TN 10 Std. - MATHEMATICS BOOK BACK 1 Mark

Multiple Choice questions :

Unit - 1 RELATIONS AND FUNCTIONS

1.	If n(A×B) = 6 and A = {1			
	(A) 1	(B) 2	(C) 3	(D) 6
2.	$A = \{a, b, p\}, B = \{2, 3\},\$	$C = \{p,q,r,s\}$ then $n[(A \cup C) \times B]$] is	
	(A) 8	(B) 20	(C) 12	(D) 16
3.	If A = {1,2}, B = {1,2,	3, 4},C = {5,6} and D = {5,	6, 7, 8} then state w	hich of the following
	statement is true.			\mathcal{O}
	(A) (<i>A</i> × <i>C</i>) ⊂(<i>B</i> × <i>D</i>)	(B) (<i>B</i> × <i>D</i>) ⊂ (<i>A</i> × <i>C</i>)	$(C)(A \times B) \subset (A \times D)$	(D) $(D \times A) \subset (B \times A)$
4.	If there are 1024 relati	ions from a set A = {1, 2, 3, 4,	5} to a set B, then the	number of elements
	in B is			
	(A) 3	(B) 2	(C) 4	(D) 8
5.	The range of the relati	ion R = {(x,x²) x is a prime nu	umber less than 13} is	
	(A) {2,3,5,7}	(B) {2,3,5,7,11}	(C) {4,9,25,49,121}	(D) {1,4,9,25,49,121}
6.	If the ordered pairs (a	+2, 4) and (5,2a +b)are equal	then (a,b) is	
	(A) (2, -2)	(B) (5,1)	(C) (2,3)	(D) (3 <i>,</i> –2)
7.	Let n(A) = m and n(B) =	= n then the total number of r	on-empty relations th	at can be defined
	from A to B is			-
	(A) m ⁿ	(B) n ^m	(C) 2 ^{mn} -1	(D) 2 ^{mn}
8.	If {(a, 8),(6,b)} represe	nts an identity function, then	the value of a and b a	re respectively
	(A) (8,6)	(B) (8,8)	(C) (6 <i>,</i> 8)	(D) (6,6)
9.	Let A={1,2, 3, 4} and B	= {4, 8,9,10}. A function f : A-	→ B given by f = {(1, 4),	(2, 8),(3,9),(4,10)} is a
	(A) Many-one function		(B) Identity function	
	(C) One-to-one functio		(D) Into function	
10.	If f (x) = 2x ² and g (x) =	$\frac{1}{3x}$, then f o g is		
	(A) $\frac{3}{2r^2}$	(B) $\frac{2}{3r^2}$	(C) $\frac{2}{9x^2}$	(D) $\frac{1}{6r^2}$
11.	If $f: A \rightarrow B$ is a bijective	function and if n(B) = 7 , the	n n(A) is eaual to	
	(A) 7	(B) 49	(C) 1	(D) 14
12.	Let f and a be two fund	ctions given by f = {(0,1),(2, 0).(34).(4.2).(5.7)}	
		-4,2),(7, 0)} then the range of		
		(B) {-4,1,0,2,7}		(D) {0,1,2}
13	Let $f(x) = \sqrt{1+x^2} t$	hen		
15.		$(B) f(xy) \ge f(x).f(y)$	(C) f(xy) < f(x) f(y)	(D) None of these
4.4				
14.	(A) (-1,2)	(4,7) } is a function given by g (B) (2, -1)	(C) $(-1, -2)$	
15.	$f(x) = (x + 1)^3 - (x - 1)^3 r$	epresents a function which is		
	(A) linear	(B) cubic	(C) reciprocal	(D) quadratic

Unit - 2 NUMBERS AND SEQUENCES

1.		a states that for positive integ +r , where r must satisfy.	gers a and b, there exi	st unique integers q
	(A) 1 < <i>r</i> < <i>b</i>	(B) 0 < <i>r</i> < <i>b</i>	(C) 0 ≤ <i>r</i> < <i>b</i>	(D) 0 < <i>r</i> ≤ <i>b</i>
2.	Using Euclid's divisior possible remainders ar	n lemma, if the cube of any re	v positive integer is a	livided by 9 then the
	(A) 0, 1, 8	(B) 1, 4, 8	(C) 0, 1, 3	(D) 1, 3, 5
3.	If the HCF of 65 and 11	7 is expressible in the form o	f 65m -117 , then the v	value of m is
	(A) 4	(B) 2	(C) 1	(D) 3
4.		ents of the prime factors in th		
	(A) 1	(B) 2	(C) 3	(D) 4
5.		is divisible by all the number		
	(A) 2025	(B) 5220	(C) 5025	(D) 2520
6.	$7^{4k} \equiv _$ (mod 100)	-		
	(A) 1	(B) 2	(C) 3	(D) 4
7.		$dF_n = f_{n-1} + f_{n-2}$ then F_5 is		
_	(A) 3	(B) 5	(C) 8	(D) 11
8.	The first term of an ari the following will be a	ithmetic progression is unity o term of this A.P.	and the common diffe	rence is 4. Which of
	(A) 4551	(B) 10091	(C) 7881	(D) 13531
9.	If 6 times of 6 th term og	f an A.P. is equal to 7 times th	he 7 th term, then the 1	3 th term of the A.P. is
	(A) 0	(B) 6	(C) 7	(D) 13
10.	An A.P. consists of 31 t	terms. If its 16 th term is m, the	en the sum of all the te	
	(A) 16 m	(B) 62 m	(C) 31 m	(D) $\frac{31}{2}$ m
11.	In an A.P., the first ter be taken for their sum	m is 1 and the common differ to be equal to 120?	ence is 4. How many t	erms of the A.P. must
	(A) 6	(B) 7	(C) 8	(D) 9
12.	If A = 2 ⁶⁵ and B = 2 ⁶⁴ +2	2 ⁶³ +2 ⁶² ++2 ⁰ which of the	following is true?	
	(A) B is 2 ⁶⁴ more than A	4	(B) A and B are equa	al
	(C) B is larger than A by	/ 1	(D) A is larger than E	3 by 1
13.	The next term of the se	equence $\frac{3}{16}$, $\frac{1}{8}$, $\frac{1}{12}$, $\frac{1}{18}$,	is	
	(A) $\frac{1}{24}$	(B) $\frac{1}{27}$	(C) $\frac{2}{3}$	(D) $\frac{1}{81}$
14.	(A) a Geometric Progre	t₃, are in A.P. then the sequ ssion tic Progression nor a Geometr	(B) an Arithmetic Pr	-
15.	The value of $(1^3 + 2^3 + 3)$	³ + +15 ³) - (1+2 + 3 ++	15) is	
	(A) 14400	(B) 14200	(C) 14280	(D) 14520

Unit - 3 ALGEBRA

1.	A system of three linea (A)intersect only at a po	•	ariables is inconsistent (B) intersect i	• •
	(C) coincides with each		not intersect	in a line
2.	The solution of the syst			
	(A) x = 1, y = 2, z = 3	(B) x = -1, y =2, z = 3	(C) x = -1, y =	-2, z= 3 (D) x=1, y=-2, z= 3
3.	If $(x - 6)$ is the HCF of x^2	-2x -24 and x ² -kx -6 t	hen the value of k is	
	(A) 3	(B) 5	(C) 6	(D) 8
4.	$\frac{3y-3}{y} \div \frac{7y-7}{3y^2} is$			1 A A A A A A A A A A A A A A A A A A A
	(A) $\frac{9y}{7}$	(B) $\frac{9y^3}{(21y-21)}$	(C) $\frac{21y^2 - 42y + 3y^3}{3y^3}$	(D) $\frac{7(y^2-2y+1)}{y^2}$
5.	$y^2 + \frac{1}{y^2}$ is not equal to			
	(A) $\frac{y^4 + 1}{y^2}$	(B) $\left(y + \frac{1}{y}\right)^2$	(C) $\left(y - \frac{1}{y}\right)^2$.	+ 2 (D) $\left(y + \frac{1}{y}\right)^2 - 2$
6.	$\frac{x}{x^2-25} - \frac{8}{x^2+6x+5}$ gives			
	(A) $\frac{x^2 - 7x + 40}{(x-5)(x+5)}$	(B) $\frac{x^2+7x+40}{(x-5)(x+5)(x+1)}$	(C) $\frac{x^2 - 7x + 40}{(x^2 - 25)(x + 40)}$	(D) $\frac{x^2+10}{(x^2-25)(x+1)}$
7.	The square root of $\frac{256}{25}$	$\frac{x^8 y^4 z^{10}}{x^6 y^6 z^6}$ is equal to		
	(A) $\frac{16}{5} \left \frac{x^2 z^4}{y^2} \right $	(B) 16 $\left \frac{y^2}{x^2 z^4} \right $	(C) 16 $\left \frac{y}{xz^2} \right $	(D) $\frac{16}{5} \left \frac{xz^2}{y} \right $
8.	Which of the following	should be added to m	ake x ⁴ + 64 a perfect s	quare
	(A) 4x ²	(B) 16x ²	(C) 8x ²	(D) -8x ²
9.	The solution of (2x-1) ² =			
	(A) -1	• •	(C) –1, 2	(D) None of these
10.	The values of a and b if			
		(B) 10, 12	(C) -120 ,100	(D) 12,10
11.	If the roots of the equation $qx^2 + px + r = 0$, then q ,		are the squares of the	roots of the equation
	(A) A.P	(B) G.P	(C) Both A.P and G.P	(D) none of these
12.	Graph of a linear equat		(-)	()
	(A) straight line	(B) circle	(C) parabola	(D) hyperbola
13.	The number of points o	f intersection of the q	uadratic polynomial x ²	² + 4x + 4 with the X axis is
	(A) 0	(B) 1	(C) 0 or 1	(D) 2
14.	For the given matrix A =	$=\begin{pmatrix}1 & 3 & 5 & 7\\2 & 4 & 6 & 8\\9 & 11 & 13 & 15\end{pmatrix},$	the order of the matri	$i \mathbf{x} \mathbf{A}^{T}$ is
	(A) 2 x 3	(B) 3 x 2	(C) 3 x 4	(D) 4 x 3
15.	If A is a 2x3 matrix and	B is a 3x4 matrix, how	v many columns does A	AB have
	(A) 3	(B) 4	(C) 2	(D) 5
16.	If number of columns a	=		
	(A) diagonal matrix	(B) rectangular matri	x (C) square matrix	(D) identity matrix

	Transpose of a column (A) unit matrix	(B) diagonal matrix	(C) column matrix	(D) row matrix
18.	Find the matrix X if 2X	$+\begin{pmatrix} 1 & 3\\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7\\ 9 & 5 \end{pmatrix}$		
	$(A) \begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$	$(B)\begin{pmatrix} 2 & 2\\ 2 & -1 \end{pmatrix}$		$(D)\begin{pmatrix} 2 & 1\\ 2 & 2 \end{pmatrix}$
19.	Which of the following	can be calculated from	n the given matrices A	$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{pmatrix},$
	(i) A ² (ii) B ²	(iii) AB (iv) B		\5 6/ \7 8 9/
	(A) (i) and (ii) only	(B) (ii) and (iii) only	(C) (ii) and (iv) only	
20.	If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\-1\\2 \end{pmatrix}$, $C = \begin{pmatrix} 0&1\\-2&5 \end{pmatrix}$ Whice	ch of the following sta	tements are correct?
	(i) $AB + C = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$	(ii) BC= $\begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$	(iii) BA +C = $\begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$	(iv) (AB)C = $\begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$
	(A) (i) and (ii) only	(B) (ii) and (iii) only	(C) (iii) and (iv) only	(D) all of these
_			+ 2	
Un	it - 4 GEOMETRY	AD DC		
1.	If in triangles ABC and	EDF, $\frac{AB}{DE} = \frac{BC}{FD}$ then the	ey will be similar, whe	n
	(A) ∠B = ∠E	(B) ∠A = ∠D	(C) ∠B = ∠D	(D) ∠A = ∠F
2.	In Δ LMN, \angle L = 60°, \angle N			
	(A) 40°	(B) 70°	(C) 30°	(D) 110°
3.	If \triangle ABC is an isosceles	-		
_	(A) 2.5 cm	(B) 5 cm	(C) 10 cm	(D) 5 $\sqrt{2}$ cm
4.	In a given figure ST C Then the ratio of the a			*
	(A) 25 : 4	(B) 25 : 7	0 2 5 1 13	3 \
	C) 25 : 11	(D) 25 : 13		P T R
5.			C and Δ PQR are 36 cm	and 24 cm respectively.
	If PQ = 10 cm, then the $(2) = 2^2$		(-) - 2	
	(A) $6\frac{2}{3}$ cm	(B) $10\frac{\sqrt{6}}{3}$ cm	5	(D) 15 cm
6.	If in $\triangle ABC$, $DE BC \cdot A$			
7	(A) 1.4 cm	(B) 1.8 cm	(C) 1.2 cm	(D) 1.05 cm
7.	the side AC is			d DC = 3 cm. The length of
	(A) 6 cm	(B) 4 cm	(C) 3 cm	(D) 8 cm
8.	In the adjacent figure Δ		BC then	
	(A) $BD \bullet CD = BC^2$ (C) $BD \bullet CD = AD^2$	(B) AB \bullet AC = BC		\mathbf{i}
9.	Two poles of heiahts 6	m and 11 m stand ver	tically on a plane arou	Ind. If the distance between
	their feet is 12 m, what			•
	(A) 13 m	(B) 14 m	(C) 15 m	(D) 12.8 m

10.		re, PR = 26 cm, QR = 24 cm	, ∠PAQ = 90°,	P
		$\mathbf{A} = 8 \text{ cm. Find } \angle \mathbf{PQR}$		A 90°
	(A) 80 ⁰	(B) 85 ⁰ (C)		R
11.		pendicular to the radius at		
	(A) centre	(B) point of contac		(D) chord
12.	(A) one	ents can be drawn to the c (B) two	(C) infinite	(D) zero
12	• •	ts from an external points l		
15.	•	is from an external points in the value of $\angle AOB$ is		e at o are FA and FB.
	(A) 100°	(B) 110 ⁰	(C) 120 ⁰	(D) 130 ⁰
14.		CQ are tangents to a circle	with centre at O.	► P
		angent touching the circle		d A
	BC = 7 cm, then a	the length of BR is		$\left(\begin{array}{c} o \\ a \end{array}\right) R >_{C}$
	(A) 6 cm	(B) 5 cm		B
	(C) 8 cm	(D) 4 cm		A
15.		tangent to the circle at P a	nd O is the centre of t	he P R
	circle, then $\angle PO$			
	(A) 120°	(B) 100 ⁰ (D) 90 ⁰		
	(C) 110 ⁰	(D) 90	90	<u>∕</u> ~
Uni	it - 5 CO-OF	RDINATE GEOMETRY		
1.		ngle formed by the points (-5.0) . (05) and (5.0)	is
	(A) 0 sq.units	(B) 25 sq.units	(C) 5 sq.units	(D) none of these
2.	A man walks nee	ar a wall, such that the dis	ance between him an	d the wall is 10 units. Consider
	the wall to be th	e Y axis. The path travelled	d by the man is	
	(A) x = 10	(B) y = 10	(C) x = 0	(D) y = 0
3.	The straight line	given by the equation x =	11 is	
	(A) parallel to X a		(B) parallel to Y ax	is
	(C) passing throu	igh the origin	(D) passing throug	h the point (0,11)
4.		l (6,6) are collinear, then th		
	(A) 3	(B) 6	(C) 9	(D) 12
5.		ersection of $3x - y = 4$ and x		
	(A) (5,3)	(B) (2,4)	(C) (3,5)	(D) (4,4)
6.	The slope of the	line joining (12, 3) , (4,a) is	$\frac{1}{8}$. The value of 'a' is	
	(A) 1	(B) 4	(C) -5	(D) 2
7.	The slope of the	line which is perpendicular	1	ooints (0,0) and (–8,8) is
	(A) —1	(B) 1	(C) $\frac{1}{3}$	(D) -8
8.	If slope of the lin	ne PQ is $rac{1}{\sqrt{3}}$ then slope of the	e perpendicular bisect	or of PQ is
	(A) √3	(B) - √ <u>3</u>	(C) $\frac{1}{\sqrt{3}}$	(D) 0
9.	If A is a point on	the Y axis whose ordinate	is 8 and B is a point o	n the X axis whose abscissae is
		tion of the line AB is	•	
	(A) 8x + 5y = 40	(B) 8x −5y = 40	(C) x = 8	(D) y = 5

10. The equation of a line passing through the origin and perpendicular to the line 7x - 3y + 4 = 0 is (A) 7x - 3y + 4 = 0(B) 3x - 7y + 4 = 0(C) 3x + 7y = 0(D) 7x - 3y = 011. Consider four straight lines (iv) $|_4$: 4x + 3v = 2 (i) I_1 ; 3y = 4x + 5(ii) $|_2$; 4y = 3x - 1 (iii) $|_3$: 4v + 3x = 7 Which of the following statement is true? (A) I_1 and I_2 are perpendicular (B) I_1 and I_4 are parallel (C) I_2 and I_4 are perpendicular (D) I_2 and I_3 are parallel 12. A straight line has equation 8y = 4x + 21. Which of the following is true (A) The slope is 0.5 and the y intercept is 2.6 (B) The slope is 5 and the y intercept is 1.6 (C) The slope is 0.5 and the y intercept is 1.6 (D) The slope is 5 and the y intercept is 2.6 13. When proving that a quadrilateral is a trapezium, it is necessary to show (A) Two sides are parallel (B) Two parallel and two non-parallel sides (C) Opposite sides are parallel (D) All sides are of equal length. 14. When proving that a quadrilateral is a parallelogram by using slopes you must find (A) The slopes of two sides (B) The slopes of two pair of opposite sides (C) The lengths of all sides (D) Both the lengths and slopes of two sides 15. (2, 1) is the point of intersection of two lines. (A) x - y - 3 = 0; 3x - y - 7 = 0(B) x + y = 3; 3x + y = 7(C) 3x + y = 3; x + y = 7(D) x + 3y - 3 = 0; x - y - 7 = 0Unit – 6 TRIGONOMETRY 1. The value of $sin^2\theta + \frac{1}{1+tan^2\theta}$ is equal to (C) $\cot^2 \theta$ (A) $tan^2\theta$ (B) 1 (D) 0 2. $tan\theta cosec^2\theta$ -tan θ is equal to (B) $\cot^2 \theta$ (A) sec θ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin \alpha + \csc \alpha)^2 + (\cos \alpha + \sec \alpha)^2 = k + \tan^2 \alpha + \cot^2 \alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) 2a (B) 3a (C) 0 (D) 2ab If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to 5. (B) $\frac{1}{25}$ (A) 25 C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (B) $\frac{3}{2}$ (A) $\frac{-3}{2}$ (C) $\frac{2}{2}$ (D) $\frac{-2}{2}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ (A) $\frac{y^2}{h^2} - \frac{x^2}{a^2} = 1$ 8. $(1 + \tan\theta + \sec\theta) (1 + \cot\theta - \csc\theta)$ is equal to (C) 2 (D) -1 (A) 0 (B) 1 9. $a \cot\theta + b \csc\theta = p$ and $b \cot\theta + a \csc\theta = q$ then $p^2 - q^2$ is equal to (B) $b^2 - a^2$ (C) $a^2 + b^2$ (A) $a^2 - b^2$ (D) b –a

10.	If the ratio of the hei elevation of the sun l		the length of its shad	low is $\sqrt{3}$: 1 , then the angle of	,
	(A) 45°	(B) 30 ⁰	(C) 90 ⁰	(D) 60 ⁰	
11.	The electric pole subt	ends an angle of 3	80° at a point on the so	ame level as its foot. At a secon	d

d point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (D) $\frac{b}{\sqrt{3}}$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$

(A) $\sqrt{3}$ b

- 12. A tower is 60 m height. Its shadow reduces by x metres when the angle of elevation of the sun increases from 30° to 45° then x is equal to (A) 41.92 m (B) 43.92 m (D) 45.6 m (C) 43 m
- 13. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in metres) is (A) 20. $10\sqrt{3}$ (B) 30. $5\sqrt{3}$ (D) 30. $10\sqrt{3}$ (C) 20, 10
- 14. Two persons are standing 'x' metres apart from each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person (in metres) is (C) $\frac{x}{\sqrt{2}}$ (B) $\frac{x}{2\sqrt{2}}$ (D) 2x

(A) $\sqrt{2}$ x

15. The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is (A) $\frac{h(1+tan\beta)}{dtan}$ (B) $\frac{h(1-tan\beta)}{d}$ (C) h tan(45° $-\beta$) (D) none of these

1+tanß

1-tanß

Unit - 7

MENSURATION

	_, , ,		<u> </u>					
1.		rea of a right circular cone o						
	(A) $60\pi \text{ cm}^2$	(B) 68π cm ²	(C) 120π cm²	(D) 136π cm²				
2.	If two solid hemisph	eres of same base radius r u	nits are joined together	along their bases,				
	then curved surface	area of this new solid is						
		(B) $6\pi r^2$ sq. units	(C) $3\pi r^2$ sq. units	(D) $8\pi r^2$ sq. units				
3.	The height of a right	circular cone whose radius	is 5 cm and slant height	is 13 cm will be				
	(A) 12 cm	(B) 10 cm	(C) 13 cm	(D) 5 cm				
4.	If the radius of the b	ase of a right circular cylinde	er is halved keeping the	same height, then				
	the ratio of the volu	me of the cylinder thus obtai	ined to the volume of or	iginal cylinder is				
	(A) 1:2	(B) 1:4	(C) 1:6	(D) 1:8				
5.	The total surface are	ea of a cylinder whose radius	is $\frac{1}{3}$ of its height is					
	(A) $\frac{9\pi h^2}{8}$ sq.units	(B) $24\pi h^2$ sq.units	(C) $\frac{8\pi h^2}{9}$ sq.units	(D) $\frac{56\pi h^2}{9}$ sq.units				
6.	In a hollow cylinder,	the sum of the external and	internal radii is 14 cm a	and the width is 4 cm.				
	If its height is 20 cm, the volume of the material in it is							
	(A)5600 π cm ³	(B) 1120π cm ³	(C) 56 π cm ³	(D) 3600π cm ³				
7.	If the radius of the b	ase of a cone is tripled and t	he height is doubled the	en the volume is				
	(A) made 6 times	(B) made 18 times	(C) made 12 times	(D) unchanged				

8.	-	n of a hemi-sphere is how	-	-
~	(A) π	(B) 4π	(C) 3π	(D) 2π
9.	A solid sphere of radi	us x cm is melted and cas e is	t into a shape of a solid (cone of same radius.
	(A) 3 <i>x</i> cm	(B) <i>x</i> cm	(C) 4 <i>x</i> cm	(D)2 <i>x</i> cm
10.	Then, the volume of t	-		
	(A) 3328π cm ³	(B) 3228π cm ³	(C) 3240 π cm ³	(D) 3340 π cm ³
11.		or playing badminton has		nation of
	(A) a cylinder and a sp		nisphere and a cone	
	(C) a sphere and a cor		um of a cone and a hemi	
12.	A spherical ball of rac units. Then $r_1 : r_2$ is	lius r1 units is melted to n	nake 8 new identical ball	is each of radius r_2
	(A) 2:1	(B) 1:2	(C) 4:1	(D) 1:4
13.		f the greatest sphere tha		
19.	of base radius 1 cm a		t can be cat off from a c	
	(A) $\frac{4}{3}\pi$	(B) $\frac{10}{2} \pi$	(C) 5π	(D) $\frac{20}{3} \pi$
1 /	5	3		5
14.	-	is of the cone of which of the frustum is h₂ un		
	If $h_2 : h_1 = 1 : 2$ then r_2		its and radius of the si	
	(A) 1 : 3	(B) 1 : 2	(C) 2 : 1	(D) 3 : 1
15.	The ratio of the volun	nes of a cylinder, a cone c	and a sphere, if each has	the same diameter and
	same height is			
	(A) 1:2:3	(B) 2:1:3	(C) 1:3:2	(D) 3:1:2
Unit	t - 8 STATISTICS	AND PROBABILITY		
1	Which of the following	is not a measure of disp	ersion?	
- .	(A) Range	(B) Standard deviation	(C) Arithmetic mea	an (D) Variance
2.	The range of the data			
	(A) 0	(B) 1	(C) 8	(D) 3
3.	The sum of all deviatio	ns of the data from its m		
		(B) always negative	(C) zero	(D) non-zero intege
4.	The mean of 100 obser	vations is 40 and their st	andard deviation is 3. Th	ne sum of squares of all
	observations is			
	(A) 40000	(B) 160900	(C) 160000	(D) 30000
5.	Variance of first 20 nat	tural numbers is		
	(A) 32.25	(B) 44.25	(C) 33.25	(D) 30
5.		n of a data is 3. If each va		
	(A) 3	(B) 15	(C) 5	(D) 225
7.		on of x, y, z is p then the s		
	(A) 3 <i>p</i> + 5	(B) 3 <i>p</i>	(C) <i>p</i> + 5	(D) 9 <i>p</i> +15
8.	<i>If the mean and coeffic</i> (A) 3.5	cient of variation of a dat (B) 3	a are 4 and 87.5% then t (C) 4.5	the standard deviation (D) 2.5
	· /	· / =	\-/ ···-	()

9.	Which of the following	is incorrect?					
	(A) <i>P</i> (<i>A</i>)> 1	(B) $0 \le P(A) \le 1$	(C) P(φ) = 0	(D) $P(A)+P(\bar{A}) = 1$			
10.	The probability a red m marbles is	arble selected at random fro	m a jar containing p ro	ed, q blue and r green			
	(A) $\frac{q}{p+q+r}$	(B) $\frac{p}{p+q+r}$	(C) $\frac{p+q}{p+q+r}$	(D) $\frac{p+r}{p+q+r}$			
11.	A page is selected at ra	ndom from a book. The prob	ability that the digit a	t units place of the			
	page number chosen is	less than 7 is					
	(A) $\frac{3}{10}$	(B) $\frac{7}{10}$	(C) $\frac{3}{9}$	(D) ⁷ / ₉			
12.	The probability of getti	ing a job for a person is $\frac{x}{3}$. If	the probability of not	getting the job is $\frac{2}{3}$			
	then the value of x is						
	(A) 2	(B) 1	(C) 3	(D) 1.5			
13.	Kamalam went to play	v a lucky draw contest. 135	tickets of the lucky d	raw were sold. If the			
	probability of Kamalam winning is $\frac{1}{\alpha}$, then the number of tickets bought by Kamalam						
	(A) 5	(B) 10	(C) 15	(D) 20			
14.	If a letter is chosen at r	andom from the English alph	abets {a,b,,z}, then t	the probability that			
	the letter chosen prece						
	(A) $\frac{12}{13}$	(B) $\frac{1}{13}$	(C) $\frac{23}{26}$	(D) $\frac{3}{26}$			
15.	A purse contains 10 not	tes of ₹2000, 15 notes of ₹500), and 25 notes of ₹20	0. One note is drawn			
	at random. What is the	probability that the note is e	either a ₹500 note or ₹	200 note?			
	(A) $\frac{1}{5}$	(B) $\frac{3}{10}$	(C) $\frac{2}{3}$	(D) $\frac{4}{5}$			

-9-

ANSWERS

				Jnit - 1		RELA	TIONS	AND F	UNCTI	ONS				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(C)	(C)	(A)	(B)	(C)	(D)	(C)	(A)	(C)	(C)	(A)	(D)	(C)	(B)	(D)
	Unit - 2 NUMBERS AND SEQUENCES													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(C)	(A)	(B)	(C)	(D)	(A)	(D)	(C)	(A)	(C)	(C)	(D)	(B)	(B)	(C)
					Uni	t - 3	A	LGEBR	A					
1 2	2 3	4 5	5 6	7 8	3 9	10	11 12	2 13	14	15 1	6 1	7 18	19	20
(D) (A	(B)	(A) (I	3) (C)	(D) (I	3) (C)	(C) ((B) (A	(B)	(D) ((B) (]	B) (D) (B)) (C)	(A)
					Unit	- 4	GE	OMET	RY	Q				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(C)	(B)	(D)	(A)	(D)	(A)	(B)	(C)	(A)	(D)	(B)	(B)	(B)	(D)	(A)
				Unit -	5	CO-	ORDIN	ATE G	EOMET	RY				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(B)	(A)	(B)	(C)	(C)	(D)	(B)	(B)	(A)	(C)	(C)	(A)	(B)	(B)	(B)
					Jnit – e		TRIGO	DNOM	ETRY					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(B)	(D)	(B)	(A)	(B)	(B)	(A)	(C)	(B)	(D)	(B)	(B)	(D)	(B)	(A)
					Unit - Z	7	MEN	SURAT	ION					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(D)	(A)	(A)	(B)	(C)	(B)	(B)	(C)	(C)	(A)	(D)	(A)	(A)	(B)	(D)
			U	nit - 8		STATI	STICS /	AND P	ROBAB	ILITY				
1 (C)	2 (A)	3 (C)	4 (B)	5 (C)	6 (D)	7 (B)	8 (A)	9 (A)	10 (B)	11 (B)	12 (B)	13 (C)	14 (C)	15 (D)

-10-