www.Padasalai.Net Y. SEENIVASAN. M.Sc, B.Ed – PG TEACHER (MATHS) - 8489880553 EM NEW(2024-2025)

10 TH MATHS GEOMETRY & GRAPH

COMPLETE QUESTION BANK EM 2024-2025

SIMILAR TRIANGLE

Example : 4.10.

Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle PQR (Scale Factor $\frac{3}{5} < 1$). Example : 4.11.

Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle PQR (Scale Factor $\frac{7}{4} > 1$).

EXERCISE : 4.1

- 10. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (Scale Factor $\frac{2}{3} < 1$).
- 11. Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle LMN (Scale Factor $\frac{4}{5} < 1$).
- 12. Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle ABC (Scale Factor $\frac{6}{5} > 1$).
- 13. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides

of the triangle PQR (Scale Factor $\frac{7}{3} > 1$).

SINGLE TANGENT & ALTERNATE SEGMENT & TWO TANGENT

Example 4.29

Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.

Example 4.30

Draw a circle of radius 4 cm. At a point L on it draw a tangent to the circle using the alternate segment.

Example 4.31

Draw a circle of **diameter 6 cm** from a point P, which is **8 cm** away from its centre. Draw the **two tangents PA** and **PB** to the circle and measure their lengths.

EXERCISE : 4.4

- 11. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P?.
- 12. Draw a circle of radius 4.5 cm. Take a point on the circle. Draw the tangent at that point using the Alternate Segment Theorem.
- Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm.
 Also, measure the lengths of the tangents.
- Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.

Y. SEENIVASAN., M.Sc, B.Ed – PG TEACHER (MATHS) - 8489880553 EM NEW(2024-2025) Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

- 15. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm.Also, measure the lengths of the tangents.
- 16. Draw a tangent to the circle from the point P having radius 3.6 cm. and centre O point P is at a distance 7.2 cm from the centre.

Construction of a Triangle

Example : 4.17

Construct a $\triangle PQR$ in which PQ = 8 cm, $\angle R = 60^{\circ}$ and the Median RG from R to PQ is 5.8 cm. Find the length of the altitude from R to PQ.

Example : 4.18

Construct a $\triangle PQR$ in which such that QR = 5 cm, $\angle P = 30^{\circ}$ and the Altitude from P to QR is of length 4.2 cm.

Example : 4.19

Draw a triangle $\triangle ABC$ of base BC = 8 cm, $\angle A = 60^{\circ}$ and the **Bisector** of $\angle A$ meets BC at D such that BD = 6 cm.

EXERCISE : 4.2

- 11. Construct a $\triangle PQR$ in which base PQ = 4.5 cm, $\angle R = 35^{\circ}$ and the Median RG from R to PQ is 6 cm.
- 12. Construct a $\triangle PQR$ in which QR = 5 cm, $\angle P = 40^{\circ}$ and the Median PG from P to QR is 4.4 cm. Find the length of the Altitude from P to QR.
- 13. Construct a $\triangle PQR$ in which such that QR = 6.5 cm, $\angle P = 60^{\circ}$ and the Altitude from P to QR is of length 4.5 cm
- 14. Construct a $\triangle PQR$ in which such that QR = 5.5 cm, $\angle P = 25^{\circ}$ and the Altitude from P to QR is of length 4 cm.
- 15. Draw a triangle $\triangle ABC$ of base BC = 5.6 cm, $\angle A = 40^{\circ}$ and the **Bisector** of $\angle A$ meets BC at D such that **BD** = 4 cm.
- 16. Draw a triangle $\triangle PQR$ such that PQ = 6.8 cm, vertical angle is 50° and the Bisector of vertical angle meets the base at D where PD = 5.8 cm.

GRAPH OF VARIATION

Example: 3.47: Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and circumference (approximately related) of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm.

Diameter (x) cm	1	2	3	4	5
Circumference (y) cm	3.1	6.2	9.3	12.4	15.5

Y. SEENIVASAN., M.Sc, B.Ed – PG TEACHER (MATHS) - 8489880553 EM NEW(2024-2025) Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com **Example: 3.48 :** A bus is travelling at a uniform speed of **50 km / hr**. Draw the **distance time graph** and hence find

(i) The constant of variation.

- (ii) How far will it travel in 90 minutes or 1 ½ hrs?.
- (iii)The time required to cover a distance of **300 km** from the graph.

Example: 3.49 : A Company initially started with **40 workers** to complete the work by **150 days**. Later it decided to fasten up the work increasing the number of workers as shown below.

Number of workers (x)	40	50	60	75	
Number of days (y)	150	120	100	80	

- (i) Graph the above data and identify the **type of variation**.
- (ii) From the graph, find the number of days required to complete the work if the company decides to opt for **120 workers?**.
- (iii) If the work has to be completed by 200 days, how many workers are required?.

Example: 3.48 : Nishanth is the winner in a Marathon race 12 km distance. He ran at the uniform speed of 12 km / hr and reached the destination in 1 hour. He was followed by Aradhana, Jeyanth, Sathya and Swetha with their respective speed of 6 km / hr, 4 km / hr, 3 km / hr and 2 km / hr. And, they covered the distance in 2 hrs, 3 hrs, 4 hrs and 6 hours respectively.

Draw the Speed- time graph and use it to find time taken to Kaushik with his speed 2.4 km / hr.

EXERCISE 3.15

- A garment shop announces a flat 50 % discount on every purchase of items for their customers. Draw the graph for the relation between the Marked Price and the Discount. Hence find
 - (i) The marked price when a customer gets a discount of ₹ 3250 (from graph).
 - (ii) The discount when the marked price is \gtrless 2500.
- 2. Draw the graph of xy = 24, x, y > 0. Using the graph find,
 - (i) y when x = 3 and (ii) x when y = 6.

3. Graph the following linear function $y = \frac{1}{2}x$. Identify the constant of variation and verify it with the graph. Also find

- (i) y when x = 9 and (ii) x when y = 7.5.
- 4. The following table shows the data about the number of pipes and the time taken to fill the same tank.

No. of. pipes x	2	3	6	9
Time Taken y (in mins)	45	30	15	10

Draw the graph for the above data and hence

- (i) Find the time taken to fill the tank when **five pipes** are used.
- (ii) Find the number of pipes when the **time is 9 minutes**.

www.Padasalai.Net Y. SEENIVASAN. M.Sc, B.Ed – PG TEACHER (MATHS) - 8489880553 EM NEW(2024-2025)

5. A School announces that for a certain competitions, the cash price will be distributed for all the participants equally as show below

No. of. Participants (x)	2	4	6	8	10
Amount for each	180	90	60	45	36
Participants y (in ₹)	100			10	•••

(i) Find the constant of variation.

(ii) Graph the above data and hence, find how will each participants get if the number of participants

are 12.

6. A two wheeler parking zone near bus stand charges as below.

Time x (in hours)	4	8	12	24
Amount y (in ₹)	60	120	180	360

Check if the amount charged are in direct variation or in inverse variation to the parking time. Graph the data. Also

- (i) Find the amount to be paid when parking **time is 6 hrs**.
- (ii) Find the parking duration when the amount **paid is** ₹ **150**.

QUADRATIC GRAPH

Example: 3.51: Discuss the nature of solutions of the following quadratic equations.

(i) $x^2 + x - 12 = 0$ (ii) $x^2 - 8x + 16 = 0$ (iii) $x^2 + 2x + 5 = 0$ Example: 3.52: Draw the graph of $y = 2x^2$ and hence solve $2x^2 - x - 6 = 0$. Example: 3.53: Draw the graph of $y = x^2 + 4x + 3$ and hence solve $x^2 + x + 1 = 0$.

Example: 3.54: Draw the graph of $y = x^2 + x - 2$ and hence solve $x^2 + x - 2 = 0$.

Example: 3.55: Draw the graph of $y = x^2 - 4x + 3$ and hence solve $x^2 - 6x + 9 = 0$.

EXERCISE 3.16

1. Graph the following quadratic equations and state the nature of solutions.

(i)
$$x^2 - 9x + 20 = 0$$
 (ii) $x^2 - 4x + 4 = 0$ (iii) $x^2 + x + 7 = 0$ (iv) $x^2 - 9 = 0$

(v)
$$x^2 - 6x + 9 = 0$$
 (vi) $(2x - 3)(x + 2) = 0$

- 2. Draw the graph of $y = x^2 4$ and hence solve $x^2 x 12 = 0$.
- 3. Draw the graph of $y = x^2 + x$ and hence solve $x^2 + 1 = 0$.
- 4. Draw the graph of $y = x^2 + 3x + 2$ and hence solve $x^2 + 2x + 1 = 0$.
- 5. Draw the graph of $y = x^2 + 3x 4$ and hence solve $x^2 + 3x 4 = 0$.
- 6. Draw the graph of $y = x^2 5x 6$ and hence solve $x^2 5x 14 = 0$.
- 7. Draw the graph of $y = 2x^2 3x 5$ and hence solve $2x^2 4x 6 = 0$.
- 8. Draw the graph of y = (x 1)(x + 3) and hence solve $x^2 x 6 = 0$.

PREPARED & TYPED BY

Y. SEENIVASAN . M.Sc, B.Ed (MATHS TEACHER)