-		CST.			to Michigan	
	215	200				
Section .	•	-	-	• 7		
CI	2-6	-	•	-		B
			•			,
10 10	-		_	• •		

*		4671619	
 1 100	1 24 4 142		A . P

SECOND MID TERM TEST - 2024

Time Allowed: 1.30 Hours

MATHEMATICS

[Max. Marks: 50

PART - I

Choose the correct Answer.

7x1=7

- The number of Points of intersection of the quadratic polynomial x2+4x+4 with the x axis is

- Find the matrix x if 2x + $\begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$
 - (a) $\begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$

- 3. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$ which of the following statements are correct?
 - i) AB+C = $\begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$ (ii) BC = $\begin{pmatrix} 0 & 1 \\ 2 & -3 \\ 4 & 10 \end{pmatrix}$ (iii) BA+C = $\begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$ (iv) (AB)C = $\begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$
 - a) (i) and (ii) only
- (ii) and (iii) only c) (iii) and (iv) only d) all of these b)

- A tower is 60m heigh. Its shadow is x metres shorter when the sun's altitude is 45° than when it 4. has been 30°, then x is equal to
 - a) 41.92m
- 43.92m
- 43m
- The two tangents from an external points P to a circle with centre O are PA and PB. If ∠APB = 70° then <u>5.</u> the value of ∠AOB is
 - a) 100°
- c) 120°
- The angle of depression of the top and bottom of 20m tall building from the top of a multistoried 6. building are 30° and 60° respectively. The height of the multistoried building and the distance between two building (in metres) is
 - a) 20, 10√3
- b) 30, 5√3
- c) 20, 10
- 7. If the height of the building and distance from the building foot's to a point is increased by 50% then the angle of elevation on the top of the building
 - a) Increases
- Decreases
- c) Do not change d) Increase 50%

PART - II

Answer any five questions only. [Q.No. 14 is compulsory].

8. If
$$A = \begin{pmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5/2 \end{pmatrix}$$
 then verify $(A^T)^T = A$.

TPR/J/10/Mat/1

- 9. Construct a 3 x 3 matrix whose elements are $a_{ij} = l^2 l^2$
- 10. State Ceva's Theorem,
- 11. Find the length of the tangent drawn from a point whose distance from the centre of a circle is 5cm and radius of the circle is 3cm.
- 12. A kite is flying at a height of 75m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
- 13. A tower stands vertically on the ground. From a point on the ground, which is 48m away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.
- 14. Define square matrix with example.

PART - III

III. Answer any Five questions. Q.No. 21 is compulsory.

5x5=25

15. If A =
$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix}$$
 and C = $\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ show that (AB)C = A(BC).

16. Find x and y if
$$x \begin{pmatrix} 4 \\ -3 \end{pmatrix} + y \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

17. If
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix}$ show that $(AB)^T = B^T A^T$

18. If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Show that A^2 - $(a+d)A = (bc - ad)I_2$.

- 19. Show that in a triangle, the medians are concurrent.
- 20. As observed from the top of a 60m high lighthouse from the sea level, the angles of depression of two ships are 28° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships. (tan 28° = 0.5317)

21. Given
$$A = \begin{pmatrix} p & 0 \\ 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & -q \\ 1 & 0 \end{pmatrix}$, $c = \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix}$ and if $BA = C^2$, find p and q.

IV. Answer the following Question.

1x8=8

22. Draw the graph of $x^2 - 9x + 20 = 0$ and state nature of solutions.

(OR)

Draw a circle of diameter 6cm from a point P, Which is 8cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

TPR/J/10/Mat/2