XI – COMPUTER SCIENCE MINIMUM STUDY IMPORTANT 5 MARKS MATERIAL

1.Discuss the various generations of Computers.

Based on various stages of development, computers can be divided into six different generations.

	Period	Main Component	Merits/Demerits
Generation		used	
			➤ Big in size
First		Vacuum tubes	Consumed more power
Generation	1940- 1956		Machine Language was used
			Punched cards were used as input.
Second	1956- 1964	Transistors	Generated less heat
Generation			Assembly language was used.
			Computers were smaller, faster and more
Third	1964 -1971	Integrated Circuits	reliable
Generation		(IC)	Consumed less power
			➤ High Level Languages were used
		Microprocessor	Smaller and Faster
Fourth		(Very Large Scale	➤ Microcomputer series such as IBM and
Generation	1971-1980	Integrated Circuits	APPLE were developed
		(VLSI))	Portable Computers were Introduced
			➤ Parallel Processing
\Fifth			> Super conductors
Generation	1980 – till	Ultra Large Scale	Computers size was reduced.
	date	Integration (ULSI)	Computers can recognize Images and
			Graphics
			Parallel and Distributed computing
Sixth	In future	A 'U	Development of robotics
Generation			Natural language processing

2. Explain the basic components of a computer with a neat diagram.

The computer is the combination of **hardware** and **software**.

- ❖ Input unit, Central processing unit, Output unit and Memory unit are the important components of a computer.
- ightharpoonup Input ightharpoonup Process ightharpoonup Output cycle (IPO).

Input Unit:

- ➤ It is used to **feed** any form of data to the computer,
- ➤ Which can be stored in the memory unit for further processing.
- **Example:** Keyboard, mouse, etc.

Central Processing Unit:

- ➤ It controls the **operation** of **all** other components.
- > It accepts **data** as **input**, **process** the data according to the **instructions** and provide the **result** as **output**

> It has three components:

- 1. ALU (Arithmetic and Logic unit)
- 2. Control unit
- 3. Memory unit

(1)ALU (Arithmetic and Logic unit):

- > The ALU performs arithmetic operations.
- ➤ The result of an operation is **stored** in **internal memory** of CPU.
- ➤ It gives the **decision(Logical)-making ability** of a computer

(2)Control unit:

Fig. 1 It controls the flow of data between the CPU, memory and

(3)Memory unit:

- ➤ It is used to **store data** and **instructions**
- ➤ There are two types of memory, they are **primary** memory and **secondary** memory

(i)Primary memory:

- ➤ It is also called **main** memory.
- ➤ It is **volatile**.
- **Temporary** memory.
- Example: RAM

(ii)Secondary memory:

- ➤ It is **non volatile**
- **Permanent** memory.
- Example: Hard Disk, CD-ROM

Output Unit:

- ➤ It conveys information to users in an understandable form.
- Example: Monitor, Printer, Speaker, plotter etc.

3.Explain the following

a. Inkjet Printer b. Multimedia projector c. Bar code / QR code Reader

a. Inkjet Printer:

- ❖ Inkjet printers work by spraying **ionised** ink at a sheet of paper.
- ❖ An Inkjet printer can spread millions of dots of ink at the paper every single second.
- ❖ It has colour cartridges which combined **Magenta**, **Yellow** and **Cyan** inks.
- ❖ A black cartridge is used for monochrome output.

b. Multimedia projector:

- ❖ It is used to produce computer output on a **big screen**.
- **!** Used to display **presentations** in meeting halls or in classrooms.

c. Bar code:

- ❖ A Bar code is a pattern printed in lines of **different thickness**.
- ❖ The Bar code **reader scans** the information on the bar codes transmits to the Computer for further processing.

QR code Reader:

- * QR (Quick response) Code.
- ❖ The QR code is the **2D bar code** which can be read by a camera.

4. Explain the fundamental gates with expression and truth table.

- **\$** Gate is a basic **electronic circuit.**
- ❖ It operates on **one or more input** signals to produce **an output** signal.
- There are three fundamental gates namely AND, OR and NOT.

AND GATE:

- ➤ The AND gate has **two or more** input variables and **one** output.
- > The output is **TRUE** when **all** the Inputs are **TRUE**.
- \triangleright Algebraic expression : Y=A . B

Truth Table:

INPUT		OUTPUT
A	В	C=A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR GATE:

- > The OR gate has **two or more input** variables and **one output**.
- > The output is **TRUE** if **at least** one input is **TRUE**.
- \triangleright Algebraic expression : Y = A + B

Truth Table:

INPUT		OUTPUT
A	В	C=A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT GATE:

- ➤ The NOT Operator has **one** input and **one** output
- ➤ The NOT operator **inverts** the input.
- \triangleright Algebraic expression : Y = A

Truth Table:

INPUT	OUTPUT
A	$C=\overline{A}$
0	1
1	0

5. What are the types of ROM? Explain.

- ➤ Read Only Memory (ROM)
- Programmable Read Only Memory (PROM)
- ➤ Erasable Programmable Read Only Memory (EPROM)
- ➤ Electrically Erasable Programmable Read Only Memory (EEPROM)

Read Only Memory (ROM):

- **❖** It is **non-volatile** memory
- ❖ It can only be **read**.
- **Stores permanently**
- ❖ It **retainsits contents** even when the computer is turned off.

Programmable Read Only Memory (PROM):

- **!** It is a **non-volatile** memory.
- ❖ Data can be written **only once**.
- **...** Content **cannot be erased**.
- **❖** The process of **programming a PROM** is called **burning the PROM**.

Erasable Programmable Read Only Memory (EPROM):

- **❖** It is a **non-volatile** memory.
- ❖ Data can be written **many times**.
- ❖ The content can be erased using **ultraviolet** rays.
- Used in personal computers.

Electrically Erasable Programmable Read Only Memory (EEPROM):

- ❖ It is a **non-volatile** memory.
- ❖ It can be erased by an **electrical charge.**
- **!** It is **slower** in performance.

6. What are the Characteristics of Microprocessor? Explain.

There are **three** important Characteristics of Microprocessors. They are, a) Clock speed

- b) Instruction set
- c) Word size

Clock speed:

- Every microprocessor has an **internal clock**.
- ➤ The speed of **instruction execution** in microprocessor is called the **clock speed**.
- ➤ **Clock speed** is measured in **MHz** (Mega Hertz) or in **GHz** (Giga Hertz).

Instruction set:

- Instruction is a **command** used to **perform an operation** based on **data**.
- **Basic set** of **instructions** to execute by **microprocessor** is called an **instruction set.**
- > Types of operations
 - Data transfer
 - Arithmetic operations
 - Logical operations
 - Control flow
 - Input/output

Word size:

The **number of bits** that can be **processed** by a **processor** in a **single instruction** is called its word **size**.

7. Explain the algorithms used in process management.

- ➤ Process management includes **creating** and **deleting** processes
- The algorithms used to allocate the job in computer are,
 - 1. FIFO
 - 2. SJF
 - 3. Round Robin
 - 4. Based on Priority

1. FIFO (First In First Out)Scheduling:

- > It is based on queuing technique
- First is executed first by the CPU, followed by the next and so on.

2. SJF (Shortest Job First)Scheduling:

- > It works based on the size of the job.
- Consider two jobs A and B.
 - 1) A = 6KB 2) B = 9KB

First the job "A" will be assigned and then job "B"

3. Round Robin Scheduling:

> It is based on **time sharing**.

Example: Take three jobs A, B, C.

First the job A is assigned to CPU then job B and job C and then again A, B and C and so on.

4.Based On Priority:

- > It is based on a **Priority**.
- Take two jobs A and B. Let the priority of A be 5 and priority B be 7.
- ➤ Job B is assigned **first**.

8. Explain the Various versions of Windows.

Versions	Year	Specific features
Windows .x	1985	 Introduction of GUI in 16 - bit. processor Mouse was introduced as an input device.
Windows 2.x	1987	Supports to minimize or maximize windows.
Windows 3.x	1992	 Introduced the concept of multitasking. Supported 256 colours.
Windows 95	1995	• Introduced 32 - bit processor.
Windows 98	1998	 Windows based games improved. Plug and play feature was introduced.
Windows Me	2000	It introduced automated system diagnostics and recovery tools.
Windows 2000	2000	for business desktop, laptop and server
Windows XP	2001	Introduced 64-bit Processor.
Windows Vista	2006	Updated the look and feel of Windows.
Windows 7	2009	Booting time was improved
Windows 8	2012	 Windows 8 is faster than previous versions of Windows. Start button was removed.
Windows 10	2015	Start Button was added again.Multiple desktop.

9. Explain the different ways of finding a File or Folder.

Method 1 (Using Start menu):

- > Click the **Start** button, select **search box**
- > Type the **name** of the file or the folder you want to search.
- It will display the list of files or folders starting with the specified name.
- > Just **click** and open that file or the folder.

Method 2 (using computer icon):

- Click Computer Icon .
- > Select any disk drive screen.
- At the **top right corner** of that screen, there is a **search box** option.
- > Type the **name** of the file or the folder you want to search.
- It will display the list of files or folders starting with the specified name.
- > Just **click** and open that file or the folder.

10. What are the types of Errors?

Syntax error:

- > Syntax error occur when **grammatical rules** of C++ are violated.
- Ex. cout << "welcome to c++" it will throw an error because It does not end with a semicolon.

Semantic error or logical error:

- It may be happened by **wrong use** of variable / operator /order of execution etc.
- ➤ Here program is **grammatically correct** but it contains some **logical error**.

Run time error:

- ➤ A run time error occurs **during** the **execution** of a program.
- ➤ It occurs because of some **illegal operation** that takes place.

11. Write about Binary operators used in C++.

Binary operators:

Require two operands and one operator.

<u>C++ Binary Operators are classified as:</u>

- (1) Arithmetic operator
- (2) Relational operator
- (3) Logical operator
- (4) Assignment operator
- (5) Conditional operator

Arithmetic operator:

- > Arithmetic operator perform simple arithmetic operations like addition, subtraction, multiplication, division, etc.
- > Support both unary band binary operations.

Operator	operation
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	modulus

Relational operator:

> Relational operators are used to determine the relationship between its operands.

Operator	operation
>	Greater than
>=	Greater than equal to
<	Less than
/	Less than equal to
==	Equal
!=	Not equal

Logical operator:

➤ A logical operator is used evaluate logical by combining two relational expression into one.

Operator	operation
&&	AND

	OR
!	NOT

Assignment operator:

> =(equal to) is the assignment operator is used to assign a value on the right hand side to a variable which is one of the left hand side.

Operator	Name of Operator
+=	Addition Assignment
-=	Subtraction Assignment
*=	Multiplication Assignment
/=	Division Assignment
%=	Modulus Assignment

(i) Conditional Operator:

- ?: is a conditional Operator which is also known as Ternary Operator.
- This operator is used as an alternate to if ... else control statement.

12. What is an entry control loop? Explain any one of the entry controlled loop with suitable example.

- > while is an **Entry** controlled loop.
- ➤ The **condition** (**Test** –**Expression**) placed at the **beginning** of the body of the loop.

While loop

General working for loop:

- 1. First the **control variable** is **initialized**
- 2. If the condition is **false**, the control exit from loop.
- 4. If the condition is **true**, the **body of the loop** is executed,
- 5. Next the control is to **update** expression.
- 6. After this, the control is again transferred to the **condition**.

Syntax:

```
Initialization;
while ( Test expression )
{
Body of the loop;
Update expression;
}
```

Flow chart:

Example program:

#Include<iostream> using namespace std;

```
int main()
{
  int n=1;
  while(n<5)
  {
  cout<<n;
  n++;
  }
}
Output: 1234</pre>
```

13. Explain Call by value method with suitable example.

- > The formal parameter creates new variables and stores the value from actual parameter
- This method **copies** the values of actual parameters **into** the formal parameters
- ➤ Any change in the formal parameter is **not reflected** back to the actual parameter.

Example program:

```
#include <iostream >
using namespace std;
void swap (int a)
{
    a=8;
    cout<< "\n"<< a;
}
int main ()
{
    int m1 = 10;
    cout<<m1;
    swap (m1);
    cout<< "\n"<< m1;
}</pre>
```

Output:

10 8 10

Note:

m1 -> Actual parameter

a -> Formal Parameter

14. Explain call by reference in C++ with an example

- > The formal parameters become **alias** to the actual parameters.
- > It is working on the **original data**.
- ➤ Any change made in the formal parameter is reflected back in the actual parameter

Example program:

#include <iostream >
using namespace std;

15. What is Recursion? Write a program to find the factorial of the given number using recursion.

- > A function that calls itself is known as recursive function.
- **Example program:**

```
#include <iostream>
using namespace std;
int factorial(int); // Function prototype //
int main()
{
    int no;
        cout<<"\nEnter a number to find its factorial: ";
        cin >> no;
        cout << "\nFactorial of Number " << no <<" = " << factorial(no);
        return 0;
}
int factorial(int m)
{
    if (m > 1)
        {
        return m*factorial(m-1);
        }
        else
        {
        return 1;
}
Output:
Enter a number to find its factorial: 5
Factorial of Number 5 = 120
```

16. Explain scope of variable with example.

- ♣ Scope refers to the accessibility of a variable.
- **♣** There are four types of scopes in C++.

They are:

1. Local scope, 2. Function scope, 3. Files cope, 4. Class scope

1. Local scope

- > A local variable is defined within a local block.
- A local variable **cannot be accessed** from **outside** the block.
- ➤ A block of code begins and ends with **curly braces**{ }.

2. Function scope

- The scope of variable is extended to **the function block**, and all **sub blocks**.
- The life time of a function scope variable, is the lifetime of the function block.

3. File scope

- ➤ It is also called as **global** variable.
- > To declared above main ().
- The life time of a file scope variable is the life time of a program.

Example program:

```
#include <iostream >
using namespace std;
int b=10;
void swap (int a)
{
int c = a+b;
cout<< c;
}

int main ()
{
int m1 = 10;
cout<<m1;
swap (m1);
cout<< ,,\n''<< m1;
}
Here,
a - Function scope variable b - File scope variable
c - Local variable</pre>
```

4. Class scope

- A class is a new way of creating and implementing a user **defined data type.**
- Access specifiers are **Private**, **protected** and **public**.

class name

```
{
    Private:
    { declaration; }
    Protected:
    { declaration; }
    Public:
    { declaration; }
};
```

17. What are the rules for operator overloading?

Rules or Restrictions on Operator Overloading:

- **Precedence and Associativity** of an operator **cannot** be changed.
- **No new operators** can be created, Only **existing** operators can be overloaded.
- **Cannot redefine** the meaning of an operator's procedure.
- > Overloaded operators **cannot have default** arguments.
- ➤ When binary operators are overloaded, the **left hand** object must be an **object** of the relevant **class**

18. Explain the different types of inheritance.

There are different types of inheritance viz., Single Inheritance, Multiple inheritance, Multiple inheritance, hybrid inheritance and hierarchical inheritance.

1. Single Inheritance:

➤ When a derived class inherits only from one base class, it is known as single inheritance.

2. Multiple Inheritance:

When a derived class inherits from multiple base classes it is known as multiple inheritance.

Multiple Inheritance

3. Hierarchical inheritance:

When more than one derived classes are created from a single base class, it is known as Hierarchical inheritance.

HierarchicalInheritance

4. Multilevel Inheritance:

- > The **transitive nature** of inheritance.
- In multilevel inheritance a derived class itself acts as a base class to derive another class.

5. Hybrid inheritance:

A combination of **more than one type of inheritance** is known as hybrid inheritance.

19. Explain the types of cyber attacks.

1. Virus:

A virus is a small piece of computer code that can repeat itself and spreads from one computer to another by attaching itself to another computer file.

2. Worms:

Worms are self- repeating and do not require a computer program to attach themselves.

3. Spyware:

Spyware can be installed on the computer automatically when the attachments are open, by clicking on links or by downloading infected software.

4.Ransom ware:

Ransom ware is a type of malicious program that demands payment afterlaunching a cyber-attack on a computer system.

20. What are the various crimes happening using computer?

Crime	Function
Malware	Malicious programs that can perform a variety of functions including monitoring user's computer activity without their permission.
Harvesting	A person or program collects login and password information from a legitimate user to illegally gain access s to others' account(s).
Spam	Distribute unwanted e-mail to a large number of internet users.
Cyber Terrorism	Hacking, threats, and blackmailing towards a business or a person.
Cyber stalking	Harassing through online.