10 maths one mark	10. If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$, then $f \circ g$ is
OUESTIONS- BOOK BACK	(a) $\frac{3}{2x^2}$ (b) $\frac{2}{3x^2}$ (c) $\frac{2}{9x^2}$ (d) $\frac{1}{6x^2}$
CHAPTER – 1 (RELATIONS AND FUNCTIONS)	11. If $f : A \to B$ is a bijective function and if
1. If $n(A \times B) = 6$ and $A = \{1,3\}$, then $n(B)$ is	n(B) = 7, then $n(A)$ is equal to.
(a) 1 (b) 2 (c) 3 (d) 6	(a) 7 (b) 49 (c) 1 (d) 14
2. $A = \{a, b, p\}, B = \{2, 3\}, C = \{p, q, r, s\}$ then	12. Let <i>f</i> and <i>g</i> be two functions given by $f = \{(0,1), $
$n[(A \cup C) \times B]$ is	$(2,0), (3,-4), (4,2), (5,7)\} g = \{(0,2), (1,0), \}$
(a) 8 (b) 20 (c) 12 (d) 16	$(2,4), (-4,2), (7,0)$ then the range of $f \circ g$ is
3. If $A = \{1, 2\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6\}$ and	$(a) \{0,2,3,4,5\} (b) \{-4,1,0,2,7\}$
$D = \{5,6,7,8\}$ then state which of the following	$(c) \{1,2,3,4,5\} \qquad (d) \{0,1,2\}$
statement is true.	13. Let $f(x) = \sqrt{1 + x^2}$ then
$(a) (A \times C) \subset (B \times D) \qquad (b) (B \times D) \subset (A \times C)$	(a) $f(xy) = f(x).f(y)$ (b) $f(xy) \ge f(x).f(y)$
$(c) (A \times B) \subset (A \times D) \qquad (d) (D \times A) \subset (B \times A)$	(c) $f(xy) \le f(x) \cdot f(y)$ (d) None of these
4. If there are 1024 relations from a set	14. If $g = \{(1,1), (2,3), (3,5), (4,7)\}$ is a function
$A = \{1, 2, 3, 4, 5\}$ to a set B, then the number of	given by $g(x) = \alpha x + \beta$ then the value of α and β
elements in B is	are
(a) 3 (b) 2 (c) 4 (d) 8	(a) (-1,2) $(b) (2,-1)$
5. The range of the relation $\mathbb{R} = \{(x, x^2) \mid x \text{ is } a \}$	(c) (-1, -2) $(d) (1,2)$
prime number less than 13} is	15. $f(x) = (x + 1)^2 - (x - 1)^3$ represents a
$(a) \{2,3,5,7\} (b) \{2,3,5,7,11\}$	function which is
$(c) \{4,9,25,49,121\} \qquad (d) \{1,4,9,25,49,121\}$	(a) Linear (b) Cubic
6. If the ordered pairs $(a + 2, 4)$ and $(5, 2a + b)$ are	(c) Reciprocal (d) Quadratic
equal then (a, b) is	
(a) (2,-2) (b) (5,1) (c) (2,3) (d) (3,-2)	CHAPTER – 2 (NUMBERS AND SEQUENCES)
7. Let $n(A) = m$ and $n(B) = n$ then the total number	integers a and b there exist unique integers a and
of non - empty relations that can be defined from A	r such that $a = ha + r$, where r must satisfy
to B is	(a) $1 < r < h$ (b) $0 < r < h$
(a) m^n (b) n^m (c) $2^{mn} - 1$ (d) 2^{mn}	$(a) 1 < r < b \qquad (b) 0 < r < b$
8. If $\{(a, 8), (6, b)\}$ represents an identity function,	2. Using Euclid's division lemma, if the cube of any
then the value of a and b are respectively	positive integer is divided by 9 then the possible
(a) (8,6) (b) (8,8) (c) (6,8) (d) (6,6)	remainders are.
9. Let $A = \{1,2,3,4\}$ and $B = \{4,8,9,10\}$. A function	(a) 0.1.8 $(b) 1.4.8$
$f : A \to B$ given by $f = \{(1,4), (2,8), (3,9), (4,10)\}$	(c) 0, 1, 3 $(d) 1, 3, 5$
is a	3. If the HCF of 65 and 117 is expressible in the form
(<i>a</i>) Many – One Function (<i>b</i>) Identity Function	of $65m - 117$, then the value of m is
(c) One – to – One Function (d) Into Function	(a) 4 (b) 2 (c) 1 (d) 3

4.	The sum of the exponents of the prime factors in the	(c) Neither an Arithmetic Progression nor a
	prime factorization of 1729 is	Geometric Progression
	(a) 1 (b) 2 (c) 3 (d) 4	(d) a constant sequence
5.	The least number that is divisible by all the numbers	15. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) -$
	from 1 to 10 (both exclusive) is	$(1 + 2 + 3 + \dots + 15)$ is
	(a) 2025 (b) 5220 (c) 5025 (d) 2520	(<i>a</i>)14400 (<i>b</i>) 14200 (<i>c</i>) 14280
6.	$7^{4k} \equiv _ (mod \ 100)$	(<i>d</i>) 14520
	(a) 1 (b) 2 (c) 3 (d) 4	
7.	Given $F_1 = 1, F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5	CHAPTER – 3 (ALGEBRA)
	is	1. A system of three linear equations in three
	(a) 3 (b) 5 (c) 8 (d) 11	variables is inconsistent if their planes.
8.	The first term of an arithmetic progression is unity	(a) Intersect only at a point
	and the common difference is 4. Which of the	(b) Intersect in a line
	following will be a term of this A. P.	(c) Coincides with each other
	(a) 4551 (b) 10091 (c) 7881 (d) 13531	(d) do not intersect
9.	If 6 times of 6^{th} term of an A.P is equal to 7 times	2. The solution of the system $x + y - 3x = -6$,
	the 7^{th} term , then the 13^{th} term of the A.P is	-7y + 7z = 7, 3z = 9 is
	(a) 0 (b) 6 (c) 7 (d) 13	(a) $x = 1, y = 2, z = 3$
10.	An A.P consists of 31 terms. If its 16^{th} term is m ,	(b) $x = -1, y = 2, z = 3$
	then the sum of all the terms of this A.P is	(c) $x = -1, y = -2, z = 3$
	(a) $16 m$ (b) $62 m$ (c) $31 m$ (d) $\frac{31}{2} m$	(d) $x = 1, y = -2, z = 3$
11.	In an A.P the first term is 1 and the common	3. If $(x - 6)$ is the HCF of $x^2 - 2x - 24$ and $x^2 - 2x - 24$
	difference is 4. How many terms of the A.P must	kx - 6 then the value of k is
	be taken for their sum to be equal to 120?.	(a) 3 (b) 5 (c) 6 (d) 8
	(a) 6 (b) 7 (c) 8 (d) 9	4. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is
12.	If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + \dots + 2^{0}$	y $3y$ y $9y^3$
	which of the following is true?.	$(a) \frac{1}{7}$ $(b) \frac{1}{(21y-21)}$
	(a) B is 2^{64} more than A	(c) $\frac{21y^2 - 42y + 21}{3y^3}$ (d) $\frac{7(y^2 - 2y + 1)}{y^2}$
	(<i>b</i>) A and B are Equal	5 $v^2 + \frac{1}{2}$ is not equal to
	(c) B is larger than A by 1	$y^2 y^2$ is not equal to
	(<i>d</i>) A is larger than B by 1	(a) $\frac{y^4+1}{y^2}$ (b) $\left(y+\frac{1}{y}\right)^2$
13.	The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots$ is	$(c)\left(y-\frac{1}{y}\right)^{2}+2$ $(d)\left(y+\frac{1}{y}\right)^{2}-2$
	(a) $\frac{1}{24}$ (b) $\frac{1}{27}$ (c) $\frac{2}{3}$ (d) $\frac{1}{81}$	6. $\frac{x}{x^2 - 25} - \frac{x}{x^2 + 6x + 5}$ gives
14.	If the sequence $t_1, t_2, t_3,$ are in A.P then the	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	sequence $t_6, t_{12}, t_{18},$ is	(a) $\frac{1}{(x-5)(x+5)}$ (b) $\frac{1}{(x-5)(x+5)(x+1)}$
	(a) A Geometric Progression	(c) $\frac{x^2 - 7x + 40}{(x^2 - 25)(x+1)}$ (d) $\frac{x^2 + 10}{(x^2 - 25)(x+1)}$
	(b) An Arithmetic Progression	

7.	The square root of $\frac{256x^8y^4z^{10}}{256x^6y^6}$ is equal to	17.	Transpose of a column matrix is
	$25x^{0}y^{0}z^{0}$		(a) Unit matrix (b) Diagonal matrix
	(a) $\frac{10}{5} \left \frac{x^2}{y^2} \right $ (b) $16 \left \frac{y}{x^2 z^4} \right $		(c) Column matrix (d) Row matrix
	(c) $\frac{16}{5} \left \frac{y}{xz^2} \right $ (d) $\frac{16}{5} \left \frac{xz^2}{y} \right $	18.	Find the matrix X if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$
8.	Which of the following should be added to make $u^4 + (4 + a) u^4$		$(a) \begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix} \qquad (b) \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$
	(a) $4x^2$ (b) $16x^2$ (c) $8x^2$ (d) $-8x^2$		$(c) \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \qquad (d) \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$
9.	The solution of $(2x - 1)^2 = 9$ is equal to	19.	Which of the following can be calculated from
	(a) - 1 $(b) 2$ $(c) - 1, 2$		the since metrices $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
	(<i>d</i>) None of these		the given matrices $A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$
10.	The value of a and b if $4x^4 - 24x^3 + 76x^2 + ax + ax^4$		(i) A^2 (ii) B^2 (iii) AB (iv) BA
	<i>b</i> is a perfect square are		(a) (i) and (ii) only (b) (ii) and (iii) only
	(<i>a</i>) 100, 120 (<i>b</i>) 10, 12		(c) (ii) and (iv) only (d) All of these
	(c) - 120,100 (d) 12,10	20	$F_{4} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ and
11.	If the roots of the equation $q^2x^2 + p^2x + r^2 = 0$ are	20.	$A = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix}$ and
	the squares of the roots of the equation $qx^2 + px +$		$C = \begin{pmatrix} 0 & 1 \\ - & - \end{pmatrix}$ which of the following statements
	r = 0 then q, p, r are in		(-2-5)
	(a) A.P (b) G.P		are correct?. (i) $AB + C = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$
	(c) Both A.P and G.P (d) None of these	8	$\begin{pmatrix} 0 & 1 \\ 2 & -2 \end{pmatrix} (11) P(1+C) (2-5)$
12.	Graph of a linear equation is a		$(u) BC = \begin{pmatrix} 2 & -3 \\ -4 & 10 \end{pmatrix} (uu) BA + C = \begin{pmatrix} 3 & 0 \end{pmatrix}$
	(a) Straight line (b) Circle		$(iv)(AB)C = \begin{pmatrix} -8 & 20 \end{pmatrix}$
	(c) Parabola (d) Hyperbola		(-8 13)
13.	The number of points of intersection of the quadratic		(a) (i) and (ii) only (b) (ii) and (iii) only (c) (iii) and (iii) only (d) All of these
	polynomial $x^2 + 4x + 4$ with the X axis is		(c) (<i>iii</i>) and (<i>iv</i>) only (<i>a</i>) All of these
	(a) 0 (b) 1 (c) 0 or 1 (d) 2		CHAPTER – 4 (GEOMETRY)
14.	For the given matrix $A = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 4 & 6 & 8 \end{pmatrix}$ the	1.	If in triangles ABC and EDF, $\frac{AB}{DE} = \frac{BC}{FD}$ then they
	(9 11 13 15)		will be similar, when
	order of the matrix A is		$(a) \angle B = \angle E \qquad (b) \angle A = \angle D$
15	$(u) 2 \times 3$ $(b) 3 \times 2$ $(c) 3 \times 4$ $(u) 4 \times 3$		$(c) \angle B = \angle D \qquad (d) \angle A = \angle F$
15.	many columns does AB have	2.	In ΔLMN , $\angle L = 60^{\circ}$, $\angle M = 50^{\circ}$. If
	(a) 3 $(b) 4$ $(c) 2$ $(d) 5$		$\Delta LMN \sim \Delta PQR$ then the value of $\angle R$ is.
16	If number of columns and rows are not equal in a		(a) 40° (b) 70° (c) 30° (d) 110°
10.	matrix then it is said to be a	3.	If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$
	(a) Diagonal matrix (b) Rectangular matrix		and $AC = 5 \ cm$ then AB is
	(c) Square matrix (d) Identity matrix		(a) 2.5 cm (b) 5 cm (c) 10 cm (d) $5\sqrt{2}$ cm
	(u) induity matrix (u) include (u)	1	

 (a) Parallel to X axis (b) Parallel to Y axis (c) Passing through the origin (d) Passing through the point (0,11) 	 12. A straight line has equation 8y = 4x + 21. Which of the following is true (a) The slope is 0.5 and the <i>y</i> intercept is 2.6 (b) The slope is 5 and the <i>y</i> intercept is 1.6
If $(5, 7)$, $(3, p)$ and $(6, 6)$ are collinear, then the value of p is $(a) 3 \qquad (b) 6 \qquad (c) 9 \qquad (d) 12$	 (c) The slope is 0.5 and the y intercept is 1.6 (d) The slope is 5 and the y intercept is 2.6
The point of intersection of $3x - y = 4$ and $x + y = 8$ is (a) (5,3) (b) (2.4) (c) (3,5) (d) (4,4) The slope of the line joining (12,3), (4, a) is $\frac{1}{8}$. The	 is necessary to show (a) Two sides are parallel (b) Two parallel and two non – parallel sides (c) Opposite sides are parallel
vale of 'a' is (a) 1 (b) 4 (c) - 5 (d) 2 The slope of the line which is perpendicular to a line joining the points (0, 0) and (-8, 8) is (a) -1 (b) 1 (c) $\frac{1}{2}$ (d) -8	 (d) All sides are of equal length 14. When proving that a quadrilateral is a parallelogram by using slopes you must find (a) The slopes of two sides (b) The slopes of two pair of opposite sides
If slope of the line PQ is $\frac{1}{\sqrt{3}}$ then slope of the perpendicular bisector of PQ is (a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) 0	 (c) The lengths of all sides (d) Both the lengths and slopes of two sides 15. (2, 1) is the point of intersection of two lines (a) x - y - 3 = 0; 3x - y - 7 = 0
If A is a point on the Y axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line AB is (a) 8x + 5y = 40 (b) $8x - 5y = 40$	(b) $x + y = 3$; $3x + y = 7$ (c) $3x + y = 3$; $x + y = 7$ (d) $x + 3y - 3 = 0$; $x - y - 7 = 0$
(a) 8x + 5y = 40 (b) 8x - 5y = 40 $(c) x = 8 (d) y = 5$	CHAPTER – 6 (TRIGONOMETRY)
The equation of a line passing through the origin and perpendicular to the line $7x - 3y + 4 = 0$ is (a) $7x - 3y + 4 = 0$ (b) $3x - 7y + 4 = 0$ (c) $3x + 7y = 0$ (d) $7x - 3y = 0$ Consider four straight lines (i) l_1 ; $3y = 4x + 5$ (ii) l_2 ; $4y = 3x - 1$ (iii) l_3 ; $4y + 3x = 7$ (iv) l_4 ; $4x + 3y = 2$ Which of the following statement is true?. (a) l_1 and l_2 are perpendicular (b) l_1 and l_4 are parallel (c) l_2 and l_4 are parallel (c) l_2 and l_4 are parallel	1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (a) $\tan^2\theta$ (b)1 (c) $\cot^2\theta$ (d) 0 2. $\tan\theta\csc^2\theta - \tan\theta$ is equal to (a) $\sec\theta$ (b) $\cot^2\theta$ (c) $\sin\theta$ (d) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (a) 9 (b) 7 (c) 5 (d) 3 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (a) 2a (b) 3a (c) 0 (d) 2ab
	The strangth mile given by the equation $x = 11$ is (a) Parallel to X axis (b) Parallel to Y axis (c) Passing through the origin (d) Passing through the point (0,11) If (5,7), (3, p) and (6, 6) are collinear, then the value of p is (a) 3 (b) 6 (c) 9 (d) 12 The point of intersection of $3x - y = 4$ and $x + y = 8$ is (a) (5,3) (b) (2.4) (c) (3,5) (d) (4,4) The slope of the line joining (12,3), (4, a) is $\frac{1}{8}$. The vale of 'a' is (a) 1 (b) 4 (c) -5 (d) 2 The slope of the line which is perpendicular to a line joining the points (0,0) and (-8,8) is (a) -1 (b) 1 (c) $\frac{1}{3}$ (d) -8 If slope of the line PQ is $\frac{1}{\sqrt{3}}$ then slope of the perpendicular bisector of PQ is (a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) 0 If A is a point on the Y axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line AB is (a) $8x + 5y = 40$ (b) $8x - 5y = 40$ (c) $x = 8$ (d) $y = 5$ The equation of a line passing through the origin and perpendicular to the line $7x - 3y + 4 = 0$ is (a) $7x - 3y + 4 = 0$ (b) $3x - 7y + 4 = 0$ (c) $3x + 7y = 0$ (d) $7x - 3y = 0$ Consider four straight lines (i) l_1 ; $3y = 4x + 5$ (ii) l_2 ; $4y = 3x - 1$ (<i>iii</i>) l_3 ; $4y + 3x = 7$ (<i>iv</i>) l_4 ; $4x + 3y = 2$ Which of the following statement is true?. (a) l_1 and l_4 are parallel (c) l_2 and l_4 are parallel

5.	If	5 <i>x</i> =	sec θ	and $\frac{5}{y}$	$= \tan \theta$, then x^2	$-\frac{1}{y^2}$ is
	equ	ual to					

- (a) 25 (b) $\frac{1}{25}$ (c) 5 (d) 1
- 6. If $\sin \theta = \cos \theta$, then $2tan^2\theta + sin^2\theta 1$ is equal to

(a)
$$\frac{-3}{2}$$
 (b) $\frac{3}{2}$ (c) $\frac{2}{3}$ (d) $\frac{-2}{3}$

7. If $x = a \tan \theta$ and $y = b \sec \theta$ then

(a)
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$
 (b) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
(c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (d) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$

 $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal 8. to

$$(a) 0 (b) 1 (c) 2 (d) - 1$$

- $a \cot \theta + b \operatorname{cosec} \theta = p$ and $b \cot \theta + a \operatorname{cosec} \theta =$ 9. q then $p^2 - q^2$ is equal to (a) $a^2 - b^2$ (b) $b^2 - a^2$ (c) $a^2 + b^2$ (d) b - a
- 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure

(*a*) 45° (*b*) 30° (*c*) 90° $(d) 60^{\circ}$

11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to

(a)
$$\sqrt{3} b$$
 (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$

- 12. A tower is 60 m heigh. Its shadow reduces by xmetres when the angle of elevation of the sun increases from 30° to 45° then x is equal to (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m
- 13. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two building (in metres) is

(a) 20, $10\sqrt{3}$ (b) 30, $5\sqrt{3}$ (c) 20,10 (d) $30,10\sqrt{3}$

14. Two persons are standing 'x' metres apart from x'each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person (in metres) is

(a)
$$\sqrt{2} x$$
 (b) $\frac{x}{2\sqrt{2}}$ (c) $\frac{x}{\sqrt{2}}$ (d) $2x$

15. The angle of elevation of a cloud from a point hmetres above a lake is β . The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is

(a)
$$\frac{h(1+\tan\beta)}{1-\tan\beta}$$
 (b) $\frac{h(1-\tan\beta)}{1+\tan\beta}$
(c) $h \tan(45^\circ - \beta)$ (d) None of these

CHAPTER – 7 (MENSURATION)

- 1. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is (a) $60\pi \ cm^2$ (b) $68\pi \ cm^2$
 - (c) $120\pi \ cm^2$ (*d*) $136\pi \ cm^2$
- 2. If two solid hemispheres of same base radius r units are joined together along their bases, then curved surface area of this new solid is
 - (a) $4\pi r^2$ sq. units (b) $6\pi r^2$ sq. units (c) $3\pi r^2$ sq. units (d) $8\pi r^2$ sq. units
- 3. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be
 - (a) $12 \ cm$ (b) $10 \ cm$ (c) $13 \ cm$ (d) $5 \ cm$
- 4. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is

(*a*) 1:2 (*b*) 1:4 (*c*) 1:6 (*d*)1:8

5. The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is

(a) $\frac{9\pi h^2}{8}$ sq. units (b) $24\pi h^2$ sq. units

Y.SEENIVASAN . M.SC, B.ED) – PG TEACHER- 8489880553
V.SEENIVASAN . M.SC, B.ED(c) $\frac{8\pi\hbar^2}{9}$ sq. units(d) $\frac{56\pi\hbar^2}{9}$ sq. units6. In a hollow cylinder, the sum of the external and internal radii is 14 cm and the width is 4 cm. If its height is 20 cm, the volume of the material in it is (a) 5600π cm ³ (b) 1120π cm ³ (c) 56π cm ³ (d) 3600π cm ³ 7. If the radius of the base of a cone is tripled and the height is doubled then the volume is (a) Made 6 times (b) Made 18 times (c) Made 12 times (d) Unchanged8. The total surface area of a hemi – sphere is how much times the square of its radius. (a) π (b) 4π (c) 3π (d) 2π 9. A solid sphere of radius x cm is melted and cast into a shape of a solid cone of same radius. The height 16 cm with radii of its as 8 cm and 20 cm. Then, the volume of the frustrum is (a) 3328π cm ³ (d) 3340π cm ³ 11. A shuttle cock used for playing badminton has the shape of the combination of (a) A cylinder and a sphere (b) A hemisphere and a cone (c) A spherical ball of radius r_1 units is melted to make 8 new identical balls each of radius r_2 units. Then $r_1:r_2$ is (a) $2:1$ (b) $1:2$ (c) $4:1$ (d) $1:4$	PG TEACHER- 848988055314. The height and radius of the cone of which the frustrum is a part are h_1 units and r_1 units respectively. Height of the frustrum is h_2 units and radius of the smaller base is r_2 units. If $h_2: h_1 =$ 1:2 then $r_2: r_1$ is (a) 1:3 (b) 1:2 (c) 2:1 (d) 3:115. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is (a) 1:2:3 (b) 2:1:3 (c) 1:3:2 (d) 3:1:2CHAPTER - 8 (STATISTICS ANDPROBABILITY1. Which of the following is not a measure of dispersion?. (a) Range (b) Standard deviation (c) Arithmetic Mean (d) Variance2. The range of the data 8, 8, 8, 8 is (a) 0 (b) 1 (c) 8 (d) 33. The sum of all deviations of the data from its mean is (a) Always positive (b) Always negative (c) Zero (d) Non – Zero integer4. The mean of 100 observations is 40 and their standard deviation is 3. The sum of squares of all observations is (a) 40000 (b) 160900 (c) 160000 (d) 300005. Variance of first 20 natural numbers is (a) 32.25 (b) 44.25 (c) 33.25 (d) 306. The standard deviation of a data is 3. If each value is multiplied by 5 then the new variance is (a) 3 (b) 15 (c) 5 (d) 2257. If the standard deviation of x, v, z is p then the
 12. A spherical ball of radius r₁ units is melted to make 8 new identical balls each of radius r₂ units. Then r₁: r₂ is (a) 2 : 1 (b) 1 : 2 (c) 4 : 1 (d) 1 : 4 13. The volume (in cm³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is (a) ⁴/₃ π (b) ¹⁰/₃ π (c) 5π (d) ²⁰/₃ π 	 (a) 32.25 (b) 44.25 (c) 33.25 (d) 30 6. The standard deviation of a data is 3. If each value is multiplied by 5 then the new variance is (a) 3 (b) 15 (c) 5 (d) 225 7. If the standard deviation of x, y, z is p then the standard deviation of 3x + 5, 3y + 5, 3z + 5 is (a) 3p + 5 (b) 3p (c) p + 5 (d) 9p + 15 8. If the mean and coefficient of variation of a data are 4 and 87.5 % then the standard deviation is
	(a) 3.5 (b) 3 (c) 4.5 (d) 2.5

ROUGH WORK

9. Which of the following is incorrect?.

(a) P(A) > 1 (b) $0 \le P(A) \le 1$ (c) $P(\phi) = 0$ (d) $P(A) + P(\overline{A}) = 1$

10. The probability a red marble selected at random from a jar containing *p* red, *q* blue and *r* green marbles is

(a) $\frac{q}{p+q+r}$ (b) $\frac{p}{p+q+r}$ (c) $\frac{p+q}{p+q+r}$ (d) $\frac{p+r}{p+q+r}$

 A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is

(a)
$$\frac{3}{10}$$
 (b) $\frac{7}{10}$ (c) $\frac{3}{9}$ (d) $\frac{7}{9}$

12. The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is

(a) 2 (b) 1 (c) 3 (d) 1.5

13. Kamalan went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalan winning is $\frac{1}{9}$, then the number of tickets bought by Kamalan is (a) 5 (b) 10 (c) 15 (d) 20

14. If a letter is chosen at random from the English alphabets $\{a, b, ..., z\}$, then the probability that the letter chosen precedes x

(a) $\frac{12}{13}$ (b) $\frac{1}{13}$ (c) $\frac{23}{26}$ (d) $\frac{3}{26}$

15. A purse contains 10 notes of ₹ 2000, 15 notes of ₹ 500, and 25 notes of ₹ 200. One note is drawn at random. What is the probability that the note is either a ₹ 500 note or ₹ 200 note?

(a)
$$\frac{1}{5}$$
 (b) $\frac{3}{10}$ (c) $\frac{2}{3}$ (d) $\frac{4}{5}$

*** PREPARED BY Y. SEENIVASAN M.Sc, B.Ed PG – TEACHER All the best Students

"Experience is the best Teacher"

${f 10}$ maths one mark	10. If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$, then $f \circ g$ is
QUESTIONS ANSWER- BOOK BACK	(a) $\frac{3}{2x^2}$ (b) $\frac{2}{3x^2}$ (c) $\frac{2}{9x^2}$ (d) $\frac{1}{6x^2}$
CHAPTER – 1 (RELATIONS AND FUNCTIONS)	11. If $f : A \to B$ is a bijective function and if
1. If $n(A \times B) = 6$ and $A = \{1,3\}$, then $n(B)$ is	n(B) = 7, then $n(A)$ is equal to.
(a) 1 (b) 2 (c) 3 (d) 6	(a) 7 (b) 49 (c) 1 (d) 14
2. $A = \{a, b, p\}, B = \{2, 3\}, C = \{p, q, r, s\}$ then	12. Let f and g be two functions given by $f = \{(0,1),$
$n[(A \cup C) \times B]$ is	$(2,0), (3,-4), (4,2), (5,7)\}$ $g = \{(0,2), (1,0), (2,0),$
(a) 8 (b) 20 (c) 12 (d) 16	$(2,4), (-4,2), (7,0)$ then the range of $f \circ g$ is
3. If $A = \{1, 2\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6\}$ and	$(a) \{0,2,3,4,5\} \qquad (b) \{-4,1,0,2,7\}$
$D = \{5,6,7,8\}$ then state which of the following	$(c) \{1,2,3,4,5\}$ $(d) \{0,1,2\}$
statement is true.	13. Let $f(x) = \sqrt{1 + x^2}$ then
$(a) (A \times C) \subset (B \times D) \qquad (b) (B \times D) \subset (A \times C)$	(a) $f(xy) = f(x)$. $f(y)$ (b) $f(xy) \ge f(x)$. $f(y)$
$(c) (A \times B) \subset (A \times D) \qquad (d) (D \times A) \subset (B \times A)$	$(c) f(xy) \le f(x). f(y)$ (d) None of these
4. If there are 1024 relations from a set	14. If $g = \{(1,1), (2,3), (3,5), (4,7)\}$ is a function
$A = \{1,2,3,4,5\}$ to a set B, then the number of	given by $q(x) = \alpha x + \beta$ then the value of α and β
elements in B is	are
(a) 3 (b) 2 (c) 4 (d) 8	(a)(-1,2) $(b)(2,-1)$
5. The range of the relation $\mathbb{R} = \{(x, x^2) \mid x \text{ is } a \}$	(c)(-1,-2) $(d)(1,2)$
prime number less than 13} is	15. $f(x) = (x + 1)^2 - (x - 1)^3$ represents a
$(a) \{2,3,5,7\} \qquad (b) \{2,3,5,7,11\}$	function which is
$(c) \{4,9,25,49,121\} (d) \{1,4,9,25,49,121\}$	(a) Linear (b) Cubic
6. If the ordered pairs $(a + 2, 4)$ and $(5, 2a + b)$ are	(<i>c</i>) Reciprocal (<i>d</i>) Quadratic
equal then (a, b) is	CHAPTER – 2 (NUMBERS AND SEQUENCES)
(a) $(2, -2)$ (b) $(5,1)$ (c) $(2,3)$ (d) $(3, -2)$	1. Euclid's division lemma states that for positive
7. Let $n(A) = m$ and $n(B) = n$ then the total number	integers a and b , there exist unique integers q and
of non - empty relations that can be defined from A	r such that $a = bq + r$, where r must satisfy.
to B is	(a) $1 < r < b$ (b) $0 < r < b$
(a) m^n (b) n^m (c) $2^{mn} - 1$ (d) 2^{mn}	$(c) \ 0 \le r < b \tag{d} \ 0 < r \le b$
8. If $\{(a, 8), (6, b)\}$ represents an identity function,	2. Using Euclid's division lemma, if the cube of any
then the value of a and b are respectively	positive integer is divided by 9 then the possible
(a) (8,6) (b) (8,8) (c) (6,8) (d) (6,6)	remainders are.
9. Let $A = \{1, 2, 3, 4\}$ and $B = \{4, 8, 9, 10\}$. A function	(a) 0, 1, 8 (b) 1, 4, 8
$f : A \to B$ given by $f = \{(1,4), (2,8), (3,9), (4,10)\}$	(c) 0, 1, 3 (d) 1, 3, 5
	3. If the HCF of 65 and 117 is expressible in the form
(a) Many – One Function (b) Identity Function	of $65m - 117$, then the value of m is
(c) One – to – One Function (d) Into Function	(a) 4 (b) 2 (c) 1 (d) 3

4. The sum of the exponents of the prime factors in the	(b) An Arithmetic Progression
prime factorization of 1729 is	(c) Neither an Arithmetic Progression nor a
(a) 1 (b) 2 (c) 3 (d) 4	Geometric Progression
5. The least number that is divisible by all the numbers	(<i>d</i>) a constant sequence
from 1 to 10 (both exclusive) is	15. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) -$
(a) 2025 (b) 5220 (c) 5025 (d) 2520	$(1 + 2 + 3 + \dots + 15)$ is
6. $7^{4k} \equiv _ (mod \ 100)$	(a)14400 $(b) 14200$ $(c) 14280$
(a) 1 (b) 2 (c) 3 (d) 4	(<i>d</i>) 14520
7. Given $F_1 = 1, F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5	CHAPTER – 3 (ALGEBRA)
is	1. A system of three linear equations in three
(a) 3 (b) 5 (c) 8 (d) 11	variables is inconsistent if their planes.
8. The first term of an arithmetic progression is unity	(a) Intersect only at a point
and the common difference is 4. Which of the	(b) Intersect in a line
following will be a term of this A. P.	(c) Coincides with each other
(a) 4551 (b) 10091 (c) 7881 (d) 13531	(d) do not intersect
9. If 6 times of 6^{th} term of an A.P is equal to 7 times	2. The solution of the system $x + y - 3x = -6$,
the 7^{th} term , then the 13^{th} term of the A.P is	-7y + 7z = 7, 3z = 9 is
(a) 0 (b) 6 (c) 7 (d) 13	(a) x = 1, y = 2, z = 3
10. An A.P consists of 31 terms. If its 16^{th} term is m ,	(b) $x = -1, y = 2, z = 3$
then the sum of all the terms of this A.P is	(c) $x = -1, y = -2, z = 3$
(a) $16 m$ (b) $62 m$ (c) $31 m$ (d) $\frac{31}{2} m$	(d) $x = 1, y = -2, z = 3$
11. In an A.P the first term is 1 and the common	3. If $(x - 6)$ is the HCF of $x^2 - 2x - 24$ and $x^2 - 32$
difference is 4. How many terms of the A.P must	kx - 6 then the value of k is
be taken for their sum to be equal to 120?.	(a) 3 (b) 5 (c) 6 (d) 8
(a) 6 (b) 7 (c) 8 (d) 9	4. $\frac{3y-3}{y} \div \frac{7y-7}{2y^2}$ is
12. If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + \dots + 2^{0}$	y y y y y^3
which of the following is true?.	$(a) \frac{1}{7}$ (b) $\frac{1}{(21y-21)}$
(a) B is 2^{64} more than A	(c) $\frac{21y^2 - 42y + 21}{3y^3}$ (d) $\frac{7(y^2 - 2y + 1)}{y^2}$
(b) A and B are Equal	5 $y^2 \pm \frac{1}{2}$ is not equal to
(c) B is larger than A by 1	$\int \frac{y}{y^2} = \int \frac{y}{y^2} = $
(<i>d</i>) A is larger than B by 1	(a) $\frac{y^4+1}{y^2}$ (b) $\left(y+\frac{1}{y}\right)^2$
13. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots$ is	$(c)\left(y-\frac{1}{y}\right)^{2}+2$ $(d)\left(y+\frac{1}{y}\right)^{2}-2$
(a) $\frac{1}{24}$ (b) $\frac{1}{27}$ (c) $\frac{2}{3}$ (d) $\frac{1}{81}$	6. $\frac{x}{x^2-25} - \frac{x}{x^2+6x+5}$ gives
14. If the sequence t_1, t_2, t_3, \dots are in A.P then the	$(a) \frac{x^2 - 7x + 40}{(b) - x^2 + 7x + 40}$
sequence $t_6, t_{12}, t_{18},$ is	(x-5)(x+5) $(x-5)(x+5)(x+1)$
(a) A Geometric Progression	$(c) \frac{x^{2} - 7x + 40}{(x^{2} - 25)(x + 1)} \qquad (d) \frac{x^{2} + 10}{(x^{2} - 25)(x + 1)}$

7.	The square root of $\frac{256x^8y^4z^{10}}{25x^6x^6x^6}$ is equal to		
	$25x^{5}y^{5}z^{5}$	17.	Transpose of a column matrix is
	(a) $\frac{1}{5} y^2 $ (b) $16 x^2z^4 $		(<i>a</i>) Unit matrix (<i>b</i>) Diagonal matrix
	(c) $\frac{16}{5} \left \frac{y}{xz^2} \right $ (d) $\frac{16}{5} \left \frac{xz^2}{y} \right $		(c) Column matrix (d) Row matrix
8.	Which of the following should be added to make	18.	Find the matrix X if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$
	x^4 + 64 a perfect square		$(a) \begin{pmatrix} -2 & -2 \end{pmatrix}$ $(b) \begin{pmatrix} 2 & 2 \end{pmatrix}$
	(a) $4x^2$ (b) $16x^2$ (c) $8x^2$ (d) $-8x^2$		(u) (2 -1) (0) (2 -1)
9.	The solution of $(2x - 1)^2 = 9$ is equal to		$(c) \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \qquad (d) \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$
	(a) - 1 $(b) 2$ $(c) - 1, 2$	19.	Which of the following can be calculated from
	(<i>d</i>) None of these		$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
10.	The value of a and b if $4x^4 - 24x^3 + 76x^2 + ax +$		the given matrices $A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$
	<i>b</i> is a perfect square are		(i) A^2 (ii) B^2 (iii) AB (iv) BA
	(<i>a</i>) 100, 120 (<i>b</i>) 10, 12		(a) (i) and (ii) only (b) (ii) and (iii) only
	(c) - 120, 100 (d) 12, 10		(c) (ii) and (iv) only (d) All of these
11.	If the roots of the equation $q^2x^2 + p^2x + r^2 = 0$ are		(1, 2, 3) $(1, 0)$
	the squares of the roots of the equation $qx^2 + px +$	20.	If $A = \begin{pmatrix} 2 & -1 \\ 3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix}$ and
	r = 0 then q, p, r are in		$C = \begin{pmatrix} 0 & 1 \end{pmatrix}$ which of the following statements
	$(a) A.P \qquad (b) G.P$	0	-2 5) which of the following statements
	(c) Both A.P and G.P (d) None of these		are correct?. (i) $AB + C = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$
12.	Graph of a linear equation is a		$(11) PC \begin{pmatrix} 0 & 1 \\ 2 & -2 \end{pmatrix} (11) P(1 + C + C + C)$
	(a) Straight line (b) Circle	r	$ (u) BC = \begin{pmatrix} 2 & -3 \\ -4 & 10 \end{pmatrix} (u) BA + C = \begin{pmatrix} 3 & 0 \end{pmatrix} $
	(c) Parabola (d) Hyperbola		$(iv) (AB)C = \begin{pmatrix} -8 & 20 \\ 8 & 12 \end{pmatrix}$
13.	The number of points of intersection of the quadratic		(a) (i) and (ii) only (b) (ii) and (iii) only
	polynomial $x^2 + 4x + 4$ with the X axis is		(a) (iji) and (in) only (d) All of these
	$(a) 0 \qquad (b) 1 \qquad (c) 0 \text{ or } 1 \qquad (a) 2$		(t) (ttt) and (tt) only (tt) An of these
14.	For the given matrix $A = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \end{pmatrix}$ the	1	If in triangles ABC and EDE $\frac{AB}{AB} = \frac{BC}{BC}$ then they
	(9 11 13 15/	1.	will be similar when
	order of the matrix A^2 is $(a) 2 \times 2$ $(b) 2 \times 2$ $(c) 2 \times 4$ $(d) 4 \times 2$		(a) $\angle B = \angle F$ (b) $\angle A = \angle D$
15	$(a) 2 \times 3 (b) 3 \times 2 (c) 3 \times 4 (a) 4 \times 3$		$(a) \angle B = \angle L \qquad (b) \angle A = \angle D (c) \angle B = \angle D \qquad (d) \angle A = \angle F$
13.	If A is a 2×5 matrix and B is a 5×4 matrix now	2	$\frac{(U)}{2D} = \frac{2D}{2D}$ (U) $\frac{2M}{2M} = \frac{2D}{2D}$ In $\frac{M}{M} = \frac{2D}{10}$ If
	$(a) 3 \qquad (b) 4 \qquad (c) 2 \qquad (d) 5$	2.	$\Lambda LMN \sim \Lambda POR$ then the value of $\angle R$ is
16	If number of columns and rows are not equal in a		$(a) 40^{\circ}$ $(b) 70^{\circ}$ $(c) 30^{\circ}$ $(d) 110^{\circ}$
- 01	matrix then it is said to be a	3.	If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$
	(a) Diagonal matrix (b) Rectangular matrix		and $AC = 5 \ cm$ then AB is
	(c) Square matrix (d) Identity matrix		(a) 2.5 cm (b) 5 cm (c) 10 cm (d) $5\sqrt{2}$ cm
	(c) square matrix (a) identity matrix		

- on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?. (a) 13 m (b) 14 m (c) 15 m (d) 12.8 m 1. Therefore the set of the se
- 10. In the given figure, $PR = 26 \ cm$, $QR = 24 \ cm$, $\angle PAQ = 90^{\circ}$, $PA = 6 \ cm$ and $QA = 8 \ cm$.

- CHAPTER 5 (COORDINATE GEOMETRY)
- 1. The area of triangle formed by the points
 - (-5, 0), (0, -5) and (5, 0) is.
 - (a) 0 sq.units (b) 25 sq.units
 - (c) 5 sq. units (d) None of these
- A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the

wall to be the Y axis. The path travelled by the man is

(a)
$$x = 10$$
 (b) $y = 10$

 (c) $x = 0$
 (d) $y = 0$

3.	The straight line given by the equation $x = 11$ is	12.	A straight line has equation $8y = 4x + 21$. Which
	(a) Parallel to X axis (b) Parallel to Y axis		of the following is true
	(c) Passing through the origin		(a) The slope is 0.5 and the y intercept is 2.6
	(d) Passing through the point $(0,11)$		(b) The slope is 5 and the y intercept is 1.6
4.	If $(5, 7)$, $(3, p)$ and $(6, 6)$ are collinear, then the		(c) The slope is 0.5 and the y intercept is 1.6
	value of <i>p</i> is		(d) The slope is 5 and the y intercept is 2.6
	(a) 3 (b) 6 (c) 9 (d) 12	13.	When proving that a quadrilateral is a trapezium, it
5.	The point of intersection of $3x - y = 4$ and $x + 3y = 4$		is necessary to show
	y = 8 is		(<i>a</i>) Two sides are parallel
	(a) (5,3) (b) (2.4) (c) (3,5) (d) (4,4)		(b) Two parallel and two non – parallel sides
6.	The slope of the line joining (12, 3), (4, <i>a</i>) is $\frac{1}{2}$. The		(c) Opposite sides are parallel
	vale of 'a' is		(d) All sides are of equal length
	(a) 1 (b) 4 (c) - 5 (d) 2	14.	When proving that a quadrilateral is a
7.	The slope of the line which is perpendicular to a line		parallelogram by using slopes you must find
	joining the points $(0, 0)$ and $(-8, 8)$ is		(a) The slopes of two sides
	$(a) - 1$ $(b) 1$ $(c)^{\frac{1}{2}}$ $(d) - 8$		(b) The slopes of two pair of opposite sides
0			(c) The lengths of all sides
8.	It slope of the line PQ is $\frac{1}{\sqrt{3}}$ then slope of the		(d) Both the lengths and slopes of two sides
	perpendicular bisector of PQ is	15.	(2, 1) is the point of intersection of two lines
	(a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) 0		(a) $x - y - 3 = 0$; $3x - y - 7 = 0$
9.	If A is a point on the Y axis whose ordinate is 8 and		(b) $x + y = 3$; $3x + y = 7$
	B is a point on the X axis whose abscissae is 5 then		(c) $3x + y = 3$; $x + y = 7$
	the equation of the line AB is		(<i>d</i>) $x + 3y - 3 = 0; x - y - 7 = 0$
	(a) $8x + 5y = 40$ (b) $8x - 5y = 40$		
	$(c)x = 8 \qquad (d) y = 5$		CHAPTER – 6 (TRIGONOMETRY)
10.	The equation of a line passing through the origin and	1. 7	The value of $\sin^2\theta + \frac{1}{2}$ is equal to
	perpendicular to the line $7x - 3y + 4 = 0$ is		(a) $\tan^2\theta$ (b) 1 (c) $\cot^2\theta$ (d) 0
	(a) $7x - 3y + 4 = 0$ (b) $3x - 7y + 4 = 0$	2 +	$\frac{(u) \tan \theta}{(u) + 1} = \frac{(u) + 1}{(u) + 1} = \frac{(u) + 1}{(u) + 1}$
	(c) 3x + 7y = 0 (d) 7x - 3y = 0	2. 1	$(a) \sec \theta \qquad (b) \cot^2 \theta \qquad (c) \sin \theta \qquad (d) \cot \theta$
11.	Consider four straight lines (i) l_1 ; $3y = 4x + 5$	3 1	$(\alpha) \sec \theta (\beta) \cot \theta (\varepsilon) \sin \theta (\alpha) \cot \theta$ If $(\sin \alpha + \csc \alpha)^2 + (\cos \alpha + \sec \alpha)^2 = k + \varepsilon$
	$(ii) l_2; 4y = 3x - 1 (iii) l_3; 4y + 3x = 7$	5. 1	$tan^2\alpha + cot^2\alpha$ then the value of k is equal to
	$(iv) l_4; 4x + 3y = 2$		(a) 9 (b) 7 (c) 5 (d) 3
	Which of the following statement is true?.	4 T	If $\sin \theta + \cos \theta = a$ and $\sec \theta + \csc \theta = h$ then
	(a) l_1 and l_2 are perpendicular	1. 1 	the value of $h(a^2 - 1)$ is equal to
	(b) l_1 and l_4 are parallel		(a) 2a (b) $3a$ (c) 0 (d) $2ab$
	(c) l_2 and l_4 are perpendicular		(0) 5ú (0) 5ú (0) 2úb
	(d) l_2 and l_3 are parallel		

5. If
$$5x = \sec \theta$$
 and $\frac{5}{y} = \tan \theta$, then $x^2 - \frac{1}{y^2}$ is equal to

(a) 25 (b)
$$\frac{1}{25}$$
 (c) 5 (d) 1

6. If $\sin \theta = \cos \theta$, then $2tan^2\theta + sin^2\theta - 1$ is equal to

(a)
$$\frac{-3}{2}$$
 (b) $\frac{3}{2}$ (c) $\frac{2}{3}$ (d) $\frac{-2}{3}$

7. If $x = a \tan \theta$ and $y = b \sec \theta$ then

$$(a) \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

$$(b) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$(c) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$(d) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to

(a) 0 (b) 1 (c) 2 (d)
$$-1$$

- 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta =$ q then $p^2 - q^2$ is equal to (a) $a^2 - b^2$ (b) $b^2 - a^2$ (c) $a^2 + b^2$ (d) b - a
- 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure

60°

(a)
$$45^{\circ}$$
 (b) 30° (c) 90° (d)

11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point ' b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to

(a)
$$\sqrt{3} b$$
 (b) $\frac{b}{3}$ (c) $\frac{b}{2}$ (d) $\frac{b}{\sqrt{3}}$

- 12. A tower is 60 m heigh. Its shadow reduces by x metres when the angle of elevation of the sun increases from 30° to 45° then x is equal to
 (a) 41.92 m (b) 43.92 m (c) 43 m (d) 45.6 m
- 13. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two building (in metres) is

(a) 20, $10\sqrt{3}$ (b) 30, $5\sqrt{3}$ (c) 20, $10\sqrt{3}$ (d) $30, 10\sqrt{3}$

14. Two persons are standing 'x' metres apart from each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person (in metres) is

(a)
$$\sqrt{2} x$$
 (b) $\frac{x}{2\sqrt{2}}$ (c) $\frac{x}{\sqrt{2}}$ (d) $2x$

15. The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is

$$(a) \frac{h(1+\tan\beta)}{1-\tan\beta}$$
 $(b) \frac{h(1-\tan\beta)}{1+\tan\beta}$ $(c) h \tan(45^\circ - \beta)$ (d) None of these

- CHAPTER 7 (MENSURATION)1. The curved surface area of a right circular cone of
height 15 cm and base diameter 16 cm is
(a) $60\pi \ cm^2$ (b) $68\pi \ cm^2$
(c) $120\pi \ cm^2$ (d) $136\pi \ cm^2$ 2. If two solid hemispheres of same base radius r
- units are joined together along their bases, then curved surface area of this new solid is

(a)
$$4\pi r^2$$
 sq. units(b) $6\pi r^2$ sq. units(c) $3\pi r^2$ sq. units(d) $8\pi r^2$ sq. units

3. The height of a right circular cone whose radius is5 cm and slant height is 13 cm will be

$$(a) 12 cm$$
 (b) 10 cm (c) 13 cm (d) 5 cm

4. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is

(a) 1:2 (b) 1:4 (c) 1:6 (d) 1:8

5. The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is

(a)
$$\frac{9\pi h^2}{8}$$
 sq. units

(b) $24\pi h^2$ sq. units

Y.SEENIVASAN . M.SC, B.ED	- PG TEACHER- 8489880553
$(c) \frac{8\pi h^2}{9}$ sq. units $(d) \frac{56\pi h^2}{9}$ sq. units6. In a hollow cylinder, the sum of the external and internal radii is 14 cm and the width is 4 cm. If its height is 20 cm, the volume of the material in it is $(a) 5600\pi \ cm^3$ $(b) 1120\pi \ cm^3$ $(c) 56\pi \ cm^3$ $(d) 3600\pi \ cm^3$ 7. If the radius of the base of a cone is tripled and the height is doubled then the volume is (a) Made 6 times (c) Made 12 times	 14. The height and radius of the cone of which the frustrum is a part are h₁ units and r₁ units respectively. Height of the frustrum is h₂ units and radius of the smaller base is r₂ units. If h₂: h₁ = 1: 2 then r₂: r₁ is (a) 1:3 (b) 1:2 (c) 2:1 (d) 3:1 15. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is (a) 1:2:3 (b) 2:1:3 (c) 1:3:2 (d) 3:1:2
8. The total surface area of a hemi – sphere is how	CHAPTER - 8 (STATISTICS ANDPROBABILITY)
 much times the square of its radius. (a) π (b) 4π (c) 3π (d) 2π 9. A solid sphere of radius x cm is melted and cast into a shape of a solid cone of same radius. The height of the cone is (a) 3x cm (b) x cm (c) 4x cm (d) 2x cm 	 Which of the following is not a measure of dispersion?. (a) Range (b) Standard deviation (c) Arithmetic Mean (d) Variance The range of the data 8, 8, 8, 8, 8 is (a) 0 (b) 1 (c) 2
10 A frustrum of a right circular cone is of height 16	(a) 0 $(b) 1$ $(c) 8$ $(a) 3$
 cm with radii of its as 8 cm and 20 cm. Then, the volume of the frustrum is (a) 3328π cm³ (b) 3228π cm³ (c) 3240π cm³ (d) 3340π cm³ 11. A shuttle cock used for playing badminton has the shape of the combination of (a) A cylinder and a sphere (b) A hemisphere and a cone (c) A sphere and a cone and a hemisphere 	 3. The sum of all deviations of the data from its mean is (a) Always positive (b) Always negative (c) Zero (d) Non – Zero integer 4. The mean of 100 observations is 40 and their standard deviation is 3. The sum of squares of all observations is (a) 40000 (b) 160900 (c) 160000 (d) 30000 5. Variance of first 20 natural numbers is (a) 32.25 (b) 44.25 (c) 33.25 (d) 30 6. The standard deviation of a data is 3. If each
12. A spherical ball of radius r_1 units is melted to make 8 new identical balls each of radius r_2 units. Then $r_1: r_2$ is (a) 2:1 (b) $1:2$ (c) $4:1$ (d) $1:4$	 o. The standard deviation of a data is 5. If each value is multiplied by 5 then the new variance is (a) 3 (b) 15 (c) 5 (d) 225 7. If the standard deviation of x, y, z is p then the standard deviation of 3x + 5 3y + 5 3z + 5 is
13. The volume (in cm^3) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is $(a) \frac{4}{3}\pi \qquad (b) \frac{10}{3}\pi \qquad (c) 5\pi \qquad (d) \frac{20}{3}\pi$	(a) $3p + 5$ (b) $3p$ (c) $p + 5$ (d) $9p + 15$ 8. If the mean and coefficient of variation of a data are 4 and 87.5 % then the standard deviation is (a) 3.5 (b) 3 (c) 4.5 (d) 2.5

ROUGH WORK

9. Which of the following is incorrect?.

(a) P(A) > 1(b) $0 \le P(A) \le 1$ (c) $P(\phi) = 0$ (d) $P(A) + P(\bar{A}) = 1$

10. The probability a red marble selected at random from a jar containing *p* red, *q* blue and *r* green marbles is

(a)
$$\frac{q}{p+q+r}$$
 (b) $\frac{p}{p+q+r}$ (c) $\frac{p+q}{p+q+r}$ (d) $\frac{p+r}{p+q+r}$

 A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is

(a)
$$\frac{3}{10}$$
 (b) $\frac{7}{10}$ (c) $\frac{3}{9}$ (d) $\frac{7}{9}$

12. The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is

 $(a) 2 \qquad (b)$

(*b*) 1

13. Kamalan went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalan winning is $\frac{1}{9}$, then the number of tickets bought by Kamalan is

(a) 5 (b) 10 (c) 15 (d) 20

14. If a letter is chosen at random from the English alphabets $\{a, b, \dots z\}$, then the probability that the letter chosen precedes x

(a)
$$\frac{12}{13}$$
 (b) $\frac{1}{13}$ (c) $\frac{23}{26}$ (d) $\frac{3}{26}$

15. A purse contains 10 notes of ₹ 2000, 15 notes of ₹ 500, and 25 notes of ₹ 200. One note is drawn at random. What is the probability that the note is either a ₹ 500 note or ₹ 200 note?

(a)
$$\frac{1}{5}$$
 (b) $\frac{3}{10}$ (c) $\frac{2}{3}$ (d) $\frac{4}{5}$

*** PREPARED BY Y. SEENIVASAN M.Sc, B.Ed PG – TEACHER All the best Students

10 MATHS PROGRESS CHECK **SOLUTION CHAPTER - 1 (RELATIONS AND FUNCTIONS)** 1. For any two non-empty sets A and B $A \times B$ is called as Cartesian Product. 2. If $n(A \times B) = 20$ and n(A) = 5, then n(B) is <u>4</u>. 3. If $A = \{-1, 1\}$ and $B = \{-1, 1\}$ then Geometrically describe the set of points of $A \times B = \{(-1, -1), (-1, 1), (1, -1), (1, 1)\}.$ 4. If A, B are the line Segments given by the intervals $\{-4, 3\}$ and $\{-2, 3\}$ respectively, represent the cartesian product of A and B $\{(-4, -2), (-4, 3), (3, -2), (3, 3)\}.$ 5. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. 1.Which of the following are 2. Which of the following are relations from A to B?. relations from B to A?. (i) {(1, b), (1, c), (3, a), (4, b)} $(i) \{(c, a), (c, b), (c, 1)\}$ (ii) {(1, *a*), (*b*, 4), (*c*, 3)} (ii) {(c, 1), (c, 2), (c, 3), (c, 4)} (iii) {(1, *a*), (*a*, 1), (2, *b*), (*b*, 2)} (iii) {(a, 4), (b, 3), (c, 2)}

6. Relations are subsets of Cartesian Product Functions are Subsets of Relations.

- 7. True or False: All the elements of a relation should have images. False
- 8. True or False: All the elements of a Function should have images. True
- 9. True or False: If $R: A \rightarrow B$ is a relation then the domain of R = A. **False**
- 10. If $f: \mathbb{N} \to \mathbb{N}$ is defined as $f(x) = x^2$ the image of 1 and 2 are <u>1</u> and <u>No Pre image</u>.
- 11. What is the difference between relation and function?. When every input has unique output is Function, otherwise Relation.
- 12. Let A and B be two non-empty finite sets. Then which one among the following two collection is large?.

(i)The number of relation between A and B.

Large

(ii)The number of Function between A and B.

Small

- 13. State True or False:
 - (i) All one-one function are onto function.

False

- (ii) There will be no one-one function from A to B when n(A) = 4, n(B) = 3. **True**
- (iii) All onto Functions are one-one function.

False

- (iv) There will be no onto function from A to B when n(A) = 4, n(B) = 5. **True**
- (v) If f is a bijection from A to B, then n(A) = n(B). True
- (vi) If n(A) = n(B), then f is a bijection from A to B. False
- (vii) All constant functions are bijections. False
- 14. Composition of functions is commutative.
 - (a) Always True (b) Never true

(c) Sometimes true

(c) Sometimes true

- 15. Composition of function is Associative.
 - (a) Always True
 - (b) Never true
- 16. Is a constant function a linear Function?. Yes
- 17. Is quadratic function a one-one Function?. No
- 18. Is Cubic Function a one-one Function?. Yes
- 19. Is the reciprocal Function a Bijection?. Yes
- 20. If $f: A \rightarrow B$ is a constant function, then the range of *f* will have <u>**Only One**</u> element.

CHAPTER - 2 (NUMBERS AND SEQUENCES)

1. Find q and r for the following pairs of integers a and b satisfying a = bq + r.

a = 13,	<i>b</i> = 3	$\underline{q} = 4$, $r = 1$
a = 18,	b = 4	$\underline{q} = 4$, $r = 2$
a = 21,	b = -4	$\underline{q} = -5, r = 1$
a = -32,	b = -12	$\underline{q} = 3$, $r = 4$
a = -31,	<i>b</i> = 7	$\underline{q} = -5, r = 4$

2. Euclid's division algorithm is a repeated If *a* and *d* are the first term and common 19. difference of an A.P, then the 8^{th} term is application lemma until we get remainder as Zero. $t_8 = a + 7d_{..}$ 3. The HCF of two equal positive integer k, k is If t_n is the n^{th} term of an A.P, then $t_{2n} - t_n$ is 20. K(Same integer). nd. 4. Every natural number except One can be The common difference of a constant A.P is 21. expressed as Prime Factors. Zero. 5. In how many ways a composite number can be 22. If *a* and *l* are first and last terms of an A.P then written as product of power of primes?. Only the number of terms is $n = \frac{(l-a)}{d} + 1$... One way 23. If every terms of an A.P is multiplied by 3, then 6. The number of divisors of any prime number is the common difference of the new A.P is <u>3d</u>. **Only 2**. Three numbers *a*, *b* and *c* will be in A.P If and 24. 7. Let *m* divides *n*. Then GCD and LCM of *m*, *n* only if $\underline{2b} = a + c$. are *m* and *n*. The sum of terms of a sequence is called <u>Series</u>. 25. 8. The HCF of numbers of the form 2^m and 3^n is <u>1</u>. If a series have finite number of terms then it is 26. 9. Two integers *a* and *b* are Congruent modulo *n* if called Finite Series. $\frac{(a-b)}{n}$ A series whose terms are in A.P Sequence is 27. 10. The set of all positive integers which leave called Arithmetic Series. remainder 5 when divided by 7 are <u>5, 12, 19,...</u>. 28. If the first and last terms of an A.P are given then 11. The positive values of k such that $(k-3) \equiv$ the formula to find the sum is $S_n = \frac{n}{2}(a + l)$. 5(mod 11) are **8, 19, 30**,... 29. **State True or False:** 12. If $59 \equiv 3 \pmod{7}$, $49 \equiv 4 \pmod{7}$ then (i) The n^{th} term of any A.P is of the form pn + q $105 \equiv \mathbf{0} \pmod{7}, \ 13 \equiv \mathbf{6} \pmod{7}, \ 413 \equiv$ where p and q are some constants. True $0 \pmod{7}$, $368 \equiv 4 \pmod{7}$. The sum to n^{th} term of any A.P is of the form (ii) 13. The remainder when $7 \times 13 \times 19 \times 23 \times 29 \times 10^{-10}$ $pn^2 + qn + r$ where p, q, r are some constants. 31 is divided by 6 is 1. True 14. Fill in the blanks for the following sequences A G.P is obtained by multiplying <u>a fixed non –</u> 30. (i) 7, 13, 19, **25**, **31** ... (ii)2, **5**10, 17, 26, ... zero number to the preceding term. (iii) 1000,100,10,1, **0**. **1**, **0**. **01** ... 31. The ratio between any two consecutive terms of 15. A sequences is a function defined on the set of the G.P is Always constant and it is called Natural Numbers. Common ratio. 16. The n^{th} term of the sequence 0,2,6,12,20, ... 32. Fill in the blanks if the following are in G.P can be expressed as $\underline{n(n-1)}$. $(i)\frac{1}{8},\frac{3}{4},\frac{9}{2},\mathbf{27}$ $(ii)7,\frac{7}{2},\frac{7}{4}$ $(iii) \mathbf{2}, 2\sqrt{2}, 4,...$ 17. Say True or False: If first term = a, common ratio = r, then find 33. (i) All sequences are functions. True the value of t_9 and t_{27} . $t_9 = ar^8$, $t_{27} = ar^{26}$ (ii) All functions are sequences. False 18. The difference between any two consecutive terms of an A.P is <u>**d**</u> – common difference.

- 34. In a G.P if $t_1 = \frac{1}{5}$ and $t_2 = \frac{1}{25}$ then the common ratio is $\frac{1}{5}$.
- 35. Three non-zero numbers a, b, c are in G.P if and only if $\underline{b^2 = ac}$. Or $\frac{b}{a} = \frac{c}{b}$
- 36. A series whose terms are in Geometric progression is called. **Geometric Series**
- 37. When r = 1 the formula for finding sum to *n* terms of a G.P is <u>**na**</u>.
- 38. When $r \neq 1$ the formula for finding sum to *n* terms $q(r^{n}-1)$

of a G.P is
$$S_n = \frac{a(r-1)}{r-1}, r > 1$$

 $S_n = \frac{a(1-r^n)}{1-r}, r < 1.$

- 39. Sum to infinite number of terms of a G.P is $\frac{a}{1-r}$.
- 40. For what values of r does the formula for infinite G.P valid?. $\underline{r < 1}$
- 41. Is the series 3 + 33 + 333 + … a Geometric series?. <u>No</u>

42. The value of *r*, such that $1 + r + r^2 + r^3 \dots = \frac{3}{4}$ is $r = -\frac{1}{2}$.

- 43. The sum of cubes of first n natural numbers is **Square** of the first n natural numbers.
- 44. The Average of first 100 natural numbers is 50.5.
- 45. Say True or False:
 - 1.The sum of first n odd natural numbers is always an odd number.. <u>False</u>
 - 2. The sum of consecutive even numbers is always an even number. <u>True</u>
 - 3. The difference between the sum of squares of first n natural numbers and the sum of first n natural numbers is always divisible by 2. <u>**True**</u>
 - 4. The sum of cubes of the first n natural numbers is always a square number. <u>**True**</u>

CHAPTER – 3 (ALGEBRA)

 For a system of linear equations in three variables the minimum number of equations required to get unique solution is <u>Three</u>.

- 2. A system with **Infinitely Many Solution** will reduce to identity.
- 3. A system with **No Solution** will provide absurd equation.
- When two polynomials of same degree has to be divided <u>Polynomial with Highest coefficient</u> should be considered to fix the dividend and divisor.
- 5. If r(x) = 0 when f(x) is divided by g(x) is called <u>divisor</u> of the polynomials.
- 6. If f(x) = g(x)q(x) + r(x) r(x) must be added to f(x) completely divisible by g(x).
- 7. If f(x) = g(x)q(x) + r(x) must be subtracted to f(x) completely divisible by g(x).
- 8. Find the unknown expression in the following figures.

Area =
$$\frac{(x-4)(x+3)}{3x-12} km^2$$

 $length = \frac{(x-3)}{3} km$
2.
Altitude = $\frac{2(x+y)}{x-y} m$
 $Area = \frac{(x+y)^3}{x-y} km$

$$base = (x + y)(x + y)m$$

9. Write an expression that represents the perimeter of the figure and simplify.

10. Find the base of the given parallelogram whose perimeter is $\frac{4x^2+10x-50}{(x-3)(x+5)}$.

V CEENIX/A CAN	MCC	DED	DC TEA	CHED	0400000557
I.SEENIVASAN.	M.SC,	D.LU -	PG ILA	СПЕК-	04090000000

11. Is 2	$x^2 + 4x + 4$ a g	perfect squ	are?. <u>Yes</u>					
12. Wh 13. The	hat is the value of e square root of	of x in $3\sqrt{x}$ $361x^4y^2$	x = 9 ?. x = is $19x^2y$.	<u>= 9.</u>		Graphs	No. of Points of Intersection with X-axis	No. of Solution
 14. √a 15. If a fac (od 16. 	$2^{2}x^{2} + 2abx + b$ a polynomial is a tors will be repe ld/even).	$b^2 = ax $ a perfect so eated <u>Even</u>	+ b . quare then is number of	its f times		X' O Y' X	0	No real roots
	Conclusion	$Sum = -\frac{b}{a}$ $Product = \frac{c}{a}$	$Sum = -\frac{b}{a}$ Product = $\frac{c}{a}$	$Sum = -\frac{b}{a}$ Product = $\frac{c}{a}$			2	Real and unequal roots
	$\frac{b}{a}$	2 1	<u>16</u> <u>25</u>	2 -27			0	No real roots
	Product of $-$	2 4 9	$\frac{16}{25}$ $\frac{8}{5}$	$\frac{-27}{2}$			1	Real and equal roots
	Sum of Roots $\alpha + \beta$	9 4	<u>ىرا</u> 8	15 2		X' O X	2	Real and unequal roots
	Co- efficient of x^2 , x and constant	4, -9, 2	25, -40, 16	2, -15, -27			1	Real and equal roots
	Roots of quadratic equation α and β	$(2,\frac{1}{4})$	$(\frac{4}{5},\frac{4}{5})$	$(9, -\frac{3}{2})$	1	8. Find the element set $(1, -2)$	econd row and thi	rd column of
	Quadratic Equation	$4x^2 - 9x + 2 = 0$	$\left(x-\frac{4}{5}\right)^2=0$	$2x^2 - 15x - 27 = 0$	1 2	the matrix $\begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$ 9. Find the order of th 0. Determine the entrine from the matrix $\begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$	$ \begin{cases} 3 \\ 5 \end{cases} \cdot \underline{5} \\ \text{he matrix.} \begin{pmatrix} \sin \theta \\ \cos \theta \\ \tan \theta \\ \sin \theta $). 3×1 1, a_{22}, a_{33}, a_{44} 2, 9, 8, 4
17.							7 0 1 4 /	

- 21. The number of column(s) in a column matrix are <u>One</u>.
- 22. The number of row(s) in a row matrix are <u>One</u>.
- The non-diagonal elements in any unit matrix are <u>Zero</u>.
- 24. Does there exist a square matrix with 32 elements?.

Not Possible $m \times n$ must be Square number

CHAPTER – 4 (GEOMETRY)

- 1. All circles are $\underline{Similar}$ (congruent/similar).
- 2. All squares are **<u>Similar</u>** (Similar/Congruent).
- Two triangles are similar, if their corresponding angles are <u>Equal</u> and their corresponding sides are <u>Proportional</u>.
- 4. Say True or False:

(i) All similar triangles are congruent. <u>False</u>(ii) All congruent triangles are similar. <u>True</u>

- Give two different examples of pair of nonsimilar figures?. <u>Square – Rhombus ,</u> Rectangle - Parallelogram
- A straight line drawn <u>Parallel</u> to a side of a triangle divides the other two sides Proportionally?.
- Basic Proportionality Theorem is also known as <u>Thales Theorem</u>.
- 8. Let $\triangle ABC$ be equilateral. If D is a point on BC and AD is the internal bisector of $\angle A$. Using Angle Bisector Theorem, $\frac{BD}{DC}$ is **1**.
- 9. The <u>Internal bisector</u> of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.
- 10. If the median AD to the side of a $\triangle ABC$ is also an angle bisector of $\angle A$ then $\frac{AB}{AC}$ is <u>1</u>.
- 11. <u>**Hypotenuse**</u> is the longest side of the right angled triangle.
- 12. The first theorem in mathematics is <u>Pythagoras</u> <u>Theorem</u>.

 If the square of the longest side of a triangle is equal to sums of squares of other two sides , then the triangle is <u>Right angled triangle</u>.

14. State True or False:

(i) Pythagoras Theorem is applicable to all triangles.

<u>False</u>

- (ii) One side of a right angled triangle must always be a multiple of 4. <u>True</u>
- 15. A straight line that touches a circle at a common point is called a <u>Tangent</u>.
- 16. A chord is a subsection of <u>Secant</u>.
- 17. The lengths of the two tangents drawn from <u>An</u><u>Exterior</u> point to a circle are equal.
- No tangent can be drawn from <u>Inside</u> of the circle.
- 19. <u>Angle bisector</u> is a cevian that divides the angle, into two equal halves.

CHAPTER – 5 (COORDINATE GEOMETRY)

- 1. The vertices of ΔPQR are P(0, -4), Q(3, 1) and R(-8, 1).
 - (i) Draw $\triangle PQR$ on a graph paper.

- (ii) Check if ΔPQR is equilateral. <u>No</u>
- (iii) Find the area of ΔPQR . 27.5 sq.cm
- (iv) Find the coordinates of M, the mid-point of

QP. $M(\frac{3}{2}, -\frac{3}{2})$

- (v) Find the coordinates of N, the mid-point of QR. $N(-\frac{5}{2}, 1)$
- (vi) Find the area of ΔMPN . <u>6.875 sq.cm</u>
- (vii) What is the ratio between the areas of ΔMPN and ΔPQR ?. **1** : **4**

- 2. Given a quadrilateral ABCD with vertices A(-3, -8), B(6, -6), C(4,2), D(-8,2)
 - (i) Find the area of $\triangle ABC$. <u>38 sq.cm</u>
 - (ii) Find the area of $\triangle ACD$. <u>60 sq.cm</u>
 - (iii) Calculate area of $\triangle ABC$ + area of $\triangle ACD$.

<u>98 sq.cm</u>

(iv) Find the area of quadrilateral ABCD.

<u>98 sq.cm</u>

(v) Compare the answers obtained in 3 and 4.

Both are Same

3. Fill in the missing boxes.

S. No	Points	Slope
1.	A(-a,b), B(3a,-b)	$-\frac{b}{2a}$
2.	A(2,3), B(2,3)	2
3.	X axis parallel to X axis	0
4.	Y axis parallel to Y axis	Undefined

4. Write down the slope of each of the lines shows on the grid below.

Ans: (i) slope $m = \tan 90^\circ$ (Undefined) (ii) slope $m = \tan 0^\circ = 0$ (iii) slope $m = \frac{3}{3} = 1$ (iv) slope $m = \frac{4}{2} = 1$ (v) slope $m = -\frac{3}{2}$ 5. Fill in the details in respective boxes.

Form	When to use?	Name
y = mx + c	m = slope, c = Intercept	Slope - Intercept form
$ \frac{\frac{y - y_1}{y_2 - y_1}}{= \frac{x - x_1}{x_2 - x_1}} $	Two Points	Two Point form
$\frac{x}{a} + \frac{y}{b} = 1$	The intercept given	Intercept Form

- 6. A(0,5), B(5,0) and C(-4, -7) are vertices of a triangle then its centroid will be at $G\left(\frac{1}{3}, -\frac{2}{3}\right)$
- 7. Fill in the represent boxes

8.	Fill in the d	etail in respe	ctive boxes.	
	Equation	Slope	x intercept	y intercept
	3x - 4y + 2 = 0	0	$-\frac{2}{3}$	$\frac{1}{2}$
	y = 14x	14	0	0
	3x - 2y	$\frac{3}{2}$	2	-3

9. Fill in the detail in respective boxes.

Equation	Parallel or Perpendicular
5x + 2y + 5 = 0 5x + 2y - 3 = 0	Parallel
3x - 7y - 6 = 0 7x + 3y + 8 = 0	Perpendicular
8x - 10y + 11 = 04x - 5y + 16 = 0	Parallel
2y - 9x - 7 = 0 27y + 6x - 21 = 0	Perpendicular

CHAPTER – 6 (TRIGONOMETRY)

- 1. The number of trigonometric ratios is <u>Six</u>.
- 2. $1 \cos^2 \theta$ is $\underline{\sin^2 \theta}$.
- 3. $(\sec \theta + \tan \theta)(\sec \theta \tan \theta)$ is <u>1</u>.
- 4. $(\cot \theta + \csc \theta)(\cot \theta \csc \theta)$ is $-\underline{\mathbf{1}}$.
- 5. $\cos 60^{\circ} \sin 30^{\circ} + \cos 30^{\circ} \sin 60^{\circ}$ is <u>1</u>.
- 6. $\tan 60^{\circ} \cos 60^{\circ} + \cot 60^{\circ} \sin 60^{\circ}$ is <u>1</u>.
- 7. $(\tan 45^{\circ} + \cot 45^{\circ}) + (\sec 45^{\circ} \csc 45^{\circ} is \underline{4}.$
- 8. $\sec \theta = \csc \theta$ if θ is <u>45°</u>.
- 9. $\cot \theta = \tan \theta$ if θ is <u>45°</u>.
- The line drawn from the eye of an observer to the point of object is <u>Line of sight</u>.
- 11. Which instrument is used in measuring the angle between an object and the eye of the observer ?.Clinometer
- When the line of sight is above the horizontal level, the angle formed is <u>Angle of Elevation</u>.
- The angle of elevation <u>Increases</u> as we move towards the foot of the vertical object (tower).
- When the line of sight is below the horizontal level, the angle formed is <u>Angle of depression</u>.

	CHAPTE	R – 7 (MENSURATION)	
1.	Right circular cy	ylinder is a solid obtained by	
	revolving Recta	i <mark>ngle</mark> about <u>its sides</u> .	
2.	In a right circula	ar cylinder the axis is	
	Perpendicular	to the diameter.	
3.	The difference b	between the C.S.A and T.S.A of a	
	right circular cy	linder is $2\pi r^2$.	
4.	The C.S.A of a 1	right circular cylinder of equal	
	radius and heigh	nt is <u>Twice</u> the area of its base.	
5.	Right circular cone is a solid obtained by		
	revolving <u>Right</u>	angled triangle about Sides	
	Containing <u>90</u> °		
6.	In a right circular cone the axis is <u>Perpendicular</u>		
	to the diameter.		
7.	The difference b	between the C.S.A and T.S.A of a	
	right circular cone is πr^2 .		
8.	When a sector o	f a circle is transformed to form	
	a cone, then Ma	tch it: Sector and Cone	
	Sector	Come	
	Sector	Cone	
	Radius	Slant height	
	Radius Area	<u>Slant height</u> <u>C.S.A</u>	
	Radius Area Arc Length	Slant height C.S.A Circumference of the base	
	Radius Area Arc Length	Slant height C.S.A Circumference of the base	
9.	Radius Area Arc Length Every section of	Slant height C.S.A Circumference of the base a sphere by a plane is a Circle.	
9. 10.	Radius Area Arc Length Every section of The centre of a gradient	Slant height <u>C.S.A</u> Circumference of the base f a sphere by a plane is a <u>Circle</u> . great circle is at the <u>Centre of</u>	
9. 10.	Radius Area Arc Length Every section of The centre of a st the sphere.	Slant height C.S.A Circumference of the base f a sphere by a plane is a Circle. great circle is at the Centre of	
9. 10. 11.	Radius Area Arc Length Every section of The centre of a g the sphere. The difference b	Slant height <u>C.S.A</u> Circumference of the base f a sphere by a plane is a <u>Circle</u> . great circle is at the <u>Centre</u> of between the T.S.A and C.S.A of	
9. 10. 11.	Radius Area Arc Length Every section of The centre of a g the sphere. The difference to hemisphere is <u>m</u>	Slant heightC.S.ACircumference of the basef a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .	
 9. 10. 11. 12. 	Radius Area Arc Length Every section of The centre of a g the sphere. The difference to hemisphere is <u>m</u> The ratio of surf	ConeSlant heightC.S.ACircumference of the basef a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .Face area of a sphere and C.S.A	
 9. 10. 11. 12. 	RadiusAreaArc LengthEvery section of The centre of a g the sphere.The difference to hemisphere is m The ratio of surf of hemisphere is fm	ConeSlant heightC.S.ACircumference of the basef a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .Face area of a sphere and C.S.A $s 2 : 1$.	
 9. 10. 11. 12. 13. 	RadiusAreaArc LengthEvery section of The centre of a g the sphere.The difference to hemisphere is m The ratio of surf of hemisphere is A section of the	ConeSlant heightC.S.ACircumference of the basef a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .f a carea of a sphere and C.S.Af a sphere by a plane through any of	
 9. 10. 11. 12. 13. 	RadiusAreaArc LengthEvery section of The centre of a g the sphere.The difference to hemisphere is m The ratio of surf of hemisphere is A section of the its great circle is	ConeSlant heightC.S.ACircumference of the basef a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .f a carea of a sphere and C.S.A $s 2 : 1$.sphere by a plane through any ofs Hemisphere.	
 9. 10. 11. 12. 13. 14. 	SectorRadiusAreaArc LengthEvery section of The centre of a g the sphere.The difference to hemisphere is π The ratio of surf of hemisphere is A section of the its great circle is The portion of a	ConeSlant heightC.S.ACircumference of the basef a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .f ace area of a sphere and C.S.As $2:1$.sphere by a plane through any ofs Hemisphere.right circular cone intersected	
 9. 10. 11. 12. 13. 14. 	SectorRadiusAreaArc LengthEvery section of The centre of a g the sphere.The difference to hemisphere is π The ratio of surf of hemisphere is A section of the its great circle is The portion of a between two part	Slant heightC.S.ACircumference of the basef a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .f ace area of a sphere and C.S.As $2 : 1$.sphere by a plane through any ofs Hemisphere.right circular cone intersectedrallel planes is Frustum of a	
 9. 10. 11. 12. 13. 14. 	Radius Area Arc Length Every section of The centre of a g the sphere. The difference to hemisphere is m The ratio of surf of hemisphere is A section of the its great circle is The portion of a between two par cone.	ConeSlant heightC.S.ACircumference of the baseIf a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .Face area of a sphere and C.S.A $s 2 : 1$.sphere by a plane through any of $s Hemisphere$.right circular cone intersectedrallel planes is Frustum of a	
 9. 10. 11. 12. 13. 14. 15. 	Radius Area Arc Length Every section of The centre of a g the sphere. The difference to hemisphere is m The ratio of surf of hemisphere is A section of the its great circle is The portion of a between two par Cone. How many frust	ConeSlant heightC.S.ACircumference of the baseIf a sphere by a plane is a Circle.great circle is at the Centre ofbetween the T.S.A and C.S.A of r^2 .Face area of a sphere and C.S.A $s 2 : 1$.sphere by a plane through any of $s Hemisphere$.right circular cone intersectedrallel planes is Frustum of arum can a right circular cone have?	

- 16. Volume of a cone is the product of its base area 9. and One Third of its height. 17. If the radius of the cone is doubled the new volume will be **<u>Four</u>** times the original Volume. 18. Consider the Cones given : (i) Without doing any calculation find out whose volume is Grater?. Cone B (ii) Verify whether the cone with greater volume has greater surface area. Yes $(15\pi, 20\pi)$ (iii) Volume of cone A : Volume of cone B = ?. 3: 4cone A cone B $3\,\mathrm{cm}$ $\overline{3}$ cm $4 \,\mathrm{cm}$ 19. What is the ratio of volume to surface area of a sphere?. <u>*r* : 3</u> 20. The relationship between the height and radius of the hemisphere is **Equal.** 21. The volume of a sphere is the product of its surface area and One third of its radius. CHAPTER - 8 (STATISTICS AND PROBABILITY) 1. The sum of all the observations divided by number of observations is Mean. 2. If the sum of 10 data values is 265 then their mean is 26.5. 3. If the sum and mean of a data are 407 and 11 respectively. Then the number of observations in the data are **37.** 4. The range of first 10 prime numbers is 27(29-2=27). 5. If the variance is 0.49 then the standard deviation is
 - <u>0.7</u>.

S.D.

6. Coefficient of variation is a relative measure of

Standard deviation.

- 7. When the standard deviation is divided by the mean we get Coefficient of variation.
- 8. The coefficient of variation depends upon Mean and

- If the mean and standard deviation of a data are 8 and 2 respectively then the coefficient of variation is 25 %.
- 10. When comparing two data, the data with Larger coefficient of variation is inconsistent.
- 11. An experiment in which a particular outcome cannot be predicted is called Random.
- 12. The set of all possible outcomes is called **Sample** Space.
- 13. Which of the following values cannot be a probability of an event?.
 - <u>(a) 0.0001</u> (*b*) 0.5 (*c*) 1.001 (d) 1 (e) 20 % (f) 0.253 (g) $\frac{1-\sqrt{5}}{2}$ (h) $\frac{\sqrt{3}+1}{4}$

b), d), e), f), h) can be Probability of an Event.

- 14. P(only A) = $\underline{P(A \cap \overline{B})}$.
- 15. $P(\overline{A} \cap B) = P$ (only B).
- 16. $A \cap B$ and $\overline{A} \cap B$ are **Mutually exclusive** events.
- 17. $P(\overline{A} \cap \overline{B}) = \underline{P}(\overline{A \cup B})$. De Margon Law
- 18. If A and B are mutually exclusive events then $P(A \cap B) = \mathbf{0}.$
- 19. If $P(A \cap B) = 0.3$, $P(\overline{A} \cap B) = 0.45$ then P(B) = 0.75.

PREPARED BY

Y. SEENIVASAN. M.SC B.Ed **PG - TEACHER**

"BELIEVE IN YOURSELF UNDERSTAND IN YOURSELF DEVELOPE IN YOURSELF"