

- 9. What is corona discharge or action of points?
- Leakage of charges from sharp points of charged conductor
- > The total charge of the conductor reduces near the sharp edge

 $\emptyset = E A \cos \theta$

đ	_	q
Ø	_	$\overline{\varepsilon_0}$

2 CURRENT ELECTRICITY

FIVE MARKS

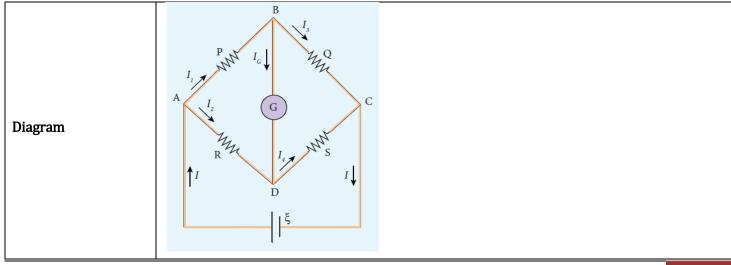

1. Microscopic model of current

Diagram	$ dx - $ $ \underbrace{-} v_{d} \cdot A$ $ \underbrace{-} v_{d} dt - $
Total charge in volume element	$d\mathbf{Q} = (\mathbf{A}\mathbf{v}_{\mathbf{d}}\mathbf{d}\mathbf{t})\mathbf{n}\mathbf{e}$
Current	$dQ = (Av_d dt) ne$ $I = \frac{dQ}{dt} = \frac{(Av_d dt) ne}{dt}$ $I = nAeV_d$
Microscopic form of ohms law	$\vec{J} = \sigma \vec{E}$
Conductivity	$\sigma = \frac{ne^2 \tau}{m}$
Resistivity	$\rho = \frac{m}{ne^2 \tau}$

2. Determine the internal resistance of a cell using voltmeter.

Without R	$\begin{array}{c c} & + & \xi & - & r \\ \hline & + & V & - & \\ \hline & & & Voltmeter \end{array}$	voltmeter = E
With R	I + V - R + V + V + V + V + V + V + V + V + V +	v = IR(1) $v = E - Ir$ $E - V = Ir - (2)$
(2)/(1)	$\frac{E-V}{v} = \frac{Ir}{IR}$	
Internal r	$r = R\left(\frac{E-V}{V}\right)$	

3. Wheatstone bridge

v<mark>v Padasalai Net</mark> V S R [

www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

KCL	at junction B	$I_1 - I_g - I_3 = 0 (1)$
	at junction D	$I_2 - I_g - I_4 = 0 (2)$
KVL	Loop ABDA	$I_1 P - I_g G - I_2 R = 0(3)$
	Loop ABCDA	$I_1 P + I_3 Q - I_4 S - I_2 R = 0(4)$
Condition	$V_B = V_D$	$I_G = 0$
(6)/(5)	$\frac{P}{Q} = \frac{R}{S}$	

4. How the emf two cells are compared using potentiometer?

Diagram (1 M)	$C \xrightarrow{\text{Rh}} K$	
	Primary circuit	Battery, key and potentiometer wire are in series.
Construction		DPDT, Galvanometer, jockey and high resistance
(1 M)	Secondary circuit	Cell of emf E_1 is connected between M_1 and N_1
		Cell of emf E_2 is connected between M_2 and N_2
Working	E	
(1 + 1M)		αl_1 $E_2 \alpha l_2$

5. Measurement of internal resistance

Diagram		
Construction	primary circuit	Potentiometer wire, battery and key K_1
	secondary circuit	Cell of emf E, galvanometer, high resistance and jockey A resistance R and Key K_2 are connected across the cell
	K ₂ is open	$\mathbf{E} \alpha \mathbf{l}_1 (1)$
Working	K ₂ is closed	$\frac{ER}{R+r} \alpha l_2 (2)$
Internal resistance	$r = R \{ \frac{l_1 - l_2}{l_2} \}$	

THREE MARKS

1. Distinguish between mobility and drift velocity

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 14

drift velocity	Mobility
Average velocity acquired by electron inside the conductor in	Magnitude of drift velocity acquired per unit
an electric field	electric field.
$\overrightarrow{V_d} = \frac{e\tau}{m} \vec{E}$	$\mu = \frac{V_d}{E}$
Unit : ms ⁻¹	Unit : m ² V ⁻¹ s ⁻¹

2. Resistors in series and parallel

Diagram	$I \longrightarrow V_{1} \qquad V_{2} \bigotimes R_{2}$ $V \longrightarrow V_{3} \qquad I$ $R_{3} \qquad I$	$V = \begin{bmatrix} I \\ I \\ I \\ I \\ I \end{bmatrix} = \begin{bmatrix} I \\ I $
Conservation	$\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$	$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3$
theorem	1 2 0	
From ohms law	$IR_s = IR_1 + IR_2 + IR_3$	$\frac{\mathbf{V}}{\mathbf{R}_{\mathbf{p}}} = \frac{\mathbf{V}}{\mathbf{R}_{1}} + \frac{\mathbf{V}}{\mathbf{R}_{2}} + \frac{\mathbf{V}}{\mathbf{R}_{3}}$
Effective resistance	$\mathbf{R}_{\mathrm{s}} = \mathbf{R}_{1} + \mathbf{R}_{2} + \mathbf{R}_{3}$	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

3. What is electric power and electric energy?

Electric power	Electric Energy
Rate at which the electric potential energy is delivered.	The rate at which the charge losses its electrical potential energy
$\mathbf{P} = \mathbf{V}\mathbf{I}$	$\mathbf{H} = \mathbf{V}\mathbf{I}\mathbf{t}$
unit : W	Unit : J

4. Derive the expression for power P = VI in electrical circuit.

Diagram	$ \begin{array}{c} I \\ b \\ + \\ - \\ a \\ \end{array} V \\ a \\ d \end{array} $
Potential energy	$\mathbf{d}\mathbf{u} = \mathbf{v}.\mathbf{d}\mathbf{q}$
Power	$P = \frac{du}{dt} = V \frac{dQ}{dt}$ $P = VI$

5. Explain the Principle of Potentiometer

Diagram	$C = \begin{bmatrix} Bt & K \\ (\bullet) \\ I \\ \xi \end{bmatrix} = \begin{bmatrix} I \\ I$	D
Construction	Primary circuit	Battery, key and potentiometer wire in series.

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 15

V S R [V. SI

www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

	Secondary circuit	Battery of emf "e", jockey, galvanometer & high resistance
	,	
Working	ΕαΙ	

- 6. State the applications of see beck effect
 - > They are used in thermoelectric generators.
 - > Used in power plants to convert heat into electricity.
 - > Utilized in automobile for increasing fuel efficiency.
 - > Used to measure the temperature difference between the object.

TWO MARKS

1. Define current

Net charge passes through any cross section of a conductor in a time.

T	_	Q	
1	_	t	

2. Why current is a scalar quantity?

Current is a scalar product of the current density and area vector in which the charge crosses.

 $\mathbf{I} = \mathbf{\vec{J}} \cdot \mathbf{\vec{A}}$

3. Ohms law

At the constant temperature , the steady current flowing through a conductor is directly proportional to its potential difference between its ends

4. Electrical resistivity (or) specific resistance

- > Resistance offered to current flow
- > By a conductor of
- > Unit length & unit area of cross section

5. Kirchhoff's current law

Algebraic sum of current at any junction is zero

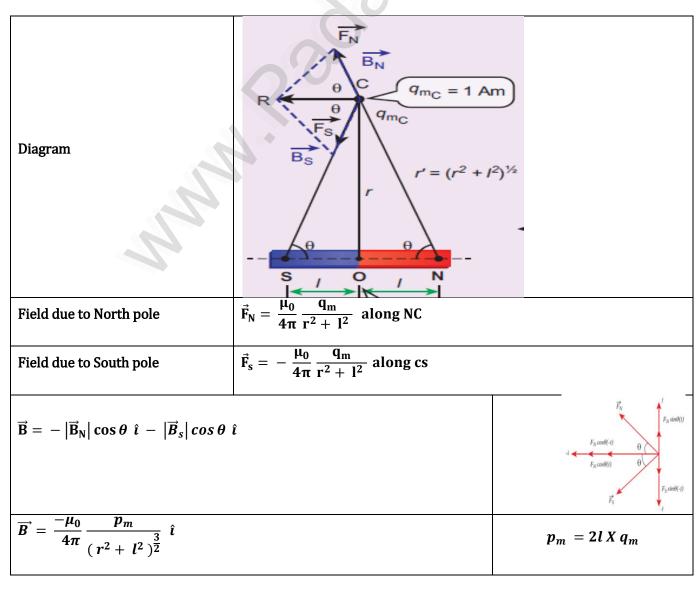
6. Kirchhoff's Voltage rule

Algebraic sum of product of current and resistance in a closed circuit is equal to algebraic sum of emf in the circuit.

- 7. Which metal wire is used for meter bridge wire and why?
 - Magnanin and constantan wire
 - > Low specific resistance
 - High temperature co efficient
- 8. Why nichrome is used as a heating element?
 - High specific resistance
 - High melting point
 - Not easily oxidized

- Scalar quantity
- > Unit : A

 $\mathbf{V} = \mathbf{I}\mathbf{R}$


Unit : Ωm

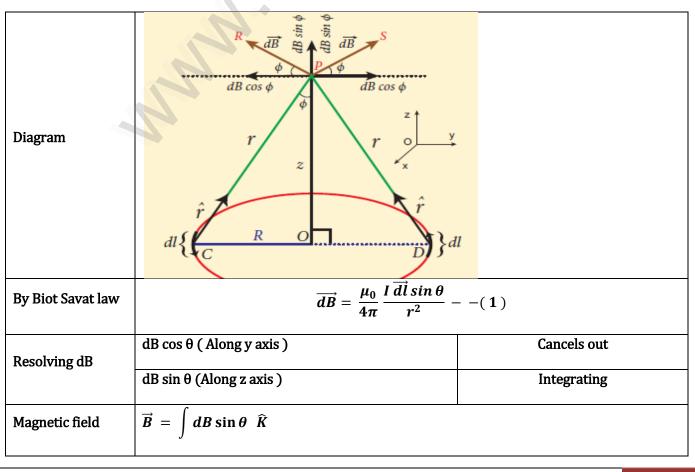
03. MAGNETISM & MAGNETIC EFFECTS OF CURRENT

1 Axial line

Diagram	S O N $ \leftarrow \leftarrow \leftarrow \leftarrow r$ $ \leftarrow r$	$\overrightarrow{F_{S}} \subset \overrightarrow{F_{N}}$ $\overrightarrow{B_{S}} \not \rightarrow \overrightarrow{q_{m_{C}}} \rightarrow \overrightarrow{B_{N}}$
Field due to North pole	$\overrightarrow{B_{N}} = \frac{\mu_{0}}{4\pi} \frac{q_{m}}{(r-l)^{2}} \hat{1}$	
Field due to South pole	$\vec{B}_{s} = -\frac{\mu_{0}}{4\pi} \frac{q_{m}}{(r+l)^{2}} \hat{1}$	
Resultant B	$\vec{B} = \vec{B}_{N} + \vec{B}_{S}$ $\vec{B} = \frac{\mu_{0}}{4\pi} \left\{ \frac{2rp_{m}}{(r^{2} - l^{2})^{2}} \right\} \hat{i}$ $\vec{B} = \frac{\mu_{0}}{4\pi} \left\{ \frac{2p_{m}}{r^{3}} \right\} \hat{i}$ $\vec{B} = \frac{\mu_{0}}{4\pi} \left\{ \frac{2\vec{p}_{m}}{r^{3}} \right\}$	$r >>> l$ $\overrightarrow{p_{m}} = p_{m} \hat{i}$

2 Equatorial line

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 17


$$\overrightarrow{B} = \frac{-\mu_0}{4\pi} \frac{\overrightarrow{p_m}}{r^3}$$

3 Magnetic field due to long straight conductor carrying current

Pada

Diagram	$ \begin{array}{c} \mathbf{Y}\\ \mathbf{B}\\ \mathbf{d}l\\ \mathbf{A}\\ \mathbf{A}\\ \mathbf{r}\\ \mathbf{a}\\ \mathbf{\phi}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{1}\\ \mathbf{F}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{1}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{1}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{2}\\ \mathbf{\phi}_{3}\\ \mathbf{\phi}_{4}\\ \phi$	
By Biot Savat law	$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{dl} \sin \theta}{r^2}(1)$	
	dl sin θ = r d ϕ (4)	
	$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}\phi}{\mathrm{r}}(5)$	
(6) in (5)	$dB = \frac{\mu_0 I}{4\pi a} \cos \phi d\phi$	On integrating
infinitely long	$B = \frac{\mu_0 I}{4\pi a} (\sin \phi_1 + \sin \phi_2)$	
Magnetic field	$\mathbf{B} = \frac{\mu_0 I}{2\pi a}$	

4 Magnetic field due to circular current carrying conductor

www.Padasalai Net V S R [V

vector	$\vec{B} = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + Z^2)^{\frac{3}{2}}} \hat{R}$
At centre	$\vec{B} = \frac{\mu_0 nI}{2R} \hat{K}$

5 Cyclotron

Use	To accelerate charge particles to a greater kinetic energies		
Principle	Magnetic Lorentz force		
Diagram	Source of protons voltage Dees High-speed proton beam		
	Centripetal force is provided by the Lorentz for	rce	
	$\frac{mv^2}{r} = qvB$		
	Radius of the circular path	$r = \frac{mv}{Bq}$	
Derivations	Time period	$T = \frac{2\pi m}{Bq}$	
	Frequency	$f = \frac{Bq}{2\pi m}$	
	Kinetic energy	$KE = \frac{q^2 B^2 r^2}{2m}$	

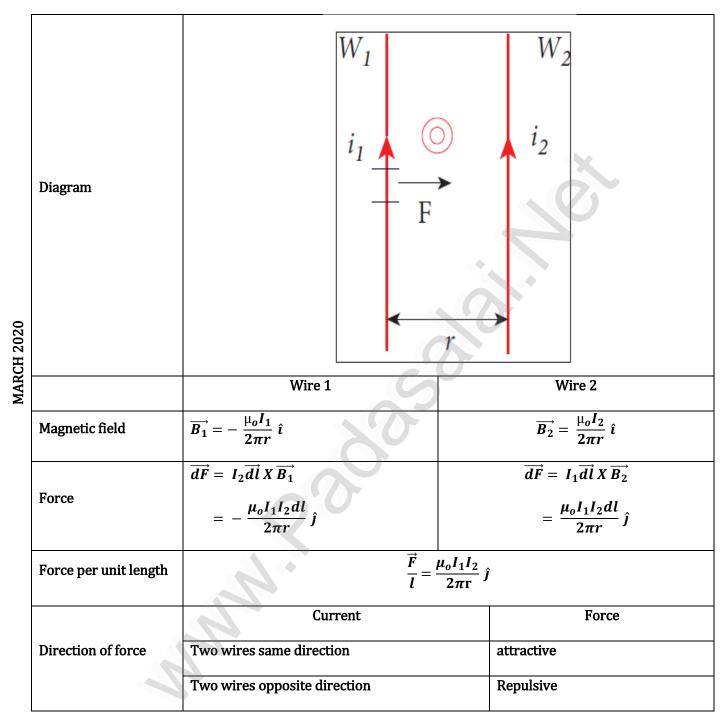
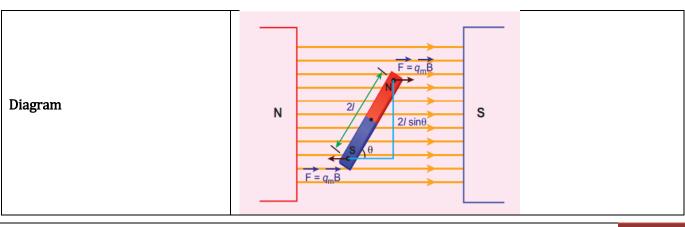

6 Force on a current carrying conductor

Diagram	F_B x x y_d y_d y_d x		
Force acting on an electron	$\overrightarrow{dF} = -enAdl\left(\overrightarrow{V_d} X \overrightarrow{B}\right)$		
From relation between I & V_d	$I = nAeV_d$		
Force experienced by the wire	$\vec{d}\vec{F} = (\vec{I}\vec{d}\vec{l} X \vec{B})$ $\vec{F} = \vec{I}\vec{l} X \vec{B}$		
Flemings Left hand rule	Middle finger, thumb and fore finger of left hand are kept mutually perpendicular		

۲


Direction
Field
he current carrying conductor

7 Force between two parallel current carrying conductors

THREE MARKS

1 Torque on a bar magnet

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM |

20

vw Padasalai Net V S R

www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

F experienced by north pole	$\overrightarrow{F_N} = q_m \overrightarrow{B}$	
F experienced by south pole	$\overrightarrow{F_s} = -q_m \overrightarrow{B}$	
Net Torque	$\tau = q_m B 2l \sin \theta$	
	$\tau = P_m B \sin \theta$	$p_m = 2l X q_m$
Vector form	$\vec{\tau} = \vec{p_m} \times \vec{B}$	

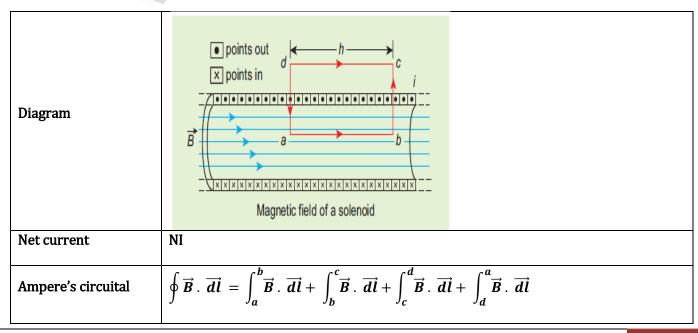

2 Potential energy of a bar magnet in a uniform magnetic field

Diagram	N θ B S		
	$w = \int_{\theta_1}^{\theta_2} \tau d\theta$		
Work done	$=\int_{\theta_1}^{\theta_2} p_m B\sin\thetad\theta$		$ au = p_m B \sin heta$
	$U = -p_m B \cos \theta$	0	

³ Properties of dia, Para, Ferro magnetic materials

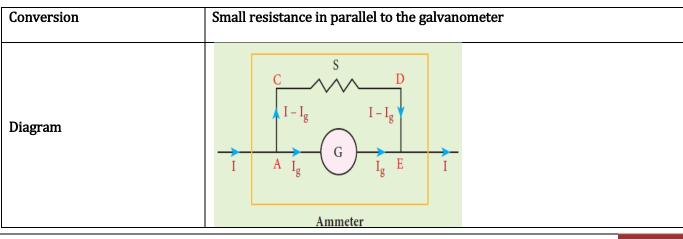
Property	Dia	Para	Ferro
Susceptibility	Negative	small Positive	Large positive
Relative permeability	Slightly less than one	Greater than one	Large
Field lines	Repelled	Attracted into the	Strongly attracted into
Field mies	Repence	materials	the material
X depends on T	Independent	Inversely proportional	Inversely proportional
Examples	Bi, Cu, H ₂ O	Al,pt,Cr	Fe, Ni, Co

4 Magnetic field due to a long current carrying solenoid

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM

21

Magnetic field	$\int_{a}^{b} \vec{B} \cdot \vec{dl} = BL = \mu_{o} NI$ $B = \mu_{o} \frac{N}{l} I$
	$B = \mu_0 n I$


5 What are the special features of Magnetic Lorentz force?

	$\vec{F} = q\left(\vec{V} X \vec{B}\right) = Bqv \sin\theta$		
		Magnetic field	\vec{B}
Force	Directly proportional	Velocity	\vec{v}
	Directary proportional	Sine of angle between $\vec{V} \& \vec{B}$	Sin 0
		Magnitude of charge	Q

.6 .Motion of a charged particle in a uniform magnetic field

Diagram	x + q + v
Magnetic Lorentz force	F = qvB(1)
Centripetal force provide Lorentz force	$F = \frac{mv^2}{r}(2)$
Radius of the circular path	$r = \frac{mv}{Bq}$
Time period	$T = \frac{2\pi r}{v} = \frac{2\pi m}{Bq}$
Frequency	$f = \frac{Bq}{2\pi m}$

7 Galvanometer into an Ammeter

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM

22

ww Padasalai Net V S R www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

$V_{galvanometer} = V_{shunt}$	$\mathbf{I_g}\mathbf{R_g} = (\mathbf{I} - \mathbf{I_g})\mathbf{S}$
Shunt resistance	$\mathbf{S} = \frac{\mathbf{I_g}\mathbf{R_g}}{\left(\mathbf{I} - \mathbf{I_g}\right)}$
Current through the	(\mathbf{S})
galvanometer	$\mathbf{I_g} = \left(\begin{array}{c} \mathbf{S} \\ \mathbf{S} + \mathbf{R_g} \end{array}\right) \mathbf{I}$
Resistance of the ammeter	$R_{a} = \frac{R_{g}S}{R_{g} + S}$
 For ideal ammeter, resistance must be equal to zero. 	

8 Galvanometer to a Voltmeter

Conversion	Very high resistance in series to the galvanometer
Diagram	A lg G Rh B Voltmeter
Current through the	v
circuit	$I = I_g = \frac{V}{R_g + R_h}$
High resistance	$R = \frac{V}{I_g} - R_g$
Resistance of the	$\mathbf{p} = \mathbf{p} + \mathbf{p}$
voltmeter	$\mathbf{R_v} = \mathbf{R_g} + \mathbf{R_h}$
	An ideal voltmeter should have infinite resistance

TWO MARKS

1 Coulombs law

Force	A	Directly proportional	Product of pole strength
		Inversely proportional	Square of the distance

2 Magnetic susceptibility

Ratio of the intensity of magnetization induced in the material due to the

magnetizing field

 $\aleph = \frac{\overrightarrow{M}}{\overrightarrow{H}}$

> no unit

vector quantity

3 Curie Weiss law

The temperature at which a ferromagnetic material becomes paramagnetic. This temperature is known as curie temperature

$$\aleph = \frac{C}{T - T_c}$$

4 Biot Savat law

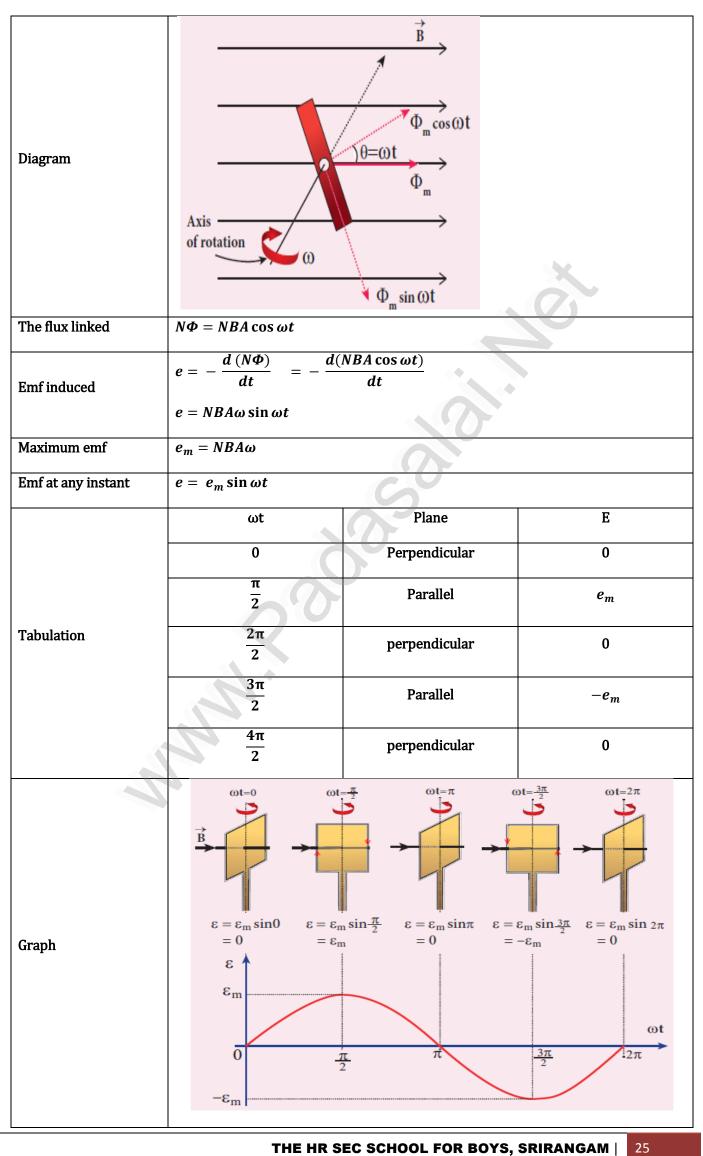
Magnetic field at p due to current element	Directly proportional	Strength of current (I)Length of the element (dl)Sine of angle between \vec{dl} and \vec{r}
	Inversely proportional	Square of the distance (r)
Equation	$\overrightarrow{dB} = rac{\mu_0}{4\pi} rac{i\overrightarrow{dl}x\overrightarrow{r}}{r^2}$	

5 Difference between Coulombs law and Biot Savat 's law

	Coulombs law	Biot Savat law
Source	Scalar source	Vector source
Source	(charge)	(current element)
Direction between source and position vector	Parallel	Perpendicular
Angle dependence	No	Angle between \vec{r} and \vec{ldl}

6 Ampere's circuital law

The line integral of a magnetic field over a closed loop is μ_o times the net current enclosed by the loop.


$$\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{enclosed}$$

⁷ On what a factor does the current sensitivity of a galvanometer depends?

$\frac{\theta}{I} = \frac{NBA}{C}$	
	No. of turns
Increasing	Magnetic field
	Area of the coil
Decreasing	Couple per unit twist
	Increasing

04. Electromagnetic induction and Alternating current

1 Show mathematically that the rotation of a coil in a magnetic field over one rotation induces an alternating emf of one cycle.

2 Explain the construction and working of Transformer

Transformer	Converts electrical power from one circuit to another without changing frequency
	Converts low alternating voltage into high alternating voltage and vice versa
Principle	Mutual Induction
Diagram	Primary winding of Secondary winding of N _p turns Primary current, I _p Primary voltage, V _p Transformer core
The voltage in the	
The emf in the sec	ondary coil $V_s = \epsilon_s = -N_s \frac{d\phi_B}{dt} - (2)$
(1) = (2)	$\frac{V_{s}}{V_{p}} = \frac{N_{s}}{N_{p}} = K (Transformer \ ratio)$
For Ideal transform	mer $V_s I_s = V_p I_p$
	$\frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{V}_{\mathbf{p}}} = \frac{\mathbf{N}_{\mathbf{s}}}{\mathbf{N}_{\mathbf{p}}} = \frac{\mathbf{I}_{\mathbf{p}}}{\mathbf{I}_{\mathbf{s}}} = K$
	Ratio of useful output power to the input power
Efficiency	$\eta = \frac{\text{Output Power}}{\text{Input Power}} X 100 \%$

3 AC with inductor

	$v = V_m \sin \omega t$	$v = V_m \sin \omega t$	$v = V_m \sin \omega t$
Applied V	$v = v_m \sin \omega t$	$v = v_m \sin \omega t$	$v = v_m \sin \omega t$
Developed V	$v_R = iR$	$e = -L \frac{di}{dt}$	$\mathbf{v} = \frac{\mathbf{q}}{\mathbf{c}}$
	$iR = v_m \sin \omega t$	$v_m \sin \omega t = L \frac{di}{dt}$	$q = C v_m \sin \omega t$
current	$i = i_m \sin \omega t$	$i=i_m\sin\left(\omega t-\frac{\pi}{2}\right)$	$i=i_m\sin\left(\omega t+\frac{\pi}{2}\right)$
Phase difference	In phase	I lags behind e by $\frac{\pi}{2}$	e lags behind I by $\frac{\pi}{2}$

	(44)	e _L	Î Î Î
Phase angle	$\rightarrow i$ $\rightarrow e_{R}$	□,	90° e _e

5 AC circuit containing Resistor, Inductor and capacitor in series

Diagram		L $V_{L} \rightarrow V_{L}$ $V_{L} \rightarrow V_{L}$ $V_{L} \rightarrow V_{L}$	c→
	across R	$V_R = IR$	In phase with I
Voltage	across L	$V_L = IX_L$	Leads I by $\frac{\pi}{2}$
	across C	$V_C = IX_c$	lags behind I by $\frac{\pi}{2}$
Voltage phasor diagram	X_{L} X		
Resultant V	$V^2 = V_R^2 + (V_L - V_C)$	$(2)^{2}$	
Impedance	$\mathbf{Z} = \sqrt{(\mathbf{R})^2 + (X_L - \mathbf{X}_L)^2}$	$(X_C)^2$	
Phase angle	$\tan \Phi = \frac{X_L - X_C}{R}$		

1 Assuming that the length of the solenoid is large when compared to its diameter. Find the equation of inductance.

	self induction	mutual induction
Diagram	A A A A A A A A A A A A A A A A A A A	Solenoid 1 of N_1 turns A 1 Common axis
Total flux	$\Phi = N\Phi = \mu_0 n^2 iAl$	$\Phi = N_2 \Phi = \mu_0 n_1 n_2 i A l$
From definition	$\Phi = LI$	$\boldsymbol{\Phi} = \boldsymbol{M}\boldsymbol{I}$
In a medium μ_r	$L = \mu_0 \mu_{\rm r} n^2 A l$	$M = \mu_0 \mu_{\rm r} n_1 n_2 A l$

2

An inductor of inductance L carries an electric current i. how much energy is stored while establishing the current in it.

Work done	dW = -e dq
	dW = -Li di
On integrating	$W=\frac{1}{2}Li^2$
Work done = Magnetic potential	$U=\frac{1}{2}Li^2$
energy	2
Energy Density	$u \frac{B^2}{2\mu_0}$

3 How will you induce an emf by changing the area enclosed by the coil?

	in by changing the area cherosed by the con.
Diagram	$ \begin{array}{c} \times & \times \underbrace{i}_{\rightarrow} \times \\ \times & \times \\ \end{array} \right) $
Change in flux	$d\Phi = B. dA = Bl (vdt)$
Emf	$e = \frac{d\Phi}{dt} = Blv$
Magnitude of emf	e = Blv
Direction	Clock wise (Flemings' Right Hand Rule)

4 Mention the losses in a transformer.

	Hysteresis loss
Losses	Eddy current loss
103503	Copper loss
	Flux leakage

6 Power in an AC circuit

Power	rate of consumption of electric energy
Tower	> product of voltage and current
Alternating voltage	$v = v_m \sin \omega t$
Alternating current	$i = I_m \sin(\omega t + \Phi)$
Instantaneous power	$p = v_m \sin \omega t I_m \sin (\omega t + \Phi)$
Average power	$P_{av} = \frac{1}{2} V_m I_m \cos \varphi$
	$P_{av} = V_{RMS} I_{Rms} \cos \phi$
Apparent power	V _{RMS} I _{Rms}
Power factor	cosΦ

What are the advantages and disadvantages of AC over DC $(2M + 1M)$		
Disadvantages (1M)		
can't be used for charging of batteries,		
electroplating & electric traction		
> At high voltages, AC is more dangerous		

Two Marks

1 Define magnetic flux

Magnetic flux is defined as the no. of magnetic lines of force passing through the area normally. $\phi = BA \cos \theta$

2 State Faradays law of electromagnetic induction

Llow	Whenever magnetic flux linked with a closed circuit changes, an emf is induced in the
I law	circuit.
II law	The magnitude of induced emf in a closed circuit is equal to the time rate of change of magnetic flux linked with the circuit. $e = \frac{d\emptyset}{dt}$

3 State Lenz's law

The induced current will always flow in such a direction that it opposes the change or cause that produces it.

4 State Fleming's Right hand rule

Thumb index and middle finger are stretched mutually perpendicular to each other			
Thumb		Direction of Motion of the conductor	
Index	Points	Direction of magnetic field	
Middle		Direction of induced current	

5 What are the methods of producing emf?

Equation	$e = \frac{d (BA \cos \theta)}{dt}$
	Magnetic Field
Emf can be induced by changing	Changing the Area
	Orientation of the coil w.r.t. B

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

29

6 Q factor

> It is defined as the ratio of voltage across L or C at resonance to the applied voltage

 $Q = \frac{Voltage \ across \ L \ or \ C \ at \ resonance}{applied \ Voltage}$

05. ELECTROMAGNETIC WAVES

FIVE MARKS

1. Explain the types of Emission spectr-a

Emission spectra	Light from the self luminous source gives emission spectra Each source has its own characteristics
	Continuous Emission Spectra
Types	Line Emission spectrum
	Band Emission spectrum

2. Explain the types of Absorption spectra

	> Light passed through an absorbing substance, then the resulting spectrum is absorption
Absorption spectra	spectrum
	Characteristics depends on the absorbing substance
	Continuous Absorption Spectra
Types	Line Absorption spectrum
	Band Absorption spectrum

3. Maxwell's equation in integral form

-	0
Gauss law	$\oint \vec{E} \cdot \vec{dA} = \frac{Q_{enclosed}}{\varepsilon_0}$
Gauss law in magnetism	$\oint \vec{B} \cdot \vec{dA} = 0$
Faraday law	$\oint \vec{E} \cdot \vec{dl} = -\frac{d\varphi_B}{dt}$
Ampere – Maxwell's law	$\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{enclosed} + \mu_0 \varepsilon_0 \frac{d}{dt} \oint \vec{E} \cdot \vec{dA}$

4. Properties of electromagnetic waves

- > Produced by accelerated charges
- > No medium required for propagation
- > Transverse in nature
- > They travel with speed of light in vacuum
- > They are not deflected by E and B
- Undergo interference, diffraction, polarization
- > They carry energy, momentum and angular momentum

THREE MARKS & TWO MARKS

1. Applications of Electromagnetic waves

Electromagnetic waves	Applications
	Radar system for air navigation
Micro waves	Microwave oven
	Long distance wireless transmission through satellites
	Provides electrical energy to satellites by solar cell
IR radiation	 Produce dehydrated fruits
	\succ In heat therapy for muscular sprains

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM |

31

Padasalai Net V S R

www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

	TV remote as a signal carrier
	\succ Look through haze fog or mist and for nigh vision in IR photography
	Destroying bacteria & sterilizing surgical instruments
UV radiation	> To study molecular structure
	\succ Burglar alarm, invisible writings and finger prints
X ray (2M)	 Structure of inner atomic electron shells
(MARCH 2020)	 Detecting fractures, diseased organs and healing bones
	> To check the faults, cracks, flaws and holes in a finished metal product.

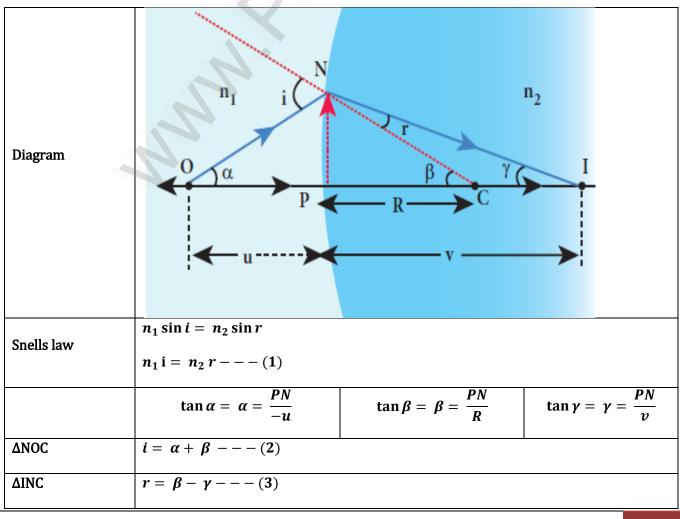
2. Hertz experiment

Diagram	Induction coil \Rightarrow q Transmitter \Rightarrow Receiver
Conclusion	 They are transverse waves They travel with the velocity of light.

3. What is displacement current?

1 AN

The current comes into play where the electric field and electric flux are changing with time


06. Optics

Mirror equation

1

Diagram	B A C B' F F E
Similar ∆	$\frac{-\mathbf{h}'}{\mathbf{h}} = \frac{-\mathbf{v}}{-\mathbf{u}} - (1)$
	$\frac{-\mathbf{h}'}{\mathbf{h}} = \frac{-\mathbf{v} + \mathbf{f}}{-\mathbf{f}} - (2)$
(1) = (2)	$\frac{-\mathbf{v}}{-\mathbf{u}} = \frac{-\mathbf{v} + \mathbf{f}}{-\mathbf{f}}$
Mirror	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}(3)$
equation	
Magnification	$m = \frac{h'}{h} = -\frac{v}{u}$

2 Derive an equation for refraction at single spherical surface

ww Padasalai Net V S R

	$n_1(\alpha + \beta) = n_2(\beta - \gamma)$
Substituting	$\frac{n_2}{v} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R}$
	$\frac{n}{v} - \frac{1}{u} = \frac{(n-1)}{R}$

3 Lens makers formula and lens equation

Diagram	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Refracting surface 1	$\frac{n_2}{v_1} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R_1} (1)$
Refracting surface 2	$\frac{n_1}{v} - \frac{n_2}{v_1} = -\frac{(n_2 - n_1)}{R_2}(2)$
	$\frac{1}{v} - \frac{1}{u} = \left(\frac{n_2}{n_1} - 1\right) \left\{\frac{1}{R_1} - \frac{1}{R_2}\right\}$
Lens makers equation	$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left\{\frac{1}{R_1} - \frac{1}{R_2}\right\}$
Lens equation	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$

4 Derive an expression for angle of deviation produced by a prism and thus obtain the equation for refractive index of the material of the prism.

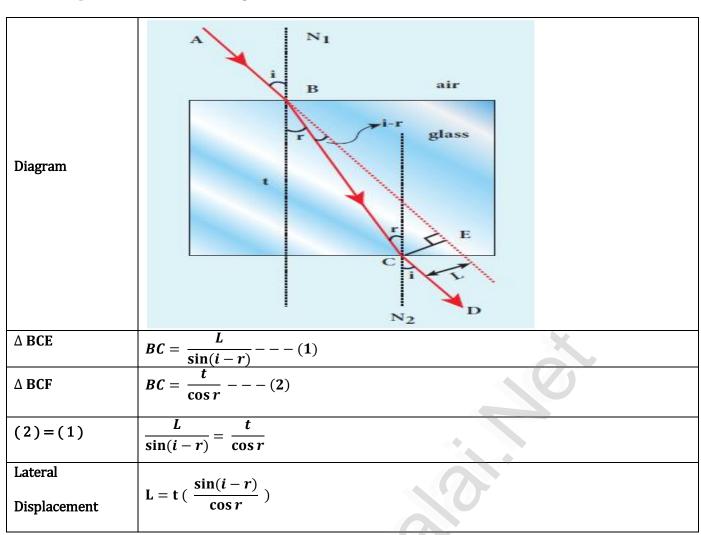
Diagram	P B C
Total deviation	$d = (i_1 + i_2) - (r_1 + r_2) - (1)$
Quadrilateral	$A + QNR = 180^{0} - (2)$
ΔQNR	$r_1 + r_2 + QNR = 180^0 - (3)$
From (2) & (3)	$r_1 + r_2 = A - (4)$

ww Padasalai Net V S R

www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

(4) in (1)	$i_1 + i_2 = A + d$	-(5)	
Minimum deviation	$i_1 = i_2$	$i = \frac{A+d}{2}$	From (5)
	$r_1 = r_2$	$r = \frac{A}{2}$	From (6)
Refractive index	n =	$\frac{\frac{A+d}{2}}{n(\frac{A}{2})}$	

1 Derive a relation between f and R


Diagram	it M it i C F P
	$\tan i = i = \frac{PM}{PC} - (1)$ $\tan 2i = 2i = \frac{PM}{PF} - (2)$
(1)=(2)	$2 \frac{PM}{PC} = \frac{PM}{PF}$
From the figure	R = 2f

2 Apparent depth

Depth	It is observed that the bottom of a tank filled with water appears raised.
Diagram	$X \qquad D \qquad X \qquad C \qquad X \qquad D \qquad Air \qquad Y \qquad Air \qquad Ai$
Snell's law	
Apparent depth	$\mathbf{d}' = \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right) \mathbf{d}$

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 35

221 Lateral displacement in refraction in glass slab

- 1 State laws of reflection
 - > The incident ray and normal to the reflecting surface all are co planar
 - > The angle of incidence = angle of reflection
- 2 Characteristics of the image formed by a plane mirror
 - > The image is virtual, erect and laterally inverted
 - Size of the image = size of the object
 - > Distance between image and mirror = distance between object and mirror
- 3 Critical angle

The angle of incidence in the denser medium for which the refracted ray graces the boundary called critical

angle

- 4 State the conditions for total internal reflection
 - Light must travel from denser to rarer medium
 - Angle of incidence > critical angle.

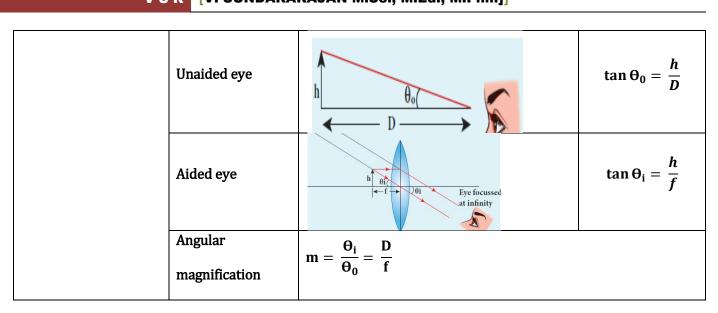
07. WAVE OPTICS

FIVE MARKS

01 Expression for bandwidth

Diagram	$\begin{array}{c} \mathbf{s}_{1} \\ \mathbf{s}_{2} \\ \mathbf{s}_{2} \\ \mathbf{s}_{3} \\ \mathbf{s}_{4} \\ \mathbf{s}_{5} \\ \mathbf{s}$	D	
Path difference			
	$\delta = \frac{dy}{D}$		
		Maxima	Minima
Maxima / Minima	Interference	Constructive	Destructive
	Distance of n th fringe	$y = n \frac{\lambda D}{d}$	$y=\frac{(2n-1)}{2}\frac{\lambda D}{d}$
	Distance between any tw	vo consecutive bright or dark frin	ges.
Band width	0	$\beta = \frac{\lambda D}{d}$	

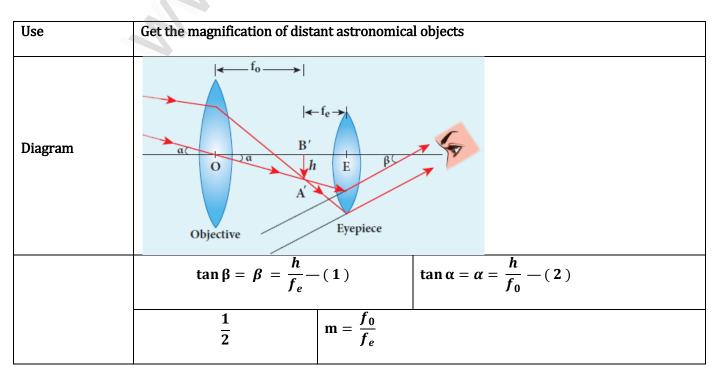
Simple microscope


02

Simple microscope	Single magnifying lens of a short focal length.	
Magnification for near point focusing	Diagram	Eye focussed on near point C D C C C C C C C C C C C C C C C C C C
	Lens equation	$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$
	Magnification	$\mathbf{m} = \frac{\mathbf{v}}{\mathbf{u}} = 1 - \frac{\mathbf{v}}{\mathbf{f}}$
	v = -D	$\mathbf{m} = 1 + \frac{\mathbf{D}}{\mathbf{f}}$

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 37

w Padasalai Net V S R


www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

03 Compound microscope

Diagram	B'' B' Objective A' Eyepiece
Magnification of	$ \tan \beta = \beta = \frac{h}{f_0} $ $ \tan \beta = \beta = \frac{h'}{L} $
Objective	$\mathbf{m_0} = \frac{h'}{h} = \frac{\mathbf{L}}{f_0}$
Magnification of eye piece	$\mathbf{m}_{\mathbf{e}} = 1 + \frac{\mathbf{D}}{f_{e}}$
Total	Near point focusing $\left(\frac{L}{f_0}\right)(1+\frac{D}{f_e})$
magnification	Normal focusing $\left(\frac{L}{f_0}\right)\left(\frac{D}{f_e}\right)$

04 Astronomical telescope

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM |

THREE MARKS

01 Distinguish between Fresnel and Fraunhofer diffraction

	Fresnel	Fraunhofer
Wave front	Spherical or cylindrical	Plane
Source	Finite distance	Infinite distance
Lens	No	Convex
Observe and Analyze	Difficult	Easy

02 Difference between interference and diffraction

	Interference	Diffraction
Definition	Superposition of two waves	Bending of waves around edges
Fringe space	Equal	Un equal
Intensity	Same	Falls rapidly
No. of fringes	More	Less

03 Write down the uses of polarids

	Used in goggles and cameras to avoid light glare
	Holography
	Improve color contrasts in old oil painting.
Polarids are used in	Optical stress analysis
	Controlling the light intensity in window glases
	Reading and writing CDs.
	LCD

04 State and prove Brewster's law

Brewster's law	The tangent of the polarizing angle is equal to the refractive index of the medium		
Diagram	Incident beam A X Reflected beam ip ip ip Fr Refracted beam C Y		

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 39

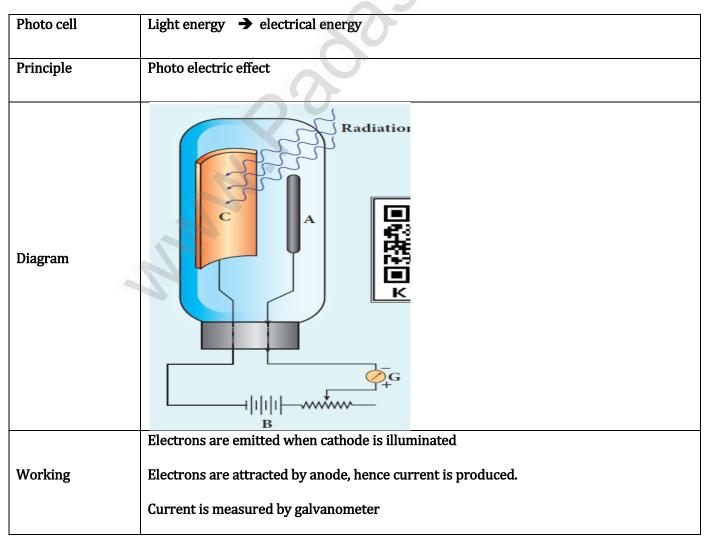
Polarizing angle =	$r_p = 90^0 - i_P$
incident angle	$r_p = 50$ t_p
Snells law	$n = \frac{\sin i_p}{\sin r_p} = \frac{\sin i_p}{\sin(90^0 - i_p)}$
Brewster's law	$\mathbf{n} = \tan i_P$

05 Pile of plates

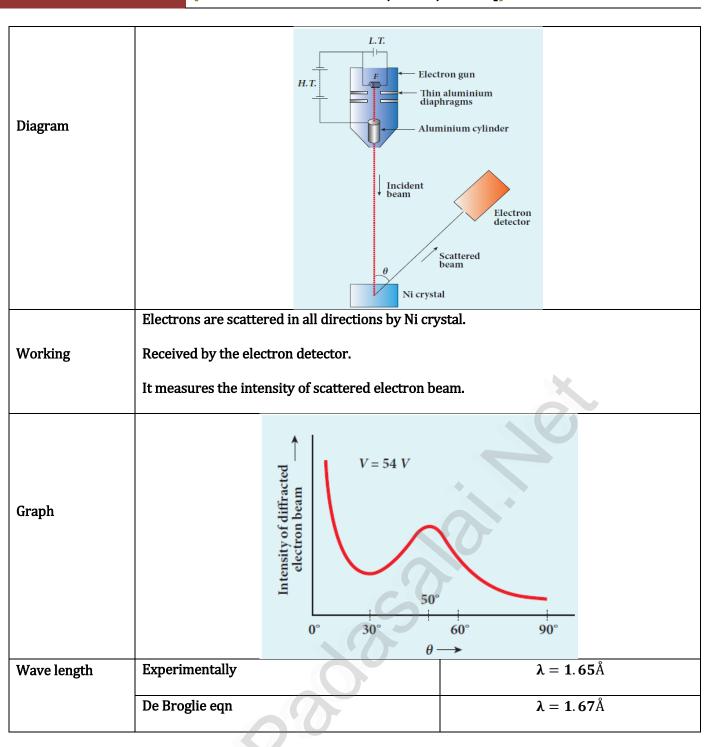
Principle	Polarization by reflection
Uses	Used as a polarizer and analyzer
Diagram	
Working	Angle of incidence = angle of polarization for glass = 56.3° Perpendicular vibrations are reflected Parallel vibrations are transmitted Larger the no. of plates greater the intensity of polarized light.

06 Nicol prism

Principle	Double refraction
Finciple	Double Tell action
Diagram	A Canada balsam 108° C 72° C 72°
Construction	Calcite crystal with length = 3 X breadth Cut into two halves Face angle are 72° and 108° joined by Canada balsam
Working	Monochromatic light incident on the face AC Double refraction take places Ordinary ray is total internally reflected Extra ordinary ray which is plane polarized is transmitted

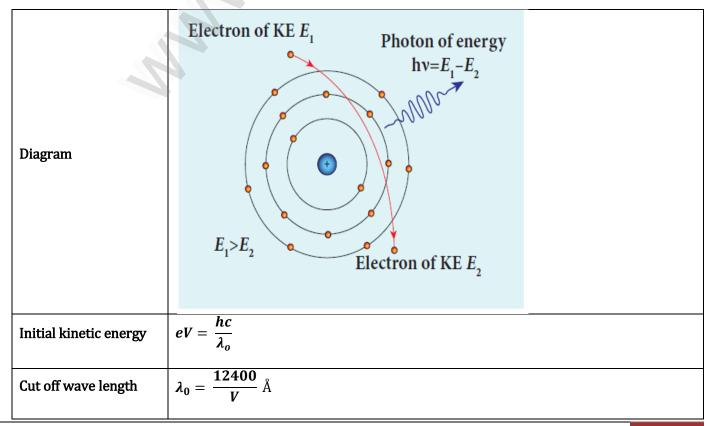

08. DUAL NATURE OF RADIATION & MATTER

FIVE MARKS


01 Obtain Einstein's photoelectric equation with necessary explanation.

Einstein applied quantum theory. Incident energy = Work function + Kinetic energy $hv = \phi_0 + \frac{1}{2} mv^2 - (1)$ By conservation of energy E = hv $E = hv_0$ Diagram $= hv - hv_0$ Metal Metal Work function $\phi_0 = h \upsilon_0$ $h\upsilon = h\upsilon_0 + \frac{1}{2} mv^2$ Einstein's equation $h\upsilon = h\upsilon_0 + \frac{1}{2} mv_{max}^2$ No internal collisions,

02 Give the construction and working of photo emissive cell.



03 Describe briefly Davisson – Germer experiment which demonstrated the wave nature of electrons

THREE MARKS

01 Continuous X ray spectra

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM

02 Laws of photoelectric emission

Given frequency	No. of photo electron Saturation current	Proportional	Intensity of light
Maximum kinetic energy		Independent	
		Proportional	Frequency of light

03 Characteristics of photons

The energy of the photon E = hv

Energy depends on frequency

Photons travel with velocity of light

They are electrically neutral

They are not deflected by \vec{E} and \vec{B}

04 What are the applications of photo cell?

	Switches and sensors
	Automatic on and off of street light
Photo cells are used as	Reproduction of sound in videos
	as timers to measure the speed of athletes
	To measure intensity and exposure time of radiation.

05 De Broglie wavelength for matter waves

The momentum of the photon	$\mathbf{p} = \frac{\mathbf{h}\mathbf{v}}{\mathbf{C}} = \frac{\mathbf{h}}{\lambda}$
We know that	$c = \nu \lambda$
debroglie wavelength	$\lambda = \frac{h}{p} = \frac{h}{mv}$

06 Derive an expression for de Broglie wavelength of electrons.

Kinetic energy acquired by the electron	$\frac{1}{2}mv^2 = eV$	1M
Speed of the electron	$\mathbf{v} = \sqrt{\frac{2\mathbf{eV}}{\mathbf{m}}}$	1M
Debroglie wavelength	$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2meV}}$	1 M
Substituting the known values	$\lambda = \frac{12.27}{\sqrt{V}} \text{\AA}$	
eV = K = Kinetic energy	$\lambda = \frac{h}{\sqrt{2mK}}$	

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM

TWO MARKS

01 Why electron is preferred over X ray in microscope

X ray cannot be deflected by electric and magnetic field and cannot be focused by electrostatic

and magnetic lenses

Electron bean can be deflected by electric and magnetic field and can be focused.

02 What is a photo cell? Mention the different types of photocells.

	Photo emissive cell
converts light energy into electrical energy.	Photo voltaic cell
	Photo conductive cell

03 Work function

The minimum energy needed for an electron to escape from the metal surface Unit : eV

09. ATOMIC & NUCLEAR PHYSICS

FIVE MARKS

01 Radius of nth orbit of an electron

Diagram	Proton is assumed to be stationary Electron revolves in n^{th} orbit of radius r_n with speed v_n Proton M, +e Electrostatic attraction provides centripetal acceleration
Equating Force	$\frac{1}{4\pi\epsilon_0}\frac{Ze^2}{r_n^2}=\frac{Mv^2}{r_n}$
	$\frac{4\pi\epsilon_0 \ (mvr)^2}{\mathrm{Zme}^2}$
Bohrs condition	$mv_nr_n=rac{nh}{2\pi}$
Substituting	$r_n = \frac{n^2 h^2 \epsilon_o}{\pi m Z e^2}$
	$r_n \propto n^2$ (radius is proportional to square of the principal quantum no)
Bohr radius	$r_n = 0.53 \text{ Å}$

02 Energy of an electron in the nth orbit

Total energy	sum of the potential energy and kinetic energy		
	$\mathbf{T} = \mathbf{K} + \mathbf{U}$		
Potential Energy	$U = -\frac{1}{1} \frac{Ze^2}{Ze^2}$		
	$0 = 4\pi\epsilon_0 r$		
Kinetic Energy	$K = \frac{1}{2} \frac{Ze^2}{2}$		
2	$R = 8\pi\epsilon_0 r$		
Total energy	$E_n = -\frac{13.6}{n^2} eV$		

03 Spectral series of an hydrogen atom

Series	n	m	Equation	Region
Lyman	1	2,3,4,5,6	$\frac{1}{\lambda} = R \left[\frac{1}{1} - \frac{1}{m^2} \right]$	UV
Balmer	2	3,4,5,6,7	$\frac{1}{\lambda} = R \left[\frac{1}{4} - \frac{1}{m^2} \right]$	Visible
Paschen	3	4,5,6,7,8	$\frac{1}{\lambda} = R \left[\frac{1}{9} - \frac{1}{m^2} \right]$	IR

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM

www.Padasalai Net V S R www.Trb Tnpsc.Com [V. SUNDARARAJAN M.Sc., M.Ed., M.Phil.]]

Brackett	4	5,6,7,8,9	$\frac{1}{\lambda} = R \left[\frac{1}{16} - \frac{1}{m^2} \right]$	IR
P Fund	5	6,7,8,9	$\frac{1}{\lambda} = R \left[\frac{1}{25} - \frac{1}{m^2} \right]$	IR

04 State law of radioactive decay

Law	Rate of disintegration is directly proportional to the number of atoms present at that		
	instant		
From law	$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$	-ve sign denotes atom decreases	
Rewriting	$\int_{N_0}^{N} \frac{dN}{N} = - \int_{0}^{t} \lambda dt$		
On integrating	$\ln\left(\frac{N}{N_0}\right) = -\lambda t$		
Taking exponentials	$N = N_0 e^{-\lambda t}$		
Graph	Numper of mdecayed nuclei N ₀ /2 N ₀ /4 N ₀ /4 N ₀ /8 N ₀ /16 T _{1/2} 2T _{1/2} 3T _{1/2} 4T _{1/2} T	t Time t	

THREE MARKS

01 What are the properties of cathode rays? Possess energy and momentum

Can be deflected by both E & B

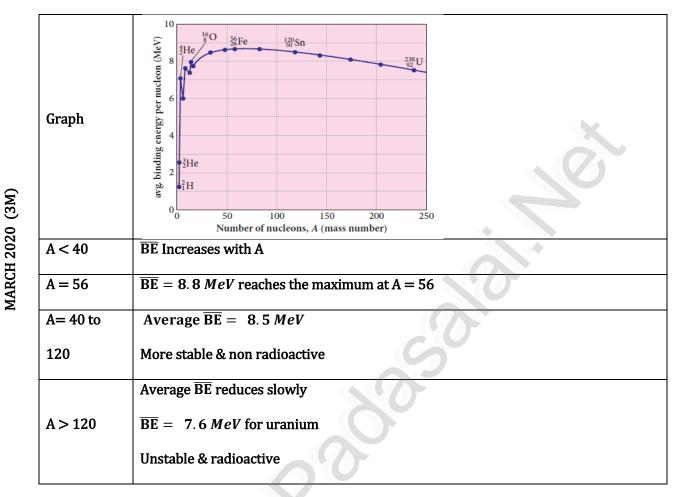
They affect photographic plates

They produces fluorescence

Ionize the gas through which they pass

02 Half life

Half life time	time required to become half of the initial
From definition	$\frac{N_0}{2} = N_0 e^{-\lambda T_1}$
Reciprocating	$e^{\lambda T_{\frac{1}{2}}} = 2$
Taking log on both sides	$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \frac{0.6931}{\lambda}$


THE HR SEC SCHOOL FOR BOYS, SRIRANGAM \mid

46

03 Classifications of nuclei

	Element	Atomic No	Mass No	Neutron No	Example
Isotopes	Same	Same	Different	Different	1H ¹ 1H ²
Isobars	Different	Different	same	Different	16Si ⁴⁰ 17Cl ⁴⁰
Isotones	Different	Different	Different	Same	5B12 6C13

04 Explanation for Binding energy curve

TWO MARKS

01 Properties of Nuclear Force

Strongest force of nature

Very short range force

strong attractive force

Nuclear force is same for (n-n), (p-p), (p-n)

02 Define one amu

One atomic mass unit is defined as the $\frac{1}{12}$ th of the mass of the isotope of carbon ${}_6C^{12}$.

 $1u = 1.660 \text{ X } 10^{-27} \text{ Kg}$

03 Properties of Nuclear Force

Strongest force of nature

Very short range force

It is an strong attractive force

Nuclear force is same for (n-n), (p-p), (p-n)

It doesn't act on electrons hence chemical properties of the atoms remain unaltered.

04 What are the properties of neutrino? (2M)

It has Zero charge

It has an antiparticle called anti neutrino

experiments shows that they have tiny mass

they interacts weakly with matter

05 One curie

One curie is defined as the no. of decays per second in 1g of radium which is equal to 3.7×10^{10} decays/s

 $1 \text{ curie} = 3.7 \times 10^{10} \text{ decays per second}$

06 What are the properties of neutrons?

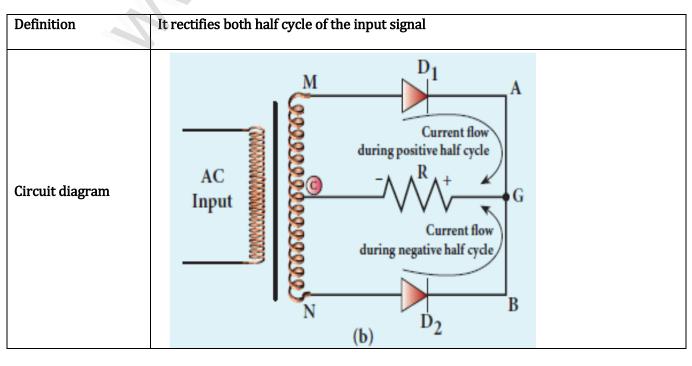
They are stable inside the nucleus

Outside the nucleus it decays with a half life of 13 mins.

They are neutral in charge

Penetrating power is high

07 Classify the neutrons based on their kinetic energy


	Name	Kinetic energy
Slow neutron	0.0	0 to 1000eV
Fast neutron		0.5MeV to 10MeV
Thermal neutron		0.025eV in thermal equilibrium

10. SEMICONDUCTOR DEVICES

01 Explain the working of half wave rectifier with a circuit diagram and a graph

Definition	The circuit which rectifie	The circuit which rectifies one half of the input ac signal			
Circuit diagram	AC Input B (a)				
		+ve half cycle	-ve half cycle		
	Terminal A	Positive	Negative		
Working	Terminal B	Negative	Positive		
	Diode D	Forward Bias	Reverse Bias		
	Current	Conducts	doesn't conduct		
	Output voltage	Obtained	Not obtained		
Wave Form	Vpeak Vpeak				
Output Nature	Unidirectional & Pulsating output				
Efficiency	$\eta = \frac{\text{output dc power}}{\text{input ac power}} = 40.6 \%$				

02 Explain the working of full wave rectifier with a circuit diagram and a graph

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM

+ve half cycle-ve half cycleTerminal MPositiveNegativeTerminal NNegativePositiveTerminal GZeroZeroTerminal GZeroZeroDiode (D1)Forward bias and +conductsReverse Bias and doesn't conductDiode (D2)Reverse Bias and doesn't conductForward bias and conductOutput voltageObtainedObtainedVoltage directionG > CG > CVipas f0Imput voltageOutput natureVoltage drop in same direction Still pulsating outputVoltage drop in same directionB1.2%81.2%Still pulsating output				
Working Terminal N Negative Positive Terminal G Zero Zero Diode (D1) Forward bias and +conducts Reverse Bias and doesn't conduct Diode (D2) Reverse Bias and doesn't conducts Forward bias and conducts Output voltage Obtained Obtained Voltage direction MD2AGC ND2BGC Voltage direction G → C G → C			+ve half cycle	-ve half cycle
Working Terminal G Zero Zero Diode (D1) Forward bias and +conducts Reverse Bias and doesn't conduct conduct Diode (D2) Reverse Bias and doesn't conducts Forward bias and conducts Forward bias and conducts Output voltage Obtained Obtained Obtained Output voltage Obtained MD2BGC MD2BGC Voltage direction G > C G > C		Terminal M	Positive	Negative
Working Image: bit of the probability of		Terminal N	Negative	Positive
WorkingDiode (D1)Forward bias and +conducts conductconductDiode (D2)Reverse Bias and doesn't conductForward bias and conductOutput voltageObtainedObtainedOutput voltage directionG > CG > CVoltage directionG > CG > CVyeakVyeakInput voltage oVyeakVyeakInput voltage oVyeakVyeakInput voltage oVoltage directionG > CVoltage directionCVoltage directionCViput hInput voltage oVoltage directionCVoltage directionCVoltage directionCVoltage directionCVoltage directionCStill pulsating outputC		Terminal G	Zero	Zero
Diode (D2)conductconductsOutput voltageObtainedObtainedCurrent directionMD1AGCND2BGCVoltage directionG > CG > CVyeatImage: Conduct of the put voltageImage: Conduct of the put voltageWave FormVyeatImage: Conduct of the put voltageImage: Conduct of the put voltageOutput natureVoltage drop in same direction Still pulsating outputVoltage drop in same directionImage: Conduct of the put voltage	Working	Diode (D ₁)	Forward bias and +conducts	
output voltage Obtained Obtained Output voltage Obtained ND2BGC Current direction G > C G > C Voltage direction G > C Input voltage Wave Form Vpeak Input voltage Voltage drop in same direction Output voltage Voltage drop in same direction Still pulsating output		Diode (Dr.)	Reverse Bias and doesn't	Forward bias and
Current direction MD ₁ AGC ND ₂ BGC Voltage direction G → C G → C Wave Form Vpeak Imput voltage -Vpeak -Vpeak Output voltage Voltage drop in same direction Current direction Still pulsating output Still pulsating output			conduct	conducts
Voltage direction G → C Wave Form Vpeak Output nature Voltage drop in same direction Still pulsating output		Output voltage	Obtained	Obtained
Wave Form Vyeak Vpeak Vpeak Vpeak Vpeak Vpeak Vpeak Voltage drop in same direction Still pulsating output		Current direction	MD ₁ AGC	ND ₂ BGC
Wave Form -Vpeak -Vpeak		Voltage direction	G → C	G → C
Output nature Voltage drop in same direction Still pulsating output	Wave Form	0		Time Output voltage
Efficiency 81.2%	Output nature		lirection	
	Efficiency	81.2%		

03 State and prove Demorgan theorem

<u>First Theorem</u>				Second Theorem					
The con	nplement o	of the sum i	s equal to pi	oduct of	The complement of the product is equal to sum of its				
its com	plements				complements				
	$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$						$\overline{\mathbf{AB}} = \overline{\mathbf{A}} +$	- <u>B</u>	
Α	В	A+B	$\overline{\mathbf{A} + \mathbf{B}}$	AB	AB	Ā	B	$\overline{A} + \overline{B}$	Ā.B
0	0	0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	0	1	0
1	0	1	0	0	1	0	1	1	0
1	1	1	0	1	0	0	0	0	0

THREE MARKS

01 Write down the applications of satellite communication

Weather satellite	Monitoring the weather and climate Predict rain, storms, cyclones
Communication satellite	Transmission of TV, Radio and internet signal
Navigations satellite	To locate ships, aircrafts

02 What is fiber optic communication? Mention its principle & write its application

F. O. C	The method of transmitting information from one place to another in terms of light pulses
P. 0. C	through an optical fiber
Principle	Total internal reflection
	International, inter – city communication, data – links, plant and traffic control and
Applications	international, inter city communication, addit initia, plant and traine control and
	defense application

03 What are merits and Demerits of Fiber optic communication?

Merits	Demerits
cables are very thin and less weight	More fragile
Much larger bandwidth.	Expensive technology
No electrical interference	
Cheaper	0

04 What is RADAR? Write its applications

RADAR	Radio Detection and Ra	nging	
	Radio Detection and Ranging		
Applications	Military	For locating and detecting the targets	
	Navigation	air search & missile guidance system	
	Meteorological	Measure precipitation rate and wind speed	
	Emergency	Locate and rescue people	

05 Write down the applications of mobile communication

Voice calls and high speed data connectivity

Transmission of news

To control various devices

Enable smart classroom, online availability of notes & monitoring students activities

06 hat are the applications of internet communication

Search engine	Web based service tool to search for information
Communication	Connects millions of people by email, social networking and instant messaging

THE HR SEC SCHOOL FOR BOYS, SRIRANGAM | 51

	Buying and selling of goods and services
E commerce	Transfer of funds on electronic networks

07 What are the applications of LED ?

Applications	Indicator lamp on scientific and laboratory equipments
	Seven Segment Display
	Traffic signal, emergency vehicle lighting
	Remote control of TV and AC

Write down the uses of Photodiode. 80

	Alarm system	
	Count items in conveyor belt	
Applications	Photo conductors	
	CD players and smoke detectors	
	Computer tomography	

09 Mention the applications of solar cell

	Used in calculators, watches, toys, portable power supplies	
Application	Used in satellite and space applications	
	Solar panels are used to generate electricity.	

10 Barkhausen conditions for sustained oscillations

The loop phase shift must be 0° or $n2\pi$ (where n = 1,2,3....)

Loop gain $|A\beta| = 1$

11 What are the applications of oscillators?

To generate periodic sinusoidal and non sinusoidal waveforms

To generate RF carriers

To generate audio tones

To generate clock signal in digital circuits

As a sweep circuits in TV set and CRO

12	What are the advantages of IC?				
	Cost	Performance			
	Size	Speed			
	Reliability	Easy replacement			

13 What are the advantages and limitations of AM?

Advantages	Disadvantages
Easy transmission and reception	Noise level is high
Lesser Bandwidth	Low efficiency
Low cost	Small operating range

14 What are the advantages and limitations of FM

Advantages	Disadvantages
Large decrease in noise	Requires wider channel
Large operating range	Complex and costly Transmitters and receivers
Efficiency is very high	Less coverage area
Bandwidth covers entire audible range	X

15 What are the methods of propagation of electromagnetic waves?

Ground Wave propagation

Space wave propagation

Sky wave propagation

16 What is skip distance?

The shortest distance between the transmitter and the point of reception of the sky wave along the surface

17 What is skip zone?

There is zone (Area) where there is no reception of electromagnetic waves neither ground nor sky called skip zone or skip area

18 What are the advantages of using microwaves in space wave propagation?

Larger bandwidth	
	Small antenna size
High data rates	
	Low power consumption
Better directivity	

19 What are intrinsic semiconductors?

- > A semiconductor is in pure form without impurity.
- \succ The no. of electrons in the conduction = The no. of holes in the valence band
- ➢ E.g. : Pure Si, Pure Ge

20 What is doping?(MARCH 2020 (2M))

The process of adding of small amount of impurity to the pure semiconductor is called doping.

21 What is rectification?

The process of converting alternating current into a direct current is called rectification

MM. Color