
VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

PHYSICS - Class 12 - Book back 1 mark

Unit- 1 ELECTROSTATICS

Two identical point charges of magnitude -q are fixed as shown in the figure below. A third charge +q is placed midway between the two charges at the point P. Suppose this charge +q is displaced a small distance from the point P in the directions indicated

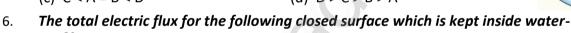

by the arrows, in which direction(s) will +q be stable with respect to the displacement?

- (a) A_1 and A_2
- (b) B_1 and B_2
- (c) both directions
- (d) No stable
- Which charge configuration produces a uniform electric field? 2.
 - (a) point charge

- (b) uniformly charged infinite line
- (c) uniformly charged infinite plane
- (d) uniformly charged spherical shell
- What is the ratio of the charges $\left|\frac{q_1}{q_2}\right|$ for the following 3. electric field line pattern?
 - (a) 1/5
- (b) 25/11

(c)5

(d) 11/25


- An electric dipole is placed at an alignment angle of 30° with an electric field of 2 x 10^5 N C^{-1} . 4. It experiences a torque equal to 8 N m. The charge on the dipole if the dipole length is 1 cm is
 - (a) 4 mC
- (b) 8 mC
- (c) 5 mC

- (d) 7 mC
- Four Gaussian surfaces are given below with charges inside each 5. Gaussian surface. Rank the electric flux through each Gaussian surface in increasing order-
 - (a) D < C < B < A

(b) A < B = C < D

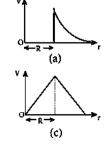
(c) C < A = B < D

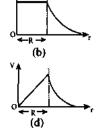
(d) D > C > B > A

- (b) $\frac{q}{40 \in 0}$ (d) $\frac{q}{160 \in 0}$
- Two identical conducting balls having positive charges q_1 and q_2 are separated 7. by a center to center distance r. If they are made to touch each other and then separated to the same distance, the force between them will be-

(a) less than before

- (b) same as before
- (c) more than before
- Rank the electrostatic potential energies for 8. the given system of charges in increasing order




- (a) 1 = 4 < 2 < 3
- (b) 2 = 4 < 3 < 1
- (4)
- **(b)**
- (d)

- (c) 2 = 3 < 1 < 4
- (d) 3 < 1 < 2 < 4
 - An electric field $\vec{E} = 10x \hat{1}$ exists in a certain region of space. Then the potential difference V = $V_0 - V_A$, Where V_0 is the potential at the origin and V_A is the potential at x = 2 m is -
- (a) 10 V

9.

- (b) -20 V
- (c) + 20 V
- (d) 10 V
- A thin conducting spherical shell of radius R has a charge Q 10. which is uniformly distributed on its surface. The correct plot for electrostatic potential due to this spherical shell is-

VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

- 11. Two points A and B are maintained at a potential of 7 V and -4 V respectively. The work done in moving 50 electrons from A to B is-
 - (a) 8.80 x 10⁻¹⁷ J
- (b) $-8.80 \times 10^{-17} \text{ J}$
- (c) $4.40 \times 10^{-17} \text{ J}$
- (d) $5.80 \times 10^{-17} \text{ J}$
- 12. If voltage applied on a capacitor is increased from V to 2V, choose the correct conclusion.
 - (a) Q remains the same, C is doubled
- (b) Q is doubled, C doubled

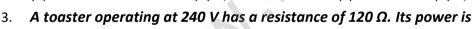
(c) C remains same, Q doubled

- (d) Both Q and C remain same
- 13. A parallel plate capacitor stores a charge Q at a voltage V. Suppose the area of the parallel plate capacitor and the distance between the plates are each doubled then which is the quantity that will change?
 - (a) Capacitance
- (b) Charge
- (c) Voltage
- (d) Energy density
- 14. Three capacitors are connected in a triangle as shown in the figure.
 The equivalent capacitance between points A and C is

- (b) 2 μF
- (c) $3 \mu F$
- (d) $1/4 \mu F$

2μF 1μF 2μF

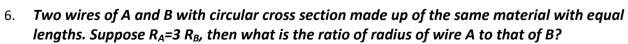
 $\triangleright R$


- 15. Two metallic spheres of radii 1 cm and 3 cm are given charges of 1×10^{-2} C and 5×10^{-2} C respectively. If these are connected by a conducting wire, the final charge on the bigger sphere is
 - (a) 3×10^{-2} C
- (b) 4×10^{-2} C
- (c) 1×10^{-2} C
- (d) 2 x 10⁻² C

Unit- 2 CURRENT ELECTRICITY

- 1. The following graph shows current versus voltage values of some unknown conductor. What is the resistance of this conductor?
 - (a) 2 ohm
- (b) 4 ohm
- (c) 8 ohm
- (d) 1 ohm
- A wire of resistance 2 ohms per meter is bent to form a circle of radius 1 m. The equivalent resistance between its two diametrically opposite points, A and B as shown in the figure is-

- (b) $\pi/2 \Omega$
- (c) $2\pi \Omega$
- (d) $\pi/4 \Omega$



- (a) 400 W
- (b) 2 W
- (c) 480 W
- (d) 240 W
- 4. A carbon resistor of (47 \pm 4.7) k Ω to be marked with rings of different colours for its identification. The colour code sequence will be
 - (a) Yellow Green Violet Gold
- (b) Yellow Violet Orange Silver
- (c) Violet Yellow Orange Silver
- (d) Green Orange Violet Gold
- 5. What is the value of resistance of the following resistor?
 - (a) 100 k Ω

(b) 10 k Ω

(c) $1 k \Omega$

(d) 1000 k Ω

(a) 3

- (b) $\sqrt{3}$
- (c) $1/\sqrt{3}$
- (d) 1/3
- 7. A wire connected to a power supply of 230 V has power dissipation P_1 Suppose the wire is cut into two equal pieces and connected parallel to the same power supply. In this case power dissipation is P_2 . The ratio P_2/P_1 is.
 - (a) 1

- (b) 2
- (c)3
- (d) 4

VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

- In India electricity is supplied for domestic use at 220 V. It is supplied at 110 V in USA. If the resistance of a 60W bulb for use in India is R, the resistance of a 60W bulb for use in USA will be (a) R (c) R/4(b) 2R (d) R/2
- In a large building, there are 15 bulbs of 40 W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1kW are connected. The voltage of electric mains is 220 V. The maximum capacity of the main fuse of the building will be (IIT-JEE 2014)
 - (a) 14 A

- (b) 8 A
- (c) 10 A
- (d) 12 A

250

- 10. There is a current of 1.0 A in the circuit shown below. What is the resistance of P?
 - (a) 1.5Ω

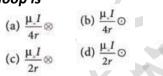
(b) 2.5 Ω

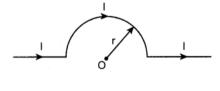
(c) 3.5Ω

- (d) 4.5Ω
- 11. What is the current drawn out from the battery?
 - (a) 1 A

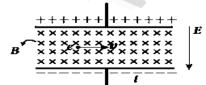
(b) 2 A

(c) 3 A


- (d) 4 A
- 12. The temperature coefficient of resistance of a wire is 0.00125 per °C. At 20°C, its resistance is 1 Ω . The resistance of the wire will be 2 Ω . at
 - (a) 800°C

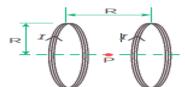

- (b) 700°C
- (c) 850°C
- (d) 820°C
- 13. The internal resistance of a 2.1V cell which gives a current of 0.2A through a resistance of 10Ω is (d) 1.0Ω (b) 0.5Ω (c) 0.8Ω (a) 0.2Ω
- 14. A piece of copper and another of germanium are cooled from room temperature to 80 K. The resistance of
 - (a) each of them increases

- (b) each of them decreases
- (c) copper increases & germanium decreases (d)copper decreases & germanium increases
- 15. In Joule's heating law, when R and t are constant, if the H is taken along the y axis and I² along the x axis, the graph is
 - (a) straight line
- (b) parabola
- (c) circle
- (d) ellipse


Unit - 3 MAGNETISM AND MAGNETIC EFFECTS OF ELECTRIC CURRENT

The magnetic field at the center O of the following current loop is

An electron moves in a straight line inside a charged parallel plate capacitor of uniform charge density σ The time taken by the electron to cross the parallel plate capacitor undeflected when the plates of the capacitor are kept under constant magnetic field of induction \overrightarrow{B} is


- (a) $\varepsilon_{\circ} \frac{elB}{\sigma}$ (b) $\varepsilon_{\circ} \frac{lB}{\sigma l}$ (c) $\varepsilon_{\circ} \frac{lB}{e\sigma}$ (d) $\varepsilon_{\circ} \frac{lB}{\sigma}$

- A particle having mass m and charge a accelerated through a potential difference V. Find the force experienced when it is kept under perpendicular magnetic field \vec{B} .
 - (a) $\sqrt{\frac{2q^3BV}{m}}$ (b) $\sqrt{\frac{q^3B^2V}{2m}}$

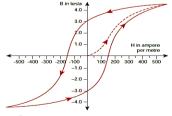
 - $(c) \sqrt{\frac{2q^3 \mathrm{B}^2 \mathrm{V}}{m}} \qquad (d) \sqrt{\frac{2q^3 \mathrm{B} \mathrm{V}}{m^3}}$

VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

- 4. A circular coil of radius 5 cm and 50 turns carries a current of 3 ampere. The magnetic dipole moment of the coil is nearly
 - (a) 1.0 A m^2
- (b) 1.2 A m²
- (c) 0.5 A m^2
- (d) 0.8 A m^2
- 5. A thin insulated wire forms a plane spiral of N = 100 tight turns carrying a current I= 8 m A (milli ampere). The radii of inside and outside turns are a= 50 mm and b= 100 mm respectively. The magnetic induction at the center of the spiral is
 - (a) 5 μT
- (b) 7 μT
- (c) 8 µT
- (d) $10 \mu T$
- 6. Three wires of equal lengths are bent in the form of loops. One of the loops is circle, another is a semi-circle and the third one is a square. They are placed in a uniform magnetic field and same electric current is passed through them. Which of the following loop configuration will experience greater torque?
 - (a) circle
- (b) semi-circle
- (c) square
- (d) all of them
- 7. Two identical coils, each with N turns and radius R are placed coaxially at a distance R as shown in the figure. If I is the current passing through the loops in the same direction, then the magnetic field at a point P at a distance of R/2 from the centre of each coil is

- $(a) \; \frac{8N\mu_0}{\sqrt{5}R}$
- $(c) \; \frac{8 \mathrm{N} \mu_{\scriptscriptstyle 0} \mathrm{I}}{5 \mathrm{R}}$
- (b) $\frac{8N\mu_0}{5^{\frac{3}{2}}R}$
- $(d) \frac{4N\mu_0I}{\sqrt{5}R}$
- 8. A wire of length I carrying a current I along the Y direction is kept in a magnetic field given
 - by $\vec{B} = \frac{\vec{P}}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k}) T$. The magnitude of Lorentz force acting on the wire is-
 - (a) $\sqrt{\frac{2}{3}}\beta II$
- (b) $\sqrt{\frac{1}{3}}\beta Il$
- (c) $\sqrt{2}\beta II$
- (d) $\sqrt{\frac{1}{2}}\beta II$
- 9. A bar magnet of length I and magnetic moment p_m is bent in the form of an arc as shown in figure. The new magnetic dipole moment will be
 - (a) p_m

(b) $3/\pi p_m$


(c) $2/\pi p_m$

- (d) $1/2 p_m$
- 10. A non-conducting charged ring carrying a charge of q, mass m and radius r is rotated about its axis with constant angular speed ω . Find the ratio of its magnetic moment with angular momentum is
 - (a) q/m
- (b) 2q/m
- (c) q/2m
- (d) q/4m
- 11. The B_H curve for a ferromagnetic material is shown in the figure. The material is placed inside a long solenoid which contains 1000 turns/ cm. The current that should be passed in the solenoid to demagnetize the ferromagnet completely is-
 - (a) 1.00 m A

(b) 1.25 mA

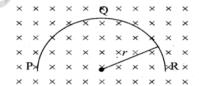
(c) 1.50 mA

(d) 1.75 mA

- 12. Two short bar magnets have magnetic moments 1.20 Am² and 1.00 Am² respectively. They are kept on a horizontal table parallel to each other with their north poles pointing towards the south. They have a common magnetic equator and are separated by a distance of 20.0 cm. The value of the resultant horizontal magnetic induction at the mid-point O of the line joining their centers is (Horizontal components of Earth's magnetic induction is 3.6 x 10⁻⁵ Wb m⁻²)
 - (a) $3.60 \times 10^{-5} \text{ Wb m}^{-2}$
- (b) 3.5 x 10⁻⁵ Wb m⁻²
- (c) $2.56 \times 10^{-4} \text{ Wb m}^{-2}$
- (d) $2.2 \times 10^{-4} \text{ Wb m}^{-2}$

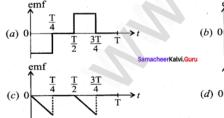
VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

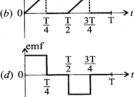
- 13. The vertical component of Earth's magnetic field at a place is equal to the horizontal component. What is the value of angle of dip at this place?
 - (a) 30°


- (b) 45°
- (c) 60°
- (d) 90°
- 14. A flat dielectric disc of radius R carries an excess charge on its surface. The surface charge density is σ. The disc rotates about an axis perpendicular to its plane passing through the centre with angular velocity ω. Find the magnitude of the torque on the disc if it is placed in a uniform magnetic field whose strength is B which is directed perpendicular to the axis of rotation
 - (a) 1/4 σωπ BR
- (b) $1/2 \sigma \omega \pi BR^2$
- (c) $1/4 \sigma \omega \pi BR^3$
- (d) $1/4 \sigma \omega \pi BR^4$
- 15. The potential energy of magnetic dipole whose dipole moment is $\vec{p}_m = (-0.5\hat{i} + 0.4\hat{j})$. Am² kept in uniform magnetic field $\vec{B} = 0.2 \hat{i} T$
 - (a) 0.1 J
- (b) 0.8 J
- (c) 0.1 J
- (d) 0.8 J

Unit-4 ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT

An electron moves on a straight line path XY as shown in the figure.
 The coil abed is adjacent to the path of the electron. What will be the direction of current, if any, induced in the coil? (NEET-2015)


- (a) The current will reverse its direction as the electron goes past the coil
- (b) No current will be induced
- (c) abcd
- (d) adcb
- 2. A thin semi-circular conducting ring (PQR) of radius r is falling with its plane vertical in a horizontal magnetic field B, as shown in the figure. The potential difference developed across the ring when its speed v, is-(NEET 2014)



(a) Zero

- (b) $Bv\pi r^2/2$ and P is at higher potential
- (c) π rBv and R is at higher potential

- (d) 2rBv and R is at higher potential
- 3. The flux linked with a coil at any instant t is given by $\Phi_B = 10t^2 50t + 250$. The induced emf at t = 3s is-
 - (a) -190 V
- (b) -10 V
- (c) 10 V
- (d) 190 V
- 4. When the current changes from +2A to -2A in 0.05 s, an emf of 8 V is induced in a coil. The coefficient of self-induction of the coil is-
 - (a) 0.2 H
- (b) 0.4 H
- (c) 0.8 H
- (d) 0.1 H
- 5. The current i flowing in a coil varies with time as shown in the figure. The variation of induced emf with time would be- (NEET-2011)

- 6. A circular coil with a cross-sectional area of 4 cm² has 10 turns. It is placed at the centre of a long solenoid that has 15 turns/cm and a cross-sectional area of 10 cm². The axis of the coil coincides with the axis of the solenoid. What is their mutual inductance?
 - (a) 7.54 µH
- (b) 8.54 µH
- (c) 9.54 µH
- (d) 10.54 μH
- 7. In a transformer, the number of turns in the primary and the secondary are 410 and 1230, respectively. If the current in primary is 6A, then that in the secondary coil is-
 - (a) 2 A

- (b) 18 A
- (c) 12 A
- (d) 1 A

Dr.R.SRINIVASARAGHAVAN M.Sc., M.Ed., M.A., M.Phil, M.Sc (Psy)., **VASAN INSTITUTE** West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

8.	A step-down transform current from 6 A to 100			age from 220	0 V to 11 V	and increase the
	(a) 1.2 (b) 0.	.83	(c) 0.12		(d) 0.9	
9.	In an electrical circuit, I removed from the circuits $\pi/3$. Instead, if C is refactor of the circuit is- (it, the phase diff emoved from the	erence be	etween the v	oltage and	current in the circuit
	(a) ½ (b) 1,	$\sqrt{2}$	(c) 1		(d) √3/2	
10.	In a series RL circuit, the difference between the (a) $\pi/4$ (b) $\pi/4$	voltage and cur			re the same (d) zero	. Then the phase
11.	In a series resonant RLG frequency ω is 250 rad/ (a) 600 V (b) 40	s. If the value of	_	then the vol		
12.	An inductor 20 mH, a coof emf v = 10 sin 340 t. (a) 0.76 W (b) 0.	The power loss in	n AC circu	it is-	connected i (d) 0.67 W	
13.	The instantaneous valu	es of alternating	current d	and voltage i	n a circuit a	$re i = \frac{1}{\sqrt{2}} sin(100\pi t) A$
	and $v = \frac{1}{\sqrt{2}} \sin (100\pi t + \frac{\pi}{3})$					
	(a) $1/4$ (b) $$	3 /4	(c) 1/2		(d) 1/8	, ,
14.	In an oscillating LC circu capacitor when the ene	uit, the maximun	n charge d	on the capac	itor is Q. Th	_
	(a) Q/2 (b) Q	$\sqrt{3}$	(c) $Q/\sqrt{2}$		(d) Q	
15.	$20/\pi^2$ H inductor is conmaximum power at 50	Hz is -			The value	of C in order to impart
	(a) 50 μF (b) 0.		(c) 500 μ	F	(d) 5 μF	
	it- 5 ELECTROMAGNET					
1.	The dimension of $\frac{1}{\mu_0 \epsilon_0}$	is				
	(a) [L T ⁻¹]	(b) $[L^2 T^{-2}]$	•	:) [L ⁻¹ T]	` ,	$[L^{-2} T^2]$
2.	If the amplitude of the electromagnetic wave	es is				
	(a) 100 V m ⁻¹	(b) 300 V m ⁻¹	•	•	` '	
3.	Which of the following (a) microwave	(b) gamma ray	s (c	:) X- rays	_	bjects through fog nfrared
4.	Which of the following (a) transverse (c) longitudinal	g is false for elect	(b	e tic waves o) non-mecha d) produced b		
5.		. The wavelength	n of electi		vaves produ	s mean position with a uced by this oscillator is 1000 m
6.	` ,	agnetic fields, as	•	•	• •	wave, propagating alon
	(a) $\vec{E} = E_s \hat{i}$ and $\vec{B} = I$	$B_{a}\hat{k}$ (c) $\tilde{E}=E_{a}\hat{k}$	\hat{i} and $\hat{B} = 1$	$B_{a}\hat{j}$		
	(b) $\ddot{E} = E_{\circ} \hat{k}$ and $\ddot{B} = E_{\circ} \hat{k}$	_		_		
	•	$(u) E = E_{s}$	-6-	₽ ° ₀ °		

magnified. (a) 2*f* and *c*

Dr.R.SRINIVASARAGHAVAN M.Sc., M.Ed., M.A., M.Phil, M.Sc (Psy).,

VA	SAN INSTITUTE West Man	nbalam, (Chennai-600 03	3 Cell: 97106	21952 / 8	8825971170
7.	In an electromagnetic wave tr The peak value of the magnet	ic field is	;			
	(a) $1.414 \times 10^{-8} \mathrm{T}$	(b) 1.0	$\times 10^{-8} \text{T}$	(c) 2.828 × 1	0 ⁻⁸ T	(d) 2.0×10^{-8} T
8.	An e.m. wave is propagating oscillating electric field of the magnetic field of the e.m. wave (a) -y direction	is e.m. ve will be	wave is alon e along:	g +y-axis, the	n the dir	
9.	If the magnetic monopole exis	ts, then	which of the	Maxwell's equ	ation to l	be modified?
	(a) $\oint_{S} \bar{E} \cdot d\bar{A} = \frac{Q_{enclosed}}{\epsilon_{e}}$					
	$(\mathbf{b}) \oint \vec{B} \cdot d\vec{A} = 0$					
	(b) $\oint_{i} \vec{B} \cdot d\vec{A} = 0$ (c) $\oint_{l} \vec{B} \cdot d\vec{l} = \mu_{0} i_{c} + \mu_{0} \epsilon_{0} \frac{d}{dt} \oint_{i} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \Phi_{B}$ (d) $\oint_{l} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \Phi_{B}$	d A				
	Fraunhofer lines are an examp (a) line emission	(b) line	absorption	(c) band emi	ssion (d)	band absorption
11.	Which of the following is an el		_			(I) II G.I
	(a) α - rays		rays			(d) all of them
12.	Which one of them is used to	oroduce				
	(a) an accelerating charge (c) a stationary charge		(d) an uncha			·
13.	If $E = E_0 \sin[10^6 \text{ x -}\omega t]$ be the elements of $(a) 0.3 \times 10^{-14} \text{ rad s}^{-1}$ (c) $0.3 \times 10^{14} \text{ rad s}^{-1}$	ectric fie	eld of a plane (b) 3×10^{-14} (d) 3×10^{14} r	rad s ⁻¹	tic wave,	the value of ω is
14.	Which of the following is NOT	true for	electromagn	etic waves?		
	(a) it transports energy		(b) it transpo	rts momentun	า	
	(c) it transports angular mome		an and a which	danand an tha	ir fragus	201
4.5	(d) in vacuum, it travels with di		•	•	ir irequei	псу
15.	The electric and magnetic field (a) in phase and perpendicular	-	_	etic wave are		
	(b) out of phase and not perpe			-		
	(c) in phase and not perpendic					
	(d) out of phase and perpendic	ular to e	ach other			
Uni	t- 6 RAY OPTICS					
1.	The speed of light in an isotrop	oic medi	um depends d	on,		
	(a) its intensity		(b) its wavele	_	_	
	(c) the nature of propagation			on of the sourc		
2.	A rod of length 10 cm lies alor such a way that its end close					
	image is, (a) 2.5 cm (b) 5c	m	(c) 10	cm	(d) 15c	m
3.	An object is placed in front of	of a con	vex mirror o	f focal length	of f and	l the maximum and

minimum distance of an object from the mirror such that the image formed is real and

Dr.R.SRINIVASARAGHAVAN M.Sc., M.Ed., M.A., M.Phil, M.Sc (Psy)., VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

For light incident from air on a slab of refractive index 2, the maximum possible angle of

(a) 30 ⁰		(-) 600	(-1) 000	
	(b) 45 ⁰	(c) 60 ⁰	(d) 90 ⁰	
refractive index of	water is,		at in water is V_{w} and λ_{w} then	the
(a) $V_{\rm w}/V_{\rm a}$	(b) V_a / V_w	(c) $\lambda_{\rm w}/\lambda_{\rm a}$	(d) $V_a \lambda_a / V_m \lambda_w$	
Stars twinkle due t	0,			
(a) reflection	(b) total internal i	reflection (c) refract	ion (d) polarisation	
When a biconvex	lens of glass having re	fractive index 1.47 is	dipped in a liquid, it acts a	is a
plane sheet of glas	s. This implies that the	liquid must have refro	active index,	
(a) less than one		, ,	<u>-</u>	
(c) greater than tha	it of glass	(d) equal to that o	of glass	
_	•	•		tive
	-			
` '	` '	` ,		
_		-		
	urface and 3 cm deep v	vhen viewed from the	e opposite face. The thicknes	s of
•	/h) 40	(1) 12	(4) 45	
` '	` '			-
	•			
	-	ingle of incidents of a	45°. The ray can undergo to	otal
-		1000-14	(d) n = 1 F	
` .	_ ` '	(c) $n = 1.4$	(u) H = 1.5	
	_	XO		
		oloured letters (violet,	, green, yellow, red). The le	tter
		(a) groon	(d) violot	
			` '	.,
-				-
•			th these dots can be resolved	Бу
(a) 1 m	(b) 5 m	(c) 3 m	(d) 6m	
	(5) 3 111	(6) 5 111	, ,	
In a Vouna's dou	ble slit experiment th	a clit congration is d	loubled. To maintain the co	mo
_		-	loubled. To maintain the sa	
fringe spacing o	on the screen, the	screen-to-slit distan	ce D must_be changed	
fringe spacing (a) 2D	on the screen, the (b) D/2	screen-to-slit distant (c) $\sqrt{2} D$	ce D must be changed (d) $D/\sqrt{2}$	to,
fringe spacing (a) 2D Two coherent m	on the screen, the (b) D/2 onochromatic light be	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities I	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed.	to,
fringe spacing (a) 2D Two coherent m	on the screen, the (b) D/2	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities I	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed.	to,
fringe spacing (a) 2D Two coherent m maximum and min (a) 51 and 1	on the screen, the (b) D/2 onochromatic light be nimum possible intensi (b) 5/ and 3/	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities I ties in the resulting be (c) 9I and I	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. Eam are	to, The
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incident	on the screen, the (b) D/2 onochromatic light be nimum possible intensi (b) 5/ and 3/	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities I ties in the resulting be (c) 9I and I thickness 5×10^{-5} cm, th	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. The case (d) 9I and 3I he wavelength of light reflections.	to, The
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incid maximum in the v (a) 1.22	on the screen, the (b) D/2 onochromatic light be nimum possible intensi (b) 5/ and 3/ dent on a soap film of the risible region is 5320 Å. (b) 1.33	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities I ties in the resulting be (c) 9I and I thickness 5×10^{-5} cm, the Refractive index of the (c) 1.51	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. eam are (d) 9I and 3I the wavelength of light reflective film will be, (d) 1.83.	to, The
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incid maximum in the v (a) 1.22	on the screen, the (b) D/2 onochromatic light be nimum possible intensi (b) 5/ and 3/ dent on a soap film of the risible region is 5320 Å. (b) 1.33	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities I ties in the resulting be (c) 9I and I thickness 5×10^{-5} cm, the Refractive index of the (c) 1.51	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. cam are (d) 9I and 3I he wavelength of light reflecte film will be,	to, The
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incid maximum in the v (a) 1.22 First diffraction m of light used is,	on the screen, the (b) D/2 onochromatic light be nimum possible intensi (b) 5/ and 3/ dent on a soap film of the risible region is 5320 Å. (b) 1.33 ninimum due to a single	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities it ties in the resulting be (c) 9/ and / thickness 5×10^{-5} cm, the Refractive index of the (c) 1.51 e slit of width 1.0×10^{-5}	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. eam are (d) 9I and 3I he wavelength of light reflected film will be, (d) 1.83. 5 cm is at 30°. Then wavelen	to, The
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incide maximum in the v (a) 1.22 First diffraction m of light used is, (a) 400 A ⁰	on the screen, the (b) D/2 onochromatic light be nimum possible intension (b) 5/ and 3/ dent on a soap film of the risible region is 5320 Å. (b) 1.33 ninimum due to a single (b) 500 A ⁰	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities lities in the resulting be (c) 9/ and / thickness 5×10^{-5} cm, the Refractive index of the (c) 1.51 e slit of width 1.0×10^{-5} (c) 600 A^0	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. eam are (d) 9I and 3I he wavelength of light reflecte film will be, (d) 1.83. 5 cm is at 30°. Then wavelen (d) 700 A^0	to, The ted gth
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incide maximum in the v (a) 1.22 First diffraction m of light used is, (a) 400 A ⁰ A ray of light str	on the screen, the (b) D/2 onochromatic light be nimum possible intension (b) 5/ and 3/ dent on a soap film of the risible region is 5320 Å. (b) 1.33 ninimum due to a single (b) 500 A ⁰	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities it ties in the resulting be (c) $9l$ and l thickness 5×10^{-5} cm, the Refractive index of the (c) 1.51 e slit of width 1.0×10^{-6} (c) 600 A^0 an angle 60^0 . If the resulting $\sqrt{2}$	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. Eam are (d) 9/ and 3/ the wavelength of light reflecte film will be, (d) 1.83. 5 cm is at 30°. Then wavelen (d) 700 A^0 effected and refracted rays	to, The ted gth
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incid maximum in the v (a) 1.22 First diffraction m of light used is, (a) 400 A ⁰ A ray of light straperpendicular to e	on the screen, the (b) D/2 onochromatic light be nimum possible intension (b) 5/ and 3/ dent on a soap film of the visible region is 5320 Å. (b) 1.33 ninimum due to a single (b) 500 A ⁰ ikes a glass plate at a cach other, the refraction	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities it ties in the resulting be (c) $9l$ and l thickness 5×10^{-5} cm, the Refractive index of the (c) 1.51 e slit of width 1.0×10^{-5} cm, angle 60^{0} . If the reve index of the glass is	(d) D/√2 I and 4I are superposed. I and 4I are superposed. I am are (d) 9I and 3I The wavelength of light reflect The film will be, (d) 1.83. Then wavelen (d) 700 A ⁰ The effected and refracted rays The company of the	to, The ted gth
fringe spacing (a) 2D Two coherent m maximum and min (a) 5/ and / When light is incide maximum in the v (a) 1.22 First diffraction m of light used is, (a) 400 A ⁰ A ray of light str	on the screen, the (b) D/2 onochromatic light be nimum possible intension (b) 5/ and 3/ dent on a soap film of the visible region is 5320 Å. (b) 1.33 ninimum due to a single (b) 500 A ⁰ ikes a glass plate at a	screen-to-slit distant (c) $\sqrt{2}$ D eams of intensities it ties in the resulting be (c) $9l$ and l thickness 5×10^{-5} cm, the Refractive index of the (c) 1.51 e slit of width 1.0×10^{-6} (c) 600 A^0 an angle 60^0 . If the resulting $\sqrt{2}$	ce D must be changed (d) $D/\sqrt{2}$ I and 4I are superposed. Eam are (d) 9/ and 3/ the wavelength of light reflecte film will be, (d) 1.83. 5 cm is at 30°. Then wavelen (d) 700 A^0 effected and refracted rays	to, The ted gth
	(a) reflection When a biconvex is plane sheet of glass (a) less than one (c) greater than that The radius of curvatindex is 1.5. If the plane index is 1.5. If the plane shab is, (a) 8 cm A ray of light transeparating the medinternal reflection is (a) n = 1.25 L-7 WAVE OPTICE A plane glass is plane glass is plane which appears to (a) red Two point white diameter 3 mm appears 3 mm appears 1.25	When a biconvex lens of glass having replane sheet of glass. This implies that the (a) less than one (c) greater than that of glass The radius of curvature of curved surface index is 1.5. If the plane surface is silvered (a) 5 cm (b) 10 cm An air bubble in glass slab of refractive inviewed from one surface and 3 cm deep with the slab is, (a) 8 cm (b) 10 cm A ray of light travelling in a transparent separating the medium from air at an air internal reflection for the following n, (a) n = 1.25 (b) n = 1.33 The radius of curvature of curved surface index is silvered in the surface	(a) reflection (b) total internal reflection (c) refract When a biconvex lens of glass having refractive index 1.47 is plane sheet of glass. This implies that the liquid must have refractive index shand one (b) less than that (c) greater than that of glass (d) equal to that (e) greater than that of glass (d) equal to that (e) greater than that of glass (d) equal to that (e) greater than that of glass (d) equal to that (e) greater than that of glass (d) equal to that (e) greater than that of glass surface at a thin planoconvex index is 1.5. If the plane surface is silvered, then the focal length (a) 5 cm (b) 10 cm (c) 15 cm An air bubble in glass slab of refractive index 1.5 (near normal viewed from one surface and 3 cm deep when viewed from the the slab is, (a) 8 cm (b) 10 cm (c) 12 cm A ray of light travelling in a transparent medium of refract separating the medium from air at an angle of incidents of internal reflection for the following n, (a) n = 1.25 (b) n = 1.33 (c) n = 1.4 E-7 WAVE OPTICS A plane glass is placed over a various coloured letters (violet which appears to be raised more is, (a) red (b) yellow (c) green Two point white dots are 1 mm apart on a black paper. The	(a) reflection (b) total internal reflection (c) refraction (d) polarisation When a biconvex lens of glass having refractive index 1.47 is dipped in a liquid, it acts a plane sheet of glass. This implies that the liquid must have refractive index, (a) less than one (b) less than that of glass (c) greater than that of glass (d) equal to that of glass The radius of curvature of curved surface at a thin planoconvex lens is 10 cm and the refraction index is 1.5. If the plane surface is silvered, then the focal length will be, (a) 5 cm (b) 10 cm (c) 15 cm (d) 20 cm An air bubble in glass slab of refractive index 1.5 (near normal incidence) is 5 cm deep which wiewed from one surface and 3 cm deep when viewed from the opposite face. The thickness the slab is, (a) 8 cm (b) 10 cm (c) 12 cm (d) 16 cm A ray of light travelling in a transparent medium of refractive index n falls, on a surf separating the medium from air at an angle of incidents of 45°. The ray can undergo to internal reflection for the following n, (a) n = 1.25 (b) n = 1.33 (c) n = 1.4 (d) n = 1.5 E-7 WAVE OPTICS A plane glass is placed over a various coloured letters (violet, green, yellow, red). The let which appears to be raised more is, (a) red (b) yellow (c) green (d) violet Two point white dots are 1 mm apart on a black paper. They are viewed by eye of pudiameter 3 mm approximately. The maximum distance at which these dots can be resolved.

8.

Glass slide

Screen

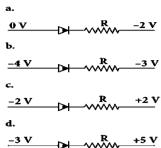
Dr.R.SRINIVASARAGHAVAN M.Sc., M.Ed., M.A., M.Phil, M.Sc (Psy).,

One of the of Young's double slits is covered with a glass plate as

VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

	shown in figure. The position of centro	al maximum v	vill,	
	(a) get shifted downwards	(b) get shifted	d upwards	
	(c) will remain the same	(d) data insuf	ficient to conclu	ude T
9.	, , ,			
	(a) partially polarised (b) unpolarised	d (c) pla	ne polarised	(d) elliptically polarized
10.	, ,	-		
	(a) interference (b) diffraction		ittering	(d) polarization
Unit	nit-8 DUAL NATURE OF RADIATION AN	ID MATTER		
1.	5 c y			
	a) $\lambda_p \propto \lambda_e$ b) $\lambda_p \propto$	$\sqrt{\lambda_e}$	c) $\lambda_p \propto \frac{1}{\sqrt{\lambda_0}}$	d) $\lambda_p \propto \lambda_e^2$
2.			•	ge of 14 kV. If the voltage is
	changed to 224 kV, then the de Bro		•	
	a) increase by 2 times		b) decrease by	y 2 times
	c) decrease by 4 times		d) increase by	
3.	The wave associated with a moving po			
	electron moving with a velocity 6x 10 ⁶			
	·			d) 1.82x 10 ⁻¹⁵ m s ⁻¹
4.	When a metallic surface is illuminated			
	is V. If the same surface is illuminated			h 2λ , the stopping potential
	is V/4. The threshold wavelength for the a) 4λ b) 5λ	ie metailic sui	c) 5/2 λ	d) 3λ
5.	,	ant an a mate		•
٥.	are emitted. Then the wavelength o		A - /	
	(Take $h = 6.6 \times 10^{-34}$ Js)	of the wave	ussociatea Wi	in the emitted electron is
		75x10 ⁻⁹ m	c) $\leq 2.75 \times 10^{-12}$	² m d) < 2.75x10 ⁻¹⁰ m
6.	A photoelectric surface is illuminated		-	-
	and $\lambda/2$. If the maximum kinetic ener		•	
	times that in the first case, the work fu	nction of the	material is	
	a) <i>hc/</i> λ b) 2 <i>hc/</i>	λ	c) <i>hc /</i> 3 λ	d) <i>hc/</i> 2λ
7.			=	
	certain metal is incident on the meta	ıl. Then the r	naximum poss	ible velocity of the emitted
	electron will be	<u></u>		
	a) $\sqrt{\frac{hv_0}{m}}$ b) $\sqrt{\frac{6hv_0}{m}}$	² 0	c) 2 $\sqrt{\frac{hv_0}{m}}$	d) $\sqrt{\frac{hv_0}{2m}}$
0	V	•	•	V =
8.	Two radiations with photon energies surface successively. If the work funct		-	
	speeds of emitted electrons in the two	=	etui 13 0.0 ev,	then the ratio of maximum
	a) 1:4 b) 1:3	cases will be	c) 1:1	d) 1:9
9.	·	emits 1.04 ×	,	,
	source of 460 nm produces 1.38 × 10 ¹⁵	photons per	second. Then t	he ratio of power of second
	source to that of first source is			
	a)1.00 b) 1.02		c) 1.5	d) 0.98
10.	. If the mean wavelength of light from s			
	then the number of photons emit	ted per sec	-	
	a) 10 ⁴⁵ b) 10 ⁴²		c) 10 ⁵⁴	d) 10 ⁵¹

Dr.R.SRINIVASARAGHAVAN M.Sc., M.Ed., M.A., M.Phil, M.Sc (Psy)., VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170


11.	The threshold wavelength for a 14125 Å	a metal surface whose b) 3750 Å	e photoelectric work j c) 6000 Å	<i>function is 3.313 eV is</i> d) 2062.5 Å
12.	A light of wavelength 500 nr	n is incident on a se	nsitive metal plate o	of photoelectric work
	function 1.235 eV. The kinetic	energy of the photo	electrons emitted is	(Take h= 6.6×10 ⁻³⁴ Js)
	a) 0.58 eV	b) 2.48 eV	c) 1.24 eV	d) 1.16 eV
13.	Photons of wavelength λ are in	ncident on a metal. Th	e most energetic elec	trons ejected from
	the metal are bent into a circul	•	n perpendicular magn	etic field having
	magnitude B. The work function			
	a) $\frac{hc}{\lambda} - m_e + \frac{e^2 B^2 R^2}{2 m_e}$	b) $\frac{hc}{\lambda} + 2m_e + \left[\frac{eBR}{2m_e}\right]$	2	
	c) $\frac{hc}{\lambda} - m_e c^2 - \frac{e^2 B^2 R^2}{2 m_e}$	d) $\frac{nc}{\lambda} - 2m_e \left[\frac{eBR}{2m_e}\right]^2$		
14.	The work functions for metals		2 eV, 2.0 eV and 5.0	eV respectively. The
	metal/metals which will emi	t photoelectrons for	a radiation of wave	elength 4100Å is/are
	a) A only	b) both A and B	c) all these metals	d) none
15.	Emission of electrons by the ab	sorption of heat energ	gy is calledemiss	ion.
	a) photoelectric	b) field	c) thermionic	d) secondary
Uni	t- 9 ATOMIC AND NUCLEAR P	HYSICS		
1.	Suppose an alpha particle accel	erated by a potential	of V volt is allowed to	collide with a
	nucleus whose atomic number 2	Z, then the distance of	closest approach of a	alpha particle to the
	nucleus is			
	•	(b) 14.4 $\frac{v}{z}$ Å		-
2.	In a hydrogen atom, the electro		_	-
	(a) h		(c) 4h/π	(d) 2h/π
3.	Atomic number of H-like atom v			
_	(a) 1	(b) 2	(c) 3	(d) 4
4.	The ratio between the radius of			(1) 4 0 5
_	(a) 1 : 2 : 3	(b) 2 : 4 : 6	(c) 1:4:9	(d) 1:3:5
5.	The charge of cathode rays part		/)	(1)
_	(a) positive	(b) negative	(c) neutral	(d) not defined
6.	In J.J. Thomson e/m experiment crossed electric field and magn	etic field of strength	$3.0x10^4 \text{ Vm}^{-1}$ and 1.0	
	and pass through it and undeflet (a) 1.6x10 ¹⁰ Ckg ⁻¹	(b) 1.7x10 ¹¹ Ckg ⁻¹	(a) 1 5×10 ¹¹ Ckg ⁻¹	(d) 1 0 × 10 11 Ckg-1
7	_			
7.	The ratio of the wavelengths ra He^{+} and H is	·	•	
	(a) 1:2:3	` '	(c) 3 : 2 : 1	` '
8.	The electric potential of an elec	tron is given by $V = V_0$	In $(\frac{r}{r_0})$, where r_0 is a c	onstant. If Bohr atom
	model is valid, then variation of	f radius of n th orbit r _n v	with the principal qua	ntum number n is
	(a) $r_n \propto 1/n$	(b) $r_n \propto n$	(c) $r_n \propto 1/n^2$	(d) $r_n \propto n^2$
9.	If the nuclear radius of ²⁷ Al is 3.			
	(a) 2.4	(b) 1.2	(c) 4.8	(d) 3.6
10.	The nucleus is approximately sp number A varies as	herical in shape. Ther	n the surface area of n	ucleus having mass
	(a) A ^{2/3}	(b) A ^{4/3}	(c) A ^{1/3}	(d) A ^{5/3}
11	The mass of a ${}_{3}^{7}$ Li nucleus is 0.			
тТ.	average binding energy per nucleus is \mathbf{u} .			un its nucleons. The
	(a) 46 MeV	(b) 5.6 MeV	-	(d) 22 May
	(a) 40 IVIEV	אואו סיב לח)	(c) 3.9 MeV	(d) 23 MeV

VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

	M _p denotes the mass of binding energy B, contains	ins Z protons and		=	_	=
	by (where c is the speed		/l=	NA (NI 7) - NINA .	7N4 . D-2	
	(a) M (N, Z) = NM _n + ZM _p	, – BC	(D)	$M (N, Z) = NM_n + M_n $	$2IVI_p + BC$	
	(c) M (N, Z) = $NM_n + ZM_p$				· ·	
	A radioactive nucleus (in			-		
	positrons. The ratio of n					
	(a) $\frac{A-Z-4}{Z-2}$	(b) $\frac{A-Z-}{Z-6}$	<u> </u>	(c) $\frac{A-Z-4}{Z-6}$	(d) -	$\frac{1-Z-12}{7-4}$
	The half-life period of a					4 4
	radioactive element B. I				-	notifei
	(a) A and B have the sam	•		_		me rate always
	(c) B will decay at faster	=	ally		cay at the sa	
	• •					
	A radioactive element o		uciei at t	= 0. The number (oj nuciei remo	lining after naij
	of a half-life (that is, at t	time $t = \frac{1}{2} T_{\frac{1}{2}}$				
	(a) $N_0/2$	(b) N₀/√	2	(c) N ₀ /4	(d) N	√ 0/8
	it- 10 ELECTRONICS AN	(,		() 3,		
1.	The barrier potential of			mataly		
1.	•		υμρισχι		4/ 3	21/
	a) 0.7 V	b) 0.3V		c) 2.0 V	d) 2	. Z V
2.	If a small amount of an		_			
	a) it becomes a p-type s			the antimony bed		ptor atom
	c) there will be more fre		hole in t	ne semiconductor		
	d) its resistance is increa	ased	1 4			
3.	In an unbiased p-n junc	tion, the majorit	y charge	carriers (that is, h	oles) in the p	region diffuse
	into n-region because o	of A		. U		
	a) the potential differen	ice across the p-r	junction			
	b) the higher hole conce	entration in p-reg	ion than	that in n-region		
	c) the attraction of free	electrons of <i>n</i> -re	gion	_	d) All of the	above
4.	If a positive half –wave	rectified voltage	e is fed to	a load resistor, f	or which part	of a cycle there
٦.	will be current flow thro		. is jeu to	a loud resistor, j	or willen pare	of a cycle there
	a) 0 ⁰ –90 ⁰	b) 90 ⁰ –1	80 ⁰	c) 0 ⁰ –180 ⁰	ط) U	⁰ –360 ⁰
_	<i>'</i>		.00	c, 0 100	u, o	300
5.	The zener diode is prim		· · · ·	-) 0 :!! - !	-11.3.4	altara da lata
	a) Rectifier	b) Ampli		c) Oscillator	a) v	oltage regulator
6.	The principle based on		-			
	a) Diffusion	b) Recombination	on c)	Photovoltaic action	on d) C	arrier flow
7.	The light emitted in an	LED is due to				
	a) Recombination of cha	arge carriers	b)	Reflection of light	due to lens a	ction
	c) Amplification of light	falling at the jund	ction d)	Large current cap	acity.	
8.	The barrier potential of	_	-		•	
Ο.	i) type of semiconducto	• •	-	 t of doping	iii) tempera	iture
	Which one of the follow		i, airioan	t of doping	m, tempera	· · · · · · · · · · · · · · · · · · ·
	a) (i) and (ii) only	b) (ii) only	c)	(ii) and (iii) only	d) (i) (ii) and	1 (iii)
^		, , , ,	-	(ii) and (iii) only	u) (i) (ii) aiit	<i>i</i> (111 <i>)</i>
9.	To obtain sustained osc		iliator,	L) Faaille 1	factor as all	a
	a) Feedback should be p			•	factor must b	e unity
	c) Phase shift must be 0			d) All the abo	ove	
10.	If the input to the NOT	-	its outpu			
	a) 0100	b) 1000		c) 1100	d) 0	011

VASAN INSTITUTE West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

11. Which one of the following represents forward bias diode?

12. The given electrical network is equivalent to

- a) AND gate
- b) OR gate
- c) NOR gate
- d) NOT gate

13. The output of the following circuit is 1 when the input ABC is

a) 101

b) 100

c) 110

d) 010

14. The variation of frequency of carrier wave with respect to the amplitude of the modulating signal is called

a) Amplitude modulation

b) Frequency modulation

c) Phase modulation

d) Pulse width modulation

15. The frequency range of 3 MHz to 30 MHz is used for

a) Ground wave propagation

b) Space wave propagation

c) Sky wave propagation

d) Satellite communication

Unit- 11 RECENT DEVELOPMENTS IN PHYSICS

The particle size of ZnO material is 30 nm. Based on the dimension it is classified as 1.

- a) Bulk material
- b) Nanomaterial
- c) Soft material
- d) Magnetic material

2. Which one of the following is the natural nanomaterial.

- a) Peacock feather
- b) Peacock beak
- c) Grain of sand
- d) Skin of the Whale

The blue print for making ultra durable synthetic material is mimicked from 3.

- a) Lotus leaf
- b) Morpho butterfly c) Parrot fish
- d) Peacock feather

The method of making nanomaterial by assembling the atoms is called 4.

a) Top down approach

b) Bottom up approach

c) Cross down approach

d) Diagonal approach

"Ski wax" is an application of nano product in the field of 5.

- a) Medicine
- b) Textile
- c) Sports
- d) Automotive industry

The materials used in Robotics are 6.

- a) Aluminium and silver b) Silver and gold
- c) Copper and gold
- d) Steel and aluminum

7. The alloys used for muscle wires in Robots are

a) Shape memory alloys

b) Gold copper alloys

c) Gold silver alloys

d)Two dimensional alloys

The technology used for stopping the brain from processing pain is 8.

- a) Precision medicine b) Wireless brain sensor
- c) Virtual reality
- d) Radiology

9. The particle which gives mass to protons and neutrons are

- a) Higgs particle
- b) Einstein particle
- c) Nanoparticle
- d) Bulk particle

The gravitational waves were theoretically proposed by 10.

- a) Conrad Rontgen
- b) Marie Curie
- c) Albert Einstein
- d) Edward Purcell

5. b

10. a

15. c

Dr.R.SRINIVASARAGHAVAN M.Sc., M.Ed., M.A., M.Phil, M.Sc (Psy)., **VASAN INSTITUTE** West Mambalam, Chennai-600 033 Cell: 9710621952 / 8825971170

ANSWERS

Unit-8

1. d

6. d

11. b

Unit- 10

Unit- 1 ELECTROSTATICS							
1) b	2) c	3) d	4) b	5) a			
6) b	7) c	8) a	9) c	10) b			
11) a	12) c	13) d	14) b	15) a			

Unit- 7	WAVE (OPTICS		
1) d	2) b	3) a	4) c	5) b
6) b	7) a	8) b	9) c	10) d

2. c

7. b

12. c

1) b	2) c	3) d	4) b	5) a
6) b	7) c	8) a	9) c	10) b
11) a	12) c	13) d	14) b	15) a
Unit- 2	CURREN	NT ELECTRI	ICITY	
1) a	2) a	3) c	4) b	5) a
6) c	7) d	8) c	9) d	10) c
11) a	12) d	13) b	14) d	15) a
		TISM AND		IC
EFFECTS	OF ELECT	RIC CURRI	ENT	
1) a	2) d	3) c	4) b	5) b
6) a	7) b	8) a	9) b	10) c
11) c	12) c	13) b	14) d	15) c
		MAGNETIC	CINDUCTI	ON AND
	ELECTROI ATING CU		<u> INDUCTI</u>	ON AND
	ATING CU	RRENT	4) d	
<u>ALTERN</u>	2) d	RRENT	4) d	
1) a 6) a	2) d 7) a	3) b	4) d 9) c	5) a
1) a 6) a	2) d 7) a	3) b 8) b	4) d 9) c	5) a 10) a
1) a 6) a 11) c	2) d 7) a 12) c	3) b 8) b	4) d 9) c 14) c	5) a 10) a
1) a 6) a 11) c	2) d 7) a 12) c	3) b 8) b 13) d	4) d 9) c 14) c	5) a 10) a
1) a 6) a 11) c Unit- 5 1) b	2) d 7) a 12) c ELECTROI	3) b 8) b 13) d MAGNETIO	4) d 9) c 14) c 2 WAVES 4) c	5) a 10) a 15) d
1) a 6) a 11) c Unit- 5 1) b	2) d 7) a 12) c ELECTROI	3) b 8) b 13) d MAGNETIC 3) d	4) d 9) c 14) c 2 WAVES 4) c	5) a 10) a 15) d
1) a 6) a 11) c Unit- 5 1) b 6) b	2) d 7) a 12) c ELECTRO 2) d 7) a	3) b 8) b 13) d MAGNETIC 3) d 8) c	4) d 9) c 14) c 2 WAVES 4) c 9) b	5) a 10) a 15) d 5) a 10) b
1) a 6) a 11) c Unit- 5 1) b 6) b	2) d 7) a 12) c ELECTRO 2) d 7) a	3) b 8) b 13) d MAGNETIO 3) d 8) c 13) d	4) d 9) c 14) c 2 WAVES 4) c 9) b	5) a 10) a 15) d 5) a 10) b
1) a 6) a 11) c Unit- 5 1) b 6) b 11) c	2) d 7) a 12) c ELECTROI 2) d 7) a 12) a	3) b 8) b 13) d MAGNETIO 3) d 8) c 13) d	4) d 9) c 14) c 2 WAVES 4) c 9) b	5) a 10) a 15) d 5) a 10) b

Unit- 9 ATOMIC AND NUCLEAR PHYSICS						
1) b	2) d	3) c	4) c	5) b		
6) b	7) d	8) b	9) c	10) A		
11) b	12) c	13) b	14) c	15) b		

DUAL NATURE OF RADIATION AND MATTER

3. d

8. b

13. d

4. d

9. c

14. b

ELECTRO	ONICS AN	D COMML	JNICATION	
1. a	2. c	3. b	4. c	5. d
6. c	7. a	8. d	9. d	10. a
11. a	12. c	13. a	14. b	15. c

Unit- 11 RECENT DEVELOPMENTS IN PHYSICS						
1) b	2) a	3) c	4) b	5) c		
6) d	7) a	8) c	9) a	10) c		

1) b	2) b	3) d	4) a	5) b
6) c	7) d	8) b	9) c	10) d