www.Padasalai.Net

www.Trb Tnpsc.Com

CLASS: 12	UNIT: 6	RAY OPTICS – I		MARKS: 30	
TIME: 1.15 HR	P	ART – A		8 X 1 = 8	
1. The speed of light in a	n isotropic mediu	n depends on			
a) intensity b) wav	velength c) nat	ure of propagation	d) the motion of the so	urce w.r.t.medium	
2. For light incident from	n air on a slab of r	efractive index 2, the	e maximum possible refr	action angle is	
a) 30º	b) 45º	c) 60º	d) 90º		
3. Stars twinkle due to	a) reflection	b) T.I.R.	c) refraction	d) polarisation	
4. The speed of light thr	ough pure water h	naving refractive inde	ex 1.33 is m s ⁻¹		
a) 2.62 x 10 ⁸	b) 3 x 10 ⁸	c) 2.5 x 10 ⁸	d) 2.26 x 10 ⁸	R.	
5. Lateral magnification	in spherical mirro	or is represented by			
a) m = f – v / f	b) m = f-u / f	c) m = h / h¹	d) m = f – v / v		
6. The relation between	angle of deviation	and angle of inciden	ce is		
a) 90-2i	b) 180 – i	c) 180 – 2i	d) 180-2a		
7. If the refractive index	for glass is 1.5, th	en the critical angle	for glass-air interface is	5	
a) 43.3°	b) 41.8º	c) 48.6 ⁰	d) 24.7º		
8. The minimum height	required to view th	ne full image of an ob	ject is the height of	plane mirror.	
a) ¼	b) ½	c) ¾	J) 1/3		
	PAR	т – в		3 X 2 = 6	
9. State the laws of reflection 10. Write any three characteristics of the image by plane mirror					
11. What are paraxial and	d marginal rays?	12. Define lateral m	agnification in spherica	l mirrors.	
13. State Snell's law.	14. What are the c	conditions for total in	ternal reflection to take	place?	
15. Light travelling throu	igh transparent oil	enters into glass of	R.I. 1.5. If the R.I. of glass	s w.r.to the oil	
is 1.25, what is the re	fractive index of th	ne oil?			
	PA	RT – C		2 X 3 = 6	
16. Show that the angle	of deviation produc	ced is twice the gland	ing angle.		
17. Derive the relation between radius of curvature and focal length.					
18. What is optical path?	Derive an express	sion for the same.			
19. Define critical angle.	Derive the relation	n between critical ang	gle and refractive index.		
20.Light travels from air	into a glass slab	of thickness 50 cm a	nd refractive index 1.5.		
a) Find the speed of light in the glass slab b) Find the time taken by the light to travel through					
the glass slab c) Find the optical path of the glass slab.					
	P	ART – D		2 X 5 = 10	
21. Derive the mirror equ	uation or Des	cribe the Fizeau's m	ethod to determine the s	peed of light.	
22. Obtain the expression	n for apparent dep	th or			

Obtain the equation for lateral displacement of light passing through a glass slab.

CLASS: 12 UI	NIT: 6 RAY OPTICS – II	MARKS: 30		
TIME: 1.15 HR	PART – A	8 X 1 = 8		
1. The radius of curvature of curve	ed surface at a thin planoconvex lens is 10 cm and	d R.I. is 1.5. If the		
plane surface is silvered, then t	he focal length is a) 5 cm b) 10 cm c) 15 c	:m d) 20 cm		
2. When a biconvex lens of glass l	having R.I. 1.47 is dipped in a liquid, it acts a plane	sheet of glass.		
This implies that the liquid mus	t have R.I. a) < 1 b) < glass c) > glass	d) = glass		
3. The magnification is always pos	sitive and less than one for			
a) concave lens b) conv	ex lens c) plane mirror d) concav	e mirror		
4. Angle of deviation for a monocl	nromatic light does not depend on	- K		
a) R.I b) angle of incid	lence c) angle of the prism d) ar	ngle of refraction		
5. At minimum deviation a) r ₁	> r_2 b) $r_1 < r_2$ c) $r_1 = r_2 = r$ d) $i_1 < r_2$	i ₂		
6. The refractive indices for violet	and red colour are andrespectively.			
a) high and low b) low a	and high c) high and medium d)	low and medium		
7. When light entering the raindro	p undergoes two total internal reflections, the ra	inbow formed is		
a) secondary b) prima	ry c) both primary and secondary	d) blurred		
8. The dispersive power of a prisr	n depends only on	r		
a) angle of the prism b) and	gle of refraction c) angle of emergence d)	nature of material		
	PART – B	3 X 2 = 6		
9. What is dispersion? 10. H	low are rainbows formed? 11. What is Ray	leigh's scattering?		
12. Why does sky appear blue?	13. Why do clouds appear white?			
14. What is the reason for reddish	appearance of sky during sunset and sunrise?			
15. Find the dispersive power of a	prism if the R.I. of flint glass for red, green and v	iolet colours are		
1.613, 1.620 and 1.632 respective	ly. 16. Distinguish primary rainbow from secon	dary rainbow.		
	PART – C	2 X 3 = 6		
17. Derive an expression for the ef	fective focal length of lenses in contact.			
18. A monochromatic light is incide	ent on an equilateral prism at an angle 30º and is	emergent at an		
angle of 75°. What is the angle	of deviation produced by the prism?			
19. The angle of minimum deviation for an equilateral prism is 37°. Find the R.I. of the material of prism.				
20. What is non – Rayleigh scattering? Why sky appears dark for the astronauts?				
	PART – D	2 X 5 = 10		
21. Obtain lens formula and lens m	aker's formula or Obtain the equation for di	spersive power		
22. Derive the equation for refract	ive index of the material of the prism or			
Derive the equation for refracti	on at single spherical surface.			

BELIEVE YOU CAN AND YOR'RE HALFWAY THERE - T.ROOSEVELT

CLASS: 12	UNIT: 7	WAVE OPTICS		MAR	KS: 30
TIME: 1.15 HR	F	PART – A		8	X 1 = 8
1. A plane glass is placed	l over a various	coloured letters	(violet, gree	n, yellow, red). The	letter
Which appears to be ra	aised more is	a) red	b) yellow	c) green	d) violet
2. Two coherent monoch	romatic light bea	ams of intensities	s I and 4I are	superposed. The m	ax and min
possible intensities in	the resulting be	am are a) 51 ai	ndl b)5l	and 3 I c) 9 I and	I d) 91 and 31
3. First diffraction min du	ue to single slit o	of width 1 x 10 ⁻⁵ cr	n is at 30º. Ti	he wavelength of lig	jht used is
a) 400 Å	b) 500 Å	c) 600 Å		d) 700 Å	
4. The transverse nature	of light is show	n in			
a) interference	b) diffraction	c) sca	ittering	d) polarisation	
5. Polarisation can't be e	explained by	theory		ΛP	
a) corpuscular	b) wave	c) electr	omagnetic	d) quantum	
6. Soap bubbles exhibit	brilliant colours	due to			
a) Polarisation	b) diffraction	c) refractio	on d	I) interference	
7. If the intensity of light	varies between	maximum and m	inimum, ther	n it is called ligi	nt.
a) unpolarised	b) plane polar	ised c)	partially pol	arised d) no	one
8. Angular resolution ca	n be represented	d by the formula	θ =		
a) 1.22 / λ a b) 1.22 λ / a	c) 1.22 λ	d) 1.2	22 λ f / a	
	PAI	RT – В		3	X 2 = 6
9. State Huygens princip	le. 10. Wh	at are coherent s	ources?	11. What are Air	y's discs?
12. Two light sources have intensity of light as I_0 . What is the resultant intensity at a point where the					
two light waves have a phase difference of π / 3 ? 13. What is Rayleigh's criterion?					
14. Find the polarizing angles for (i) glass of refractive index 1.5 (ii) water of refractive index 1.33					
15. List the uses of polaro	oids. 16. What	are near point ar	nd normal fo	cussing?	
	P/	ART – C		2	X 3 = 6
17. State and prove Malus law 18. State and prove Brewster's law.					
19. Briefly explain the function of reflecting telescope.					
20. The wavelength of a light is 450 nm. How much phase it will differ for a path of 3 mm?					
21. Explain any one of the techniques of obtaining coherent sources.					
22. Obtain the relation between phase and path difference. 23. Explain pile of plates.					
		PART – D		2 X	(5 = 10
24. Prove law of reflection using Huygen's principle. or					
Obtain the equation for bandwidth in Young's double slit experiment.					
25. Discuss about the simple microscope and obtain equations for near point and normal focussing.					

Or Explain about compound microscope and obtain the equation for the magnification.

CLASS: 12	UNIT: 8	DUAL NATUR	E OF RADIATION	I AND MATTER	MARKS: 30
TIME: 1.15 HR		PAR	RT – A		8 X 1 = 8
1. In an electron m	nicroscope,	the electrons a	are accelerated I	by a voltage of	14 kV. If the voltage is
Changed to 224	kV, then the	e de Broglie wa	velength associ	ated with the e	electrons would
a) inc by 2 times	s b) de	ec by 2 times	c) dec by	4 times	d) inc by 4 times
2. The threshold w	vavelength f	or a metal sur	face whose pho	oelectric work	function is 3.313 eV is. T
a) 4125 Å	b) 3	5750 Å	c) 6000 Å		d) 2062.5 Å
3. Emission of ele	ctrons by al	osorption of he	at energy is	emission	
a) photoelectric	:	b) field	c) thermion	ic d) s	econdary
4. The work functi	ons of meta	ols A, B and C a	are 1.92 eV, 2.0 e ^v	√ and 5.0 eV re	spectively. The metals
which will emit	photoelectr	ons for 4100 Å	are a) A	b) both A & B	c) all three d) none
5. The resistance	of semicond	luctor changes	in accordance v	with radiant en	ergy in cell
a) Daniel	b) photo em	nissive c)	photoconductive	e d) ph	oto voltaic
6. The work functi	on of Caesiu	um is 1.8 eV. Its	s threshold frequ	iency is	
a) 4.36 x 1014 Hz	b) 1	.42 x 10 ¹⁴ Hz	c) 8 x 10 ¹⁴	Hz d)	1.1 x 10 ¹⁵ Hz
7. The de Broglie	wavelength	of electron of I	kinetic energy 12	0 eV is	
a) 11.21 Å	b) 24.3	85 x 10⁻⁰ m	c) 1.121 Å	d) 14	.5 nm
8. The energy of p	hoton is E =	hv and its mo	mentum is h/λ. T	hen the veloci	ty of light is expressed as
a) (E / p)²	b) E	E / p	c) Ep	d) (E p)	^{1/2} q
		PART -	- B)	3 X 2 = 6
9. Define work fur	nction and g	ive its unit.	10. Define thres	hold frequency	<i>r</i> .
11. Why do we not s	see the wav	e properties of	a baseball? 1	2. Define stopp	ing potential.
13. Give the quantu	ım definitior	n of intensity of	light.		
14. A proton and an electron have same K.E. Which has greater de Broglie wavelength. Justify.					
15. A radiation of w	vavelength 3	300 nm is incid	ent on a silver s	urface. Will ph	otoelectrons be observed?
		PART	- C		2 X 3 = 6
16. Give the charac	16. Give the characteristics of photons. 17. Derive the de Broglie wavelength of electron.				
18. A proton and an electron have same de Broglie wavelength. Which of them moves faster and which					
possesses more K.E.? 19. Explain the characteristic X- ray spectra?					
20. Calculate the cut off wavelength and cut off frequency of x – rays from an x-ray tube of accelerating					
potential 20 kV	? 21. Wh	at is Bremstra	hlung? State Dua	ane – Hunt fori	mula. Write 2 uses of x – rays.
		PA	RT – D		2 X 5 = 10
22. Explain the effe	ect of P.D. o	n photoelectric	current or De	rive Einstein's	photoelectric equation.
23. Briefly explain the principle and working of electron microscope or					
Describe briefly Davisson – Germer experiment which demonstrated the wave nature of electrons.					

CLASS: 12	UNIT: 9 A	TOMIC PHYSICS		MARKS: 30
TIME: 1.15 HR	F	PART – A		8 X 1 = 8
1. In a hydrogen atom, the electron revolving in the fourth orbit, has angular momentum equal to				
a) h	b) h / π	c) 4 h / π	d) 2	2 h / π
2. The charge on catho	de ray is a) posi	tive b) negative	c) neutral	d) not defined
3. The ratio between th	e first three orbit	s of hydrogen atom is		
a) 1:2:3	b) 2:4:6	c) 1:4:9	d) 1:3:5
4. Atomic number of H	-like atom with io	nization potential 122.4	V for n = 1 is	
a) 1	b) 2	c) 3	d) 4	
5. The value of e / m of	proton is	C kg ⁻¹		
a) 1.7592 x 10 ¹¹	b) 1.6 x 10 ⁻¹⁹	c) 9.58 x 10 ⁷	d) 9.58	x 10 ⁻⁷
6. The radius of the 5^{th}	orbit of hydrogen	atom is Å a) 2.65	b) 5.3 (c) 0.106 d) 13.25
7. The energy of the ele	ectron in the first	orbit of hydrogen atom	is -13.6 eV. Its p	ootential energy is
a) -13.6 e V	b) 13.6 e V	c) -27.2 e V	d) 27.2 e V	
8. A charged oil drop is	s balanced in a fiel	ld of 3 x 10 ⁴ V m ⁻¹ , if its	mass is 9.75 x 1	0 ⁻¹² g, find charge
a) 3.185 x 10 ⁻¹⁸ C	b) 3.185 x 10 ⁻	⁻²⁰ C c) 3.185	x 10 ¹⁸ C	d) 31.85 x 10 ⁻¹⁸ C
	PA	RT – B		3 X 2 = 6
9. Write any 4 properti	es of cathode rays	s. 10. What is meant b	y excitation ene	ergy?
11. Define impact param	neter. 12. Write	down the drawbacks of	Bohr atom mo	del.
13. Give the results of R	Rutherford alpha s	cattering experiment.		
14. Define ionization en	ergy. 15. Defin	e ionization potential.		
16. Write any one draw	back Rutherford a	ntom model.		
	P	ART – C		2 X 3 = 6
17. Find the angular momentum and velocity of the electron revolving in the 5 th orbit of hydrogen atom.				
18. Explain the spectral series of hydrogen atom.				
19. Derive an expression for energy of the electron in nth orbit of hydrogen atom.				
20.Define distance of closest approach and hence derive an expression for it.				
21. How will you determine specific charge of an electron with the help of potential difference formula?				
		PART – D		2 X 5 = 10
22. How will you detern	nine e/m of an ele	ctron only due to unifo	rm electric field	? or
Explain Millikan's oil drop experiment of determining the charge of an electron.				
23. Derive an expression for the radius of the electron in the nth orbit of hydrogen atom or				
According to Bohr, nucleus is stationary and electrons are in revolving motion. By assuming that				
the nucleus is also in motion, calculate the energy of the new system.				

CLASS: 12	UNIT: 9	NUCLEAR PHYSICS	5	MARKS: 30
TIME: 1.15 HR		PART – A		8 X 1 = 8
1. If the nuclear radius	of ²⁷ Al is 3.6 F,	the approximate nu	clear radius of ⁶⁴ Cu in	F is
a) 2.4	b) 1.2	c) 4.8	d) 3.6	
2. 7/8 part of the radio	active substanc	e decays in 45 days.	. The half life period is	
a) 45 days	b) 25.7 days	c) 30 days	d) 15 days	
3. Tritium has a half li	fe of 12.5 years. \	What fraction of the	sample will be left ove	er after 25 years?
a) ¼	b) 1 / 8	c) 1/16	d) ½	
4. A nuclear force exi	sts between a)	p-e b)e-n	c) n – n	d) e – e
5. In the reaction 90 Th	$^{234} \rightarrow _{91} Pa^{234}$ + X	, the particle emitte	disa)α b)β	c) γ d) proton
6. Activity of 1 g of rad	ium is equal to	a) 1 R b) 1 Cur	ie c) 1 henry	d) 1 second
7. The nucleus is appr	oximately spher	ical in shape. Then t	he surface area of nuc	leus having mass
number A varies as	a) A ^{2/3}	b) A ^{4/3}	c) A ^{1/3} d) A	A ^{5/3}
8. A radioactive eleme	ent has N ₀ numbe	er of nuclei at t =0. T	he number of nuclei r	emaining after half
of a half life (i.e., t	= ½ T _{1/2})			
a) N₀ / 2	b) N ₀ / $\sqrt{2}$	c)	N ₀ / 4	d) N₀ / 8
	F	PART – B	6	3 X 2 = 6
9. Define amu (u)	10. What is r	mass defect?	11. What is binding en	ergy?
12. Write the properties of neutrino 13. Define Curie				
12. Write the properties	s of neutrino	13. Define Curie		
14. What is meant by a	s of neutrino ctivity or decay r	13. Define Curie rate? Give its unit.		
14. What is meant by a 15. What is mean life?	s of neutrino ctivity or decay r Give its expressi	13. Define Curie rate? Give its unit. on.		
14. What is meant by a15. What is mean life?16. Give the symbolic r	s of neutrino ctivity or decay r Give its expressi epresentation of	13. Define Curie rate? Give its unit. on. α, β decay and γ er	nission.	
14. What is meant by a15. What is mean life? (16. Give the symbolic r	s of neutrino ctivity or decay r Give its expressi epresentation of F	rate? Give its unit. on. α, β decay and γ er PART – C	nission.	2 X 3 = 6
 14. What is meant by a 15. What is mean life? 16. Give the symbolic r 17. Write a note on p - 	s of neutrino ctivity or decay r Give its expressi epresentation of F p cycle. 18. Ca	13. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density	nission. of the nucleus with ma	2 X 3 = 6 ass number A.
 14. What is meant by a 15. What is mean life? 16. Give the symbolic r 17. Write a note on p – 19. Discuss about the f 	s of neutrino ctivity or decay r Give its expressi epresentation of F p cycle. 18. Ca eatures of avera	13. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density ge BE / A curve.	nission. of the nucleus with ma	2 X 3 = 6 ass number A.
 14. What is meant by a 15. What is mean life? (16. Give the symbolic r 17. Write a note on p – 19. Discuss about the f 20. Explain alpha deca 	s of neutrino ctivity or decay r Give its expressi epresentation of p cycle. 18. Ca eatures of avera y with example.	13. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density ge BE / A curve. 21. Explain be	nission. of the nucleus with ma eta decay with exampl	2 X 3 = 6 ass number A. e.
 14. What is meant by a 15. What is mean life? (16) 16. Give the symbolic r 17. Write a note on p - 19. Discuss about the f 20. Explain alpha deca 22. Calculate the time 	s of neutrino ctivity or decay r Give its expressi epresentation of p cycle. 18. Ca eatures of avera y with example. required for 60%	13. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density ge BE / A curve. 21. Explain be of a sample of rado	nission. of the nucleus with ma eta decay with exampl on undergo decay. (T _{1/2}	2 X 3 = 6 ass number A. e. g = 3.8 days)
 14. What is meant by a 15. What is mean life? (16. Give the symbolic r 17. Write a note on p – 19. Discuss about the f 20. Explain alpha deca 22. Calculate the time 	s of neutrino ctivity or decay r Give its expressi epresentation of p cycle. 18. Ca eatures of avera y with example. required for 60%	13. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density ge BE / A curve. 21. Explain be of a sample of rado PART – D	nission. of the nucleus with ma eta decay with exampl on undergo decay. (T _{1/2}	2 X 3 = 6 ass number A. e. a = 3.8 days) 2 X 5 = 10
 14. What is meant by a 15. What is mean life? 16. Give the symbolic r 17. Write a note on p – 19. Discuss about the f 20. Explain alpha deca 22. Calculate the time 23. Obtain the law of ratio 	s of neutrino ctivity or decay r Give its expressi epresentation of p cycle. 18. Ca eatures of avera y with example. required for 60%	13. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density ge BE / A curve. 21. Explain be of a sample of rado PART – D Define half life. Deri	nission. of the nucleus with ma eta decay with exampl on undergo decay. (T _{1/2} ive an expression for h	2 X 3 = 6 ass number A. e. g = 3.8 days) 2 X 5 = 10 nalf life period.
 14. What is meant by a 15. What is mean life? 16. Give the symbolic r 17. Write a note on p – 19. Discuss about the f 20. Explain alpha deca 22. Calculate the time 23. Obtain the law of ra 24. Describe the workit 	s of neutrino ctivity or decay r Give its expressi epresentation of p cycle. 18. Ca eatures of avera y with example. required for 60% adio activity. or 1 ng of nuclear rea	I3. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density ge BE / A curve. 21. Explain be of a sample of rado PART – D Define half life. Derivation	nission. of the nucleus with ma eta decay with exampl on undergo decay. (T _{1/2} ive an expression for h	2 X 3 = 6 ass number A. e. g = 3.8 days) 2 X 5 = 10 nalf life period.
 14. What is meant by a 15. What is mean life? (1) 16. Give the symbolic r 17. Write a note on p - 19. Discuss about the f 20. Explain alpha deca 22. Calculate the time 23. Obtain the law of ra 24. Describe the working (i) What is nuclear 	s of neutrino ctivity or decay r Give its expressi epresentation of p cycle. 18. Ca eatures of avera y with example. required for 60% adio activity. or 1 ng of nuclear rea fission? (ii) Calc	I3. Define Curie rate? Give its unit. on. α, β decay and γ er PART – C alculate the density ge BE / A curve. 21. Explain be of a sample of rado PART – D Define half life. Deri actor. or	nission. of the nucleus with ma eta decay with exampl on undergo decay. (T _{1/2} ive an expression for h	2 X 3 = 6 ass number A. e. g = 3.8 days) 2 X 5 = 10 nalf life period. n 1 kg of

CLASS: 12 UNIT: 10 ELECTRONICS AND COMMUNICATION				MARKS: 30
IME: 1.15 HR PART – A			8 X 1 = 8	
1. The barrier potentia	al of silicon diode is	a) 0.7 V t	o) 0.3 V c)	2 V d) 2.2 V
2. If a positive half wa	ave rectified voltage is f	ed to a load re	sistor, for whi	ch part of a cycle there
will be current flov	v through the load?			
a) 0º - 90º	b) 90º - 180º	c) 0º - 1	80°	d) 0º - 360º
3. The Zener diode is	primarily used as			
a) rectifier	b) amplifier	c) oscill	ator	d) voltage regulator
4. In an N - type sem	iconductor, there are			
a) immobile -ve ior	ns b) no minority car	riers c) im	mobile +ve ion	s d) majority holes
5. Avalanche breakdo	own is primarily depend	ent on the phe	nomenon of	
a) collision	b) ionization	c) dopin	g d) recombination
6. The output impedar	nce of a CE mode transi	stor is		
a) zero b) l	ow c) high	d) infinit	y	
7. An example for acc	ceptor atom is a) Cl	b)	Bi c) B	d) As
8. In a transistor with	$m{eta}$ = 40, the base currer	nt is 25 μ A. The	e collector curr	ent is
a) 100 μ A	b) 1000 m A	c) 1 m A	d) 0	.1 m A
	PART –	В		3 X 2 = 6
9. What is forbidden e	energy gap? 10. W	/hat do you me	an by doping?	
11. Why is temperature	e coefficient of resistand	ce negative for	· semiconducto	r?
12. Distinguish betwee	en avalanche and Zener	breakdown.	13. What is rec	tification?
14. What is modulation	n? 15. Draw the output	ut waveforms	of full wave rec	tifier.
16. Define centre or re	esting frequency.			
	PART	– C		2 X 3 = 6
17. State and prove De	Morgan's theorems.			
18. Distinguish betwee	en intrinsic and extrinsio	c semiconduct	ors.	
Why is diode called	I a unidirectional device	?		
19. Write the advantag	es and disadvantages o	f frequency m	odulation.	
20.Explain the input cl	haracteristics of a trans	sistor in CE mo	ode.	
21. Draw the circuit sy	mbol of (i) CB mode	(ii) CE mode	e (iii) CC m	ıode
	PAR	T – D		2 X 5 = 10
22. Explain the constr	uction and working of h	alf wave rectif	ier or	
Explain the construction and working of full wave rectifier				
23. Explain the output	characteristics of a tra	nsistor in CE n	node. or	
What is amplitude	modulation? Explain an	nplitude modul	lation in detail.	