	Register Nun	nber: 010301						
QUARTERLY EXAMINATION - 2024								
std: 10	MATHEMATICS	Marks :100 Time :3.00 hrs						
. No Trans of the State of the St	PART – I							
Answer all the question	s	14x1=14						
Let $n(A) = m$ and $n(B) = defined from A to B is$	=n then the total number of non empty $a = m^n$ b) m^m	ty relations that can be c) 2^{mn} -1 d) 2 m ⁿ						
2. $f(x) + f(1-x) = 2$ then $f(1-x) = 2$	$(2) = \dots $ a) 1 b) -1	c) $\frac{1}{2}$ d) -9						
3. The least number that	is derisible by all the numbers from	1 to 10 (both reclusive) is						
2+2+n	a) 2025 b) 5220	c) 5025 d) 2520						
$\frac{1}{2}$. Find the sum of n term	is of the series is $2+2+2+$ to in the series is $2+2+2+$	d) $n+2$						
5. If $(x-6)$ is the HCF of r	bair of polymomials $x^2-2x-24$ and x^2-4	k-6 then find the value of k.						
a) 3	b) 5 c) 6	d) 8						
5. The solution of $(2x-1)^{4k}$ 7. $7^{4k} \equiv \dots \dots \dots \dots (Mod$	4-9 is equal to a) -1, 2 b) 2 100) a) 4 b) 3	c) -1, 2 d) One of these c) 2 d) 1						
8. If in triangle ABC and	EDF $\frac{AB}{B} = \frac{BC}{BC}$ then they will be sim	nilar when						
a) $B = IF$	b) $(A - A)$ c) $(B = A)$	d) $(A = \langle F \rangle$						
9. When proving that a q	uadrilateral is a trapezillm, it is neces	ssary to show						
a) Two sides are p	arallel b) Two parallel a	and two non parallel						
c) opposite sides a	re parallel d) all sides are o	f equal length						
10. If $\triangle ABC$ is an isosce.	the triangles with $2c = 90$ and $AC = 50$	d) 5 cm						
a) $5\sqrt{2}$ cm 11. Find the slope of the	equation is $2y=x+8$ b) 1 c) 8	d) 2						
12. The straight line give	n by the equation $x=11$ is							
a) passing through	the orgin point b) passing throug	gh the point $(0,11)$						
c) parallel to the x	axis d) parallel to the	y axis						
13. If $\sin\theta = \cos\theta$ when	$1 2 \tan^2 \theta + \sin \theta = 1$ is equal to (a) 3	$\frac{5}{2}$ b) $\frac{-3}{2}$ c) $\frac{2}{3}$ d) $\frac{-2}{3}$						
14. If $\sin\theta + \cos\theta = a$ and	Ind $\sec\theta + \csc\theta = b$ then the value	of $b(a^2-1)$ is equal to						
a) U	u) za · c) zab	u) sa						
Answer any 10 question	PART – II os. Ouestion No. 28 is compulsory	10x2=20						
15 $A v R = ((2 2) (2 A) 15$	(54) then find A and B	and the state of the						
16. Show that the function	on f:N \rightarrow N defined by $f(m) = m^2 + m +$.	3 is one – one function.						
17. Find the 3 rd term and	4 th term of a sequence if $a^n = \begin{cases} n^2 \\ n^2 / n^2 \end{cases}$	if ; n is odd e^{NeY} .						
18. Find the sum of the s	eries. 1+4+9+16++2225	e e kare viligi a						
10 simplify: $\frac{x^2-16}{x^2-16}$								
$\frac{1}{x^2 + 8x + 1}$	$(-2^2)^2 ($							
20. Find the LCM of the	expressions are $(p - 3p+2)$, $(p - 4)$	4						
21. If the difference betw	een a number and its reciprocal is $\frac{2}{5}$	-, find the numbers.						
22. The length of the tan is 24 cm. what is the	gent to a circle from a point p, which radiuses of the circle.	is 25cm away from the centre						
23. In $\triangle ABC$, if $DE \parallel BC$	C AD = x, DB = xAE = x+2 then find	nd the length of the sides						

www.Padasalai.Net

www.Trb Tnpsc.Com

24. Find the value of 'a' if the line through (-2, 3) and (8, 15) is perpendicular to $y = \alpha + 2$ 25. Find the slope of a line joining the points are (14, 10) and (14, -6) 26. Prove that $\frac{8ec\theta}{1-sin\theta} = sec\theta + tan\theta$ 27. Prove that $\frac{8ec\theta}{1-sin\theta} = sec\theta + tan\theta$ 28. $f(x) = 3x-2$, $g(x) = 2x+k$ and if $fog=gof$ then find the value of k. PART - III 29. A function f is defined by $f(x) = 2x-3$ i) Find $\frac{f(0)+f(1)}{2}$ ii) Find x such that $f(x)=0$ 29. A function f is defined by $f(x) = 2x-3$ i) Find $\frac{f(0)+f(1)}{2}$ ii) Find x such that $f(x)=0$ 29. A function f is defined by $f(x) = 2x-3$ i) Find $\frac{f(0)+f(1)}{2}$ ii) Find x such that $f(x)=0$ 29. A function f is defined by $f(x) = 2x-3$ i) Find $\frac{f(0)+f(1)}{2}$ iii) Find x such that $f(x)=0$ 29. A function f is defined by $f(x) = 2x-3$ i) Find $\frac{f(0)+f(1)}{2}$ iii) Find x such that $f(x)=0$ 29. A function f is defined by $f(x) = 2x-3$ ii $\frac{f(0)+f(1)}{2}$ iii) Find x such that $f(x)=0$ 29. The find the sum of a line turnal number between 100 and 1000 which are divisible by 11 20. If $f(x)=2x+3$, $g(x)=1-2x$ and $h(x)=3x$ prove that $fo(goh)=(fog)h$ 20. If $f(x)=2x+3$, $g(x)=1-2x$ and $h(x)=3x$ prove that $f(x)=f(1-x)$ 20. If $f(x)=2x+3$, $g(x)=1-2x$ and $h(x)=3x$ prove that $f(x)=f(1-x)$ 20. If $f(x)=x^{-2}$, $f(x)=x$	2							
15. Find the slope of a line joining the points are (14, 10) and (14, -5) 16. Prove that $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} = \sec\theta + \tan\theta$ 17. Prove that $\frac{\sec\theta}{\sin\theta} = \cot\theta$ 18. $f(x) = 3x - 2$, $g(x) = 2x + k$ and if $fog=gof$ then find the value of k PART - III 10x5=50 19. A function f is defined by $f(x) = 2x - 3$ i) Find $\frac{f(0) + f(1)}{2}$ ii) Find x such that $f(x)=0$ 10ii) Find x such that $f(x)=x$ iv) find x such that $f(x)=f(1-x)$ 10. If $f(x)=2x+3$, $g(x)=1-2x$ and $h(x)=3x$ prove that $fo(goh)=(fog)oh$ 11. Find the sum of scries is $10^{4} + 11^{4} + 12^{2} + \dots + 20^{4}$ 12. Find the sum of scries is $10^{4} + 11^{4} + 12^{2} + \dots + 20^{4}$ 13. Find the sum of scries is $10^{4} + 11^{4} + 12^{2} + \dots + 20^{4}$ 14. Find the sum of scries is $10^{4} + 11^{4} + 12^{2} + \dots + 20^{4}$ 15. Find the GCD of the polynomials $x^{4} + 3x^{2} x_{3} + 3a$ and $x^{4} + 5x + 3$ 16. Find the sum of the propendicular bisector of the line joining the points $A(-4, 2)$ and $B(6, 4)$. 17. Find the equation of the perpendicular bisector of the line joining the points $A(-4, 2)$ and $B(6, -4)$. 18. An insect 8 m away initially from the foot of a lamp post which is 6m tall, crawls towards it moving through a distance, from the top to the lamp P post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post? 19. prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} + \sqrt{\frac{1-\cos\theta}{1-\cos\theta}} = 2\csc\theta$ 10. A straight line AB cats the co-ordinate axes at A and B. It the mid – point of AB – is $(2,-3)$ find the equation of AB. 19. x^{2} The ratio of 6 th and 8 th term of an A.P is 7.9 find the ratio of 9 th term to 13 th term 19. PART – IV 20. $x^{2} = 10^{2} + 2^{4} + 2^{4}$. 20. $x^{2} = 10^{2} + 2^{4} + 2^{4} + 2^{4} + 4^{4} + 4^{4} + 2^{4} + 2^{4} + 4$	24. Find the value of 'a' if the line through (-2,	3) and (8)	, 15)	is perf	bendi	cular	to y =	ax+2
16. Prove that $\sqrt{\frac{ 1+\sin n ^2}{\sin \theta} = \sec \theta + \tan \theta}$ 17. Prove that $\frac{\sec \theta - \sin \theta}{\sin \theta} = \cot \theta$ 18. $f(x) = 3x - 2$, $g(x) = 2x + k$ and if $f_{0} = g_{0}f$ then find the value of k PART - III 18. Answer any 10 questions, question No. 42 is compulsory. 10x5=50 19. A function f is defined by $f(x) = 2x - 3$ i) Find $\frac{f(0) + f(1)}{2}$ ii) Find x such that $f(x) = 0$ 10. If $f(x) = 2x + 3$, $g(x) = 2x + 3$ in $h(x) = 3x$ prove that $f(a) = f(1 + x)$ 10. If $f(x) = 2x + 3$, $g(x) = 1 - 2x$ and $h(x) = 3x$ prove that $f(a) = f(2 + x)$ 10. If $f(x) = 2x + 3$, $g(x) = 1 - 2x$ and $h(x) = 3x$ prove that $f(a) = 0$ down in the end of values is $ 0h ^{-1} + 1^{-2} + \dots + 20 ^{-2}$ 11. Find the sum of scripts is $ 0h ^{-1} + 1^{-2} + \dots + 20 ^{-2}$ 12. Find the GCD of the polynomials $x^{+} + 3x^{-} - x^{-3}$ and $x^{+} + x^{-} - 5x^{+3}$ 13. Find the GCD of the polynomials $x^{+} + 3x^{-} - x^{-3}$ and $x^{+} + x^{-5} - 58x^{+3} - 51$. 14. Find the square root of the expression $28y^{-6} - 612x^{-4} + 970x^{-6} - 684x^{-3}61^{-5}$. 15. If vertices 0 a quadrilateral are at $A (-4, -2)$, $B(-3)k/(6, -2)$ and $D(2, 3)$ and its area is 28 sq. units. Find the value of k. 28. State and prove Thales theorem. 28. An insect 8 m away initially from the foot of a lamp post which is 6m tall, crawls towards it moving through a distance, from the top to the lamp P post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post? 29. prove that $\sqrt{\frac{1 + \cos \theta}{1 + \cos \theta}} + \sqrt{\frac{1 - \cos \theta}{1 - \cos \theta}} = 2\cos e \theta^{-2}$ 20. A straight line AB cats the co - ordinate axes at A and B. It the mid - point of AB - is $(2, -3)$ if the equation of AB. 27. The ratio of 6 and 8 th term of an A.P is 7.9 find the ratio of 9 th term to 13 th term PART - 1V 28. A loconstruct a triangle PQR such that $QR = 5$ $ P = 3\theta^{0}$ and the altitude from p to QR is of length $\frac{4}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} - \frac{4}{2} \cdot \frac{4}{2} - \frac{4}{2} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 4$	25. Find the slope of a line joining the points an	e (14, 10)) and (14, -6				
17-sub 18. $f(x) = 3x-2$, $g(x) = 2x+k$ and if $fog = gof$ then find the value of k. PART – III Answer any 10 questions, question No. 42 is compulsory. 10x5=50 19. A function f is defined by $f(x) = 2x-3$ i) Find $\frac{f(0)+f(0)}{2}$ ii) Find x such that $f(x)=0$ iii) Find x such that $f(x)=x$ iv) find x such that $f(x)=f(1-x)$ 10. If $f(x)=2x+3$, $g(x)=1-2x$ and $h(x)=3x$ prove that $fo(goh)=(fog)oh$ 11. Find the sum if all natural number between 100 and 1000 which are divisible by 11 11. Find the sum of series is $10^{1+}+17^{1+}+12^{1+}+\dots+20^{1}$ 12. Find the sum of series is $10^{1+}+17^{1+}+12^{1+}+\dots+20^{1}$ 13. Find the de golynomials $x^{1+}3x^{2+}3x^{-}3$ and $x^{1+}x^{2-}5x^{++3}$ 14. Find the square root of the expression $289x^{1-}612x^{1+}970x^{1-}684x^{+}361^{-}$ 15. If vertices of a quadrilateral are at $A(-4, -2)$, $B(-3,k)$ ($3, -2$) and $D(2, 3)$ and its area is 28 squants. Find the value of k. 16. Find the equation of the gerpendicular bisector of the line joining the points A(-4, 2) and $B(6, -4)$. 17. State and prove Thales theorem. 28. An insect 8 m away initially from the foot of a lamp post which is 6m tall, crawls towards it moving through a distance, from the top to the lamp P post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post? 29. prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} + \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = 2\cos(e\theta)$ 40. A straight line AB cats the co- o- ordinate axes at A and B. It the mid – point of AB – is (2,-3) find the equation of AB. 17. The ratio of 6 and 8 term of an A.P is 7: 9 find the ratio of 9 th term to 13 th term PART – IV 28. $P(0, 1, 2, 4, 5, 9)$ represented fby 19. set of ordered pairs 11 a table 110 an arrow diagram 10. a graph 42. The ratio of 6 and 8 term of an A.P is 7: 9 find the ratio of 9 th term to 13 th term PART – IV 28. $P(0, 1, 2, 4, 5, 9)$ represented fby 10. Sonstruct a triangle PQR such that $QR = 5 2=30^{th}$ and the altitude from p to QR 18. of length 4:2 cm. 43. a) construct a triangle AB	26. Prove that $\sqrt{\frac{1+\sin\theta}{1+\sin\theta}} = \sec\theta + \tan\theta$.						-	
 9. Theore that sin θ cos = cos	27 Prove that $\sec\theta \sin\theta - \cot\theta$	an in program	(1987) - S.	si wana ling	Aritan i	es: same	CA-316.5	a lan energi
PART - III PART - IIII PART - III PART - IIII PART - IIIIIII PART - IIII PART - IIII PART - IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	$\sin\theta \cos\theta$	nd the va	lue of	r k	().*(†). (()*(†).		19 . 19 .	na star
Answer any 10 questions, question No. 42 is compulsory. 10 $x5=50$ A function f is defined by $f(x) = 2x-3$ i) Find $\frac{f(0)+f(0)}{2}$ ii) Find x such that $f(x)=0$ iii) Find x such that $f(x)=x$ iv) find x such that $f(x)=f(1-x)$ 10. If $f(x)=2x+3, g(x)=1-2x$ and $h(x)=3x$ prove that $fo(goh)=(fog)oh$ 11. Find the sum of scrines is $10^{11}+1/2^{12}+,20^{12}$ 12. Find the GCD of the polynomials $x^{1}+3x^{2}-x^{3}$, and $x^{1}+x^{2}-5x+3$ 13. Find the GCD of the polynomials $x^{1}-3x^{2}-61/2^{12}+107x^{2}-684x+561^{-1}$ 14. Find the square root of the expression $28y, 61/2x^{1}+07x^{2}-684x+561^{-1}$ 15. If vertices of a quadrilateral are at A (-4, -2), $B(-3,k)$ (3, -2) and $D(2,3)$ and its area is 28 sq.units. Find the value of k. 28 sq.units. Find the value of k. 29. Find the cquation of the perpendicular bisector of the line joining the points A(-4, 2) and $B(6, -4)$. 30. State and prove Thales theorem. 31. An insect 8 m away initially from the foot of a lamp post which is 6m tall, crawls towards it moving through a distance, from the top to the lamp Post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post? 30. prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} + \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = 2\csc\theta^{2}$ 40. A straight line AB cat sthe co - or ordinate axes at A and B. It the mid – point of AB – is (2,-3) find the equation of AB. 31. M^{-1} the ratio of 6 th and 8 th term of an A. Pi s 7; 9 find the ratio of 9 th term to 13 th term PART - IV 2x8=16 43. a) construct a triangle to a given triangle ABC with its sides equal to $\frac{6}{\sqrt{5}}$ of the corresponding sides of the triangle ABC with its sides equal to $\frac{6}{\sqrt{5}}$ of the corresponding sides of the triangle ABC with its sides equal to $\frac{6}{\sqrt{5}}$ of the corresponding sides of the triangle ABC (scale factor $\frac{6}{\sqrt{5}}$ (OR) b) Construct a triangle PQR such that $QR = 5$ [$P=30^{th}$ and the altitude from p to QR is of length 4.2 cm. 44. a) Graph the quadratic equation $x^{2}-8x+16=0$ and state the n	\mathbf{PART}						7/14/4	
 9. A function f is defined by f(x) = 2x-3 i) Find f(0) + f(1)/2 ii) Find x such that f(x)=0 iii) Find x such that f(x)=x iv) find x such that f(x)=f(1-x) 9. If f(x)=2x+3, g(x)=1-2x and h(x)=3x prove that for goh)=(fog)oh 9. Find the sum of series is 10 + 11 + 12 + x - x + 20 9. Find the sum of the polynomials x + 3x - x 3, and x + x - 5x + 3 9. Find the sum of the polynomials x + 3x - x 3, and x + x - 5x + 3 9. Find the capare root of the expression 280x + of 12x + 970x - 684x + 361- 9. Find the equation of the perpendicular bisector of the line joining the points A(-4, 2) and B(6, -4). 9. State and prove Thales theorem. 9. An insect 8 m away initially from the foot of a lamp post which is 6m tall, crawls towards it moving through a distance, from the top to the lamp P post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post? 9. prove that √(1 - cosθ) + √(1 - cosθ) = 2cosecθ 9. A straight line AB cats the co - ordinate axes at A and B. It the mid – point of AB - is (2,-3) find the equation of AB. 11. Let f: A → B be a function defined by f(x) = x/2 - 1 where A={2,4,6,10,12}, B={0,1,2,4,5,9} represented f by i) set of ordered pairs ii) a table iii) an arrow diagram iv) a graph 12. The ratio of 6th and 8th term of an A.P is 7: 9 find the ratio of 9th term to 13th term PART - IV 22. Assent the following 3. construct a triangle to a given triangle ABC with its sides equal to \$\frac{6}{5}\$ of the corresponding sides of the triangle ABC (scale factor \$\frac{6}{5}\$) (OR) > b) Construct a triangle PQR such that QR = 5 P=30th and the altitude from p to QR is of length 4:2 cm. a) a order the quation x²-8x + 16=0 and state the nature of their solution. (OR) b) A school annorces that for a certain competitions, the cash price will be distributed for all the participants (x) (x) (x) (x) (x) (a) (a) (a) (a) (a) (a) (Answer any 10 questions, question No. 42 is	compulse	ory.	$\left \frac{1}{2} \right = \frac{1}{2} \left \frac{1}{2} \right ^{\frac{1}{2}}$			1	0x5=50
 iii) Find x such that f(x)=x iv) find x such that f(x)=f(1-x) iii) Find x such that f(x)=x iv) find x such that f(x)=f(1-x) iii) Find the sum of scries is 10⁴ 11⁴ + 12⁴ +	29. A function f is defined by $f(x) = 2x-3$ i)	Find $f(0)$	$\frac{1+f(1)}{2}$	ii) F	ind x	such	that f	(x)=0
 16 f(x)=2x+3.g(x)=1-2x and h(x)=3x prove that fo(goh)=(fog)oh 11. Find the sum of series is 10⁴ +11³+12³+12³,, and x³+x²-5x+3 12. Find the GCD of the polynomials x⁴+3x³-x-3, and x³+x²-5x+3 13. Find the square root of the expression 289x⁴-612x⁴+970x²-684x+361- 13. Fired the equation of the perpendicular bisector of the line joining the points A(-4, 2) and B(6, -4). 23. Squants. Find the value of k. 24. Find the equation of the perpendicular bisector of the line joining the points A(-4, 2) and B(6, -4). 25. State and prove Thales theorem. 26. An insect 8 m away initially from the foot of a lamp post which is 6m tall, crawls towards it moving through a distance, from the top to the lamp P post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post? 29. prove that √(1+cosθ)/(1+cosθ) = 2cosecθ 20. A straight line AB cats the co - ordinate axes at A and B. It the mid – point of AB – is (2, -3) find the equation of AB. 21. Particular (1+cosθ)/(1+cosθ) 22. State and 8th term of an A.P is 7:9 find the ratio of 9th term to 13th term PART - 1V 22. PART - 1V 22. PART - 1V 22. State 11. St	iii) Find x such that $f(x)=x$ iv) find x such	h that f(.	x)=f(1)	(-x)				
 B={0,1,2,4,5,9} represented r by i) set of ordered pairs ii) a table iii) an arrow diagram iv) a graph 42. The ratio of 6th and 8th term of an A.P is 7: 9 find the ratio of 9th term to 13th term PART - IV 2x8=16 43. a) construct a triangle to a given triangle ABC with its sides equal to 6/5 of the corresponding sides of the triangle ABC (scale factor 6/5) (OR) b) Construct a triangle PQR such that QR= 5 P=30⁰ and the altitude from p to QR is of length 4:2 cm. 44. a) Graph the quadratic equation x²-8x+16=0 and state the nature of their solution. (OR) b) A school annoces that for a certain competitions, the cash price will be distributed for all the participants equally as show below. No of participants (x) (x) (30. If f(x)=2x+3, g(x)=1-2x and h(x)=3x product for the sum if all natural number betwee signature for the sum of series is 10³+11³+12³+. 31. Find the sum of series is 10³+11³+12³+. 32. Find the GCD of the polynomials x⁴+3x³ 33. Find the GCD of the polynomials x⁴+3x³ 34. Find the square root of the expression 28 so and the square root of the expression 28 so and the square root of the expression 28 so and the equation of the perpendicular bit A(-4, 2) and B(6,-4). 36. Find the equation of the perpendicular bit A(-4, 2) and B(6,-4). 37. State and prove Thales theorem. 38. An insect 8 m away initially from the towards it moving through a distance, f distance it has moved. How far is the insect it has moved. How far is the insect (2,-3) find the equation of AB. 41. Let f: A→B be a function defined by f(x)= 	ve that for en 100 an -x-3, and $9x^4-612x$ -2), B(-3 sector of foot of a rom the t ect away $ec\theta$ axes at A	(goh) d = 100 20^3 $x^3 + x^2$ $x^3 + 970$ k (3, $x^3 + 970$ k (3, x	=(fog) $=(fog)$ $=(5x+2)$ $=(5x+2)$ $=(2)$ $=(2)$ $=(2)$ $=(2)$ $=(2)$) oh ich ar 3 4x+3 nd D ning 1 which imp I ot of he m	the post id – p (2,3) the post the la (0,12)	sible and it ints 6m ta is eq imp p oint o	by 11 s area is 11, crawls ual to the ost? f AB – is
 Answer the following 2x8=16 43. a) construct a triangle to a given triangle ABC with its sides equal to 6/5 of the corresponding sides of the triangle ABC (scale factor 6/5) (OR) b) Construct a triangle PQR such that QR=5 P=30° and the altitude from p to QR is of length 4:2 cm. 44. a) Graph the quadratic equation x²-8x+16=0 and state the nature of their solution. (OR) b) A school annoces that for a certain competitions, the cash price will be distributed for all the participants equally as show below. No of participants (x) (x) 2 4 6 8 10 / Amount for each participants in(y) (y) 180 90 60 45 36 i) Find the cantent of variation <i>ii</i>) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	$B = \{0, 1, 2, 4, 5, 9\}$ represented f by i) set of ordered pairs ii) a table ii 42. The ratio of 6 th and 8 th term of an A.P is 7	i) an arro : 9 find th	w dia ne rati	gram o of 9 ^t	h terr	/) a gr n to 1	aph 3 ^m ter	m
 Answer the following 43. a) construct a triangle to a given triangle ABC with its sides equal to 6/5 of the corresponding sides of the triangle ABC (scale factor 6/5) (OR) b) Construct a triangle PQR such that QR=5 P=30° and the altitude from p to QR is of length 4:2 cm. 44. a) Graph the quadratic equation x²-8x+16=0 and state the nature of their solution. (OR) b) A school anmroces that for a certain competitions, the cash price will be distributed for all the participants equally as show below. No of participants (x) (x) 2 4 6 8 10 Amount for each participants in(y) (y) 180 90 60 45 36 i) Find the cantent of variation ii) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	PAR	$\Gamma - IV$						2x8=16
 43. a) construct a mangie to a given mangie mbe with the back equation (5) with the back equation (7) (0R) b) Construct a triangle PQR such that QR= 5 P=30° and the altitude from p to QR is of length 4:2 cm. 44. a) Graph the quadratic equation x²-8x+16=0 and state the nature of their solution. (OR) b) A school annoces that for a certain competitions, the cash price will be distributed for all the participants equally as show below. No of participants (x) (x) 2 (x) 2 (x) 2 (x) 4 (x) 2 (x) 36 (x) 45 (x) 36 (x) 45 <li< td=""><td>Answer the following</td><td>ABC with</td><td>its si</td><td>des ea</td><td>ual to</td><td>0 6/0</td><td>f the</td><td></td></li<>	Answer the following	ABC with	its si	des ea	ual to	0 6/0	f the	
 b) Construct a triangle PQR such that QR= 5 P=30° and the altitude from p to QR is of length 4:2 cm. 44. a) Graph the quadratic equation x²-8x+16=0 and state the nature of their solution. (OR) b) A school anmroces that for a certain competitions, the cash price will be distributed for all the participants equally as show below. No of participants (x) (x) 2 4 6 8 10 Amount for each participants in(y) (y) 180 90 60 45 36 i) Find the cantent of variation ii) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	45. a) construct a mangle to a given mangle i	C (scale f	actor	6/)((DR)	25		
 is of length 4:2 cm. 44. a) Graph the quadratic equation x²-8x+16=0 and state the nature of their solution. (OR) b) A school anmroces that for a certain competitions, the cash price will be distributed for all the participants equally as show below. No of participants (x) (x) 2 4 6 8 10 Amount for each participants in(y) (y) 180 90 60 45 36 i) Find the cantent of variation ii) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	b) Construct a triangle POR such that OR=	= 5 P=3	0^0 and	I the a	ltitud	le fror	n p to	QR
 44. a) Graph the quadratic equation x²-8x+16=0 and state the nature of their solution. (OR) b) A school anmroces that for a certain competitions, the cash price will be distributed for all the participants equally as show below. No of participants (x) (x) (is of length 4:2 cm.	-01	ata 41	a mater	ra of	thair	eolui:	(OP)
 b) A school animodes that for a certain competitions, the cash pitce will be distributed for all the participants equally as show below. No of participants (x) (x) 2 4 6 8 10 Amount for each participants in(y) (y) 180 90 60 45 36 i) Find the cantent of variation ii) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	44. a) Graph the quadratic equation x^{-8x+16}	-0 and signature	s the	cash r	nrice	will h	e dist	ributed
 No of participants (x) (x) 2 4 6 8 10 Amount for each participants in(y) (y) 180 90 60 45 36 i) Find the cantent of variation ii) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	b) A school anmroces that for a certain con	npennon nelow	., me	ousii j	SLICO		- uiot	
 i) Find the cantent of variation ii) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	for all the participants equally as show t	(x)	2	4	6	8	10	1
 i) Find the cantent of variation ii) graph the above data and hence, find how much will each participant get. If the number of participants are 12. 	A mount for each participants $in(v)$	(y)	180	90	60	45	36	
<i>ii)</i> graph the above data and hence, find how much will each participant get. If the number of participants are 12.	i) Find the cantent of variation							
	<i>ii)</i> graph the above data and hence, find number of participants are 12.	l how mu	ich wi **	ll eacl	h par	ticipa	nt get.	If the
				e de la				