



(One Mark Answer key is available in the middle page. Kindly detach it and keep it separately for repeated practice)



One Mark Question Bank (Book Back Questions and Additional Questions)\* 10 Government Public Questions Answer key for 2, 3 & 5 Mark Questions (Lesson wise)







# **TO GET COPIES CONTACT 9080228421 / 9488890842**

# UNIT-1: BASIC CONCEPTS OF CHEMISTRY AND CHEMICAL CALCULATIONS

#### **Choose the Best Answer**

# EVALUATION

| 1. 40 ml of methane is completely burnt using 80 ml of oxygen at room temperature. The                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| volume of gas left after cooling to room temperature is                                                                                         |
| (a) $40 \text{ ml CO}_2$ gas (b) $40 \text{ ml CO}_2$ gas and $80 \text{ ml H}_2\text{O}$ gas                                                   |
| (c) 60 ml CO <sub>2</sub> gas and 60 ml H <sub>2</sub> O gas (d) 120 ml CO <sub>2</sub> gas                                                     |
| 2. An element X has the following isotopic composition $^{200}X = 90\%$ , $^{199}X = 8\%$ and $^{202}X =$                                       |
| 2%. The weighted average atomic mass of the element X is closest to                                                                             |
| (a) 201 u (b) 202 u (c) 199 u (d) 200 u                                                                                                         |
| 3. Assertion : two mole of glucose contains $12.044 \times 10^{23}$ molecules of glucose.                                                       |
| <b>Reason</b> : Total number of entities present in one mole of any substance is                                                                |
| equal to $6.02 \times 10^{22}$                                                                                                                  |
| (a)Both assertion and reason are true and the reason is the correct explanation of                                                              |
| assertion.                                                                                                                                      |
| (b)Both assertion and reason are true but reason is not the correct explanation of                                                              |
| assertion.                                                                                                                                      |
| (c)assertion is true but reason is false                                                                                                        |
| (d)both assertion and reason are false                                                                                                          |
| 4. Carbon forms two oxides, namely carbon monoxide and carbon dioxide. The equivalent mass of                                                   |
| which element remains constant?                                                                                                                 |
| (a) carbon (b) oxygen                                                                                                                           |
| (c) both carbon and oxygen (d) neither carbon nor oxygen                                                                                        |
| 5. The equivalent mass of a trivalent metal element is 9 g eq <sup>-1</sup> the molar mass of its                                               |
| anhydrous oxide is                                                                                                                              |
| (a) $102 \text{ g}$ (b) $27 \text{ g}$ (c) $270 \text{ g}$ (d) $78 \text{ g}$                                                                   |
| 6. The number of water molecules in a drop of water weighing 0.018 g is (JUN 23, MAR 24)                                                        |
| (a) $6.022 \times 10^{20}$ (b) $6.022 \times 10^{23}$ (c) $6.022 \times 10^{20}$ (d) $9.9 \times 10^{22}$                                       |
| 7. 1 g of an impure sample of magnesium carbonate (containing no thermally decomposable impurities)                                             |
| on complete thermal decomposition gave 0.44 g of carbon dioxide gas. The percentage of                                                          |
| impurity in the sample is                                                                                                                       |
| (a) 0% (b) 4.4% (c) 16% (d) 8.4%                                                                                                                |
| 8. When 6.3 g of sodium bicarbonate is added to 30 g of acetic acid solution, the residual solution is                                          |
| found to weigh 33 g. The number of moles of carbon dioxide released in the reaction is                                                          |
| (a) 3 (b) $0.75$ (c) $0.075$ (d) $0.3$                                                                                                          |
| 9. When 22.4 litres of $H_{2(g)}$ is mixed with 11.2 litres of $Cl_{2(g)}$ , each at 2/3 K at 1 atm the moles                                   |
| of HCl <sub>(g)</sub> , formed is equal to                                                                                                      |
| (a) 2 moles of $HCl_{(g)}$ (b) 0.5 moles of $HCl_{(g)}$                                                                                         |
| (c) 1.5 moles of $HCI_{(g)}$ (d) 1 mole of $HCI_{(g)}$                                                                                          |
| 10. Hot concentrated sulphuric acid is a moderately strong oxidising agent. Which of the following reactions does not show oxidising behaviour? |
| (a) $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$ (b) $C + 2H_2SO_4 \longrightarrow CO_2 + 2SO_2 + 2H_2O$                               |
| (c) $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl$ (d) None of the above                                                                      |

11. Choose the disproportionation reaction among the following redox reactions.

(a)  $3Mg_{(s)} + N_{2(g)} \longrightarrow Mg_3N_{2(s)}$  (b)  $P_{4(s)} + 3NaOH + 3H_2O \longrightarrow PH_{3(g)} + 3NaH_2PO_{2(aq)}$  $(c) \operatorname{Cl}_{2(g)} + 2\operatorname{KI}_{(aq)} \longrightarrow 2\operatorname{KCl}_{(aq)} + I_2 \qquad (d) \operatorname{Cr}_2\operatorname{O}_{3(s)} + 2\operatorname{Al}_{(s)} \longrightarrow \operatorname{Al}_2\operatorname{O}_{3(s)} + 2\operatorname{Cr}_{(s)}$ 12. The equivalent mass of potassium permanganate in alkaline medium is  $MnO_4 + 2H_2O + 3e^- \longrightarrow MnO_2 + 4OH^-$ (a) 31.6 (b) 52.7 (d) none of these (c) 79 13. Which one of the following represents 180 g of water? (SEP 21) (c)  $\frac{6.022 \times 10^{23}}{180}$  molecules of water (d)  $6.022 \times 10^{24}$  molecules of water (a) 5 moles of water 14. 7.5 g of a gas occupies a volume of 5.6 litres at 0°C and 1 atm pressure. The gas is (SEP 21) (a) NO (b)  $N_2O$ (c) CO(d)  $CO_2$ 15. Total number of electrons present in 1.7 g of ammonia is (JUL 22)(a)  $6.022 \times 10^{23}$  (b)  $\frac{6.022 \times 10^{22}}{1.7}$  (c)  $\frac{6.022 \times 10^{24}}{1.7}$  (d)  $\frac{6.022 \times 10^{23}}{1.7}$ 16. The correct increasing order of the oxidation state of sulphur in the anion  $SO_4^{2-}$ ,  $SO_3^{2-}$ ,  $S_2O_4^{2-}$ ,  $S_2O_6^{2-}$  is (a)  $SO_3^{2-} < SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (b)  $SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$ (c)  $S_2O_4^{2-} < SO_3^{2-} < SO_4^{2-} < SO_4^{2-}$ (d)  $S_2O_6^{2-} < SO_4^{2-} < SO_4^{2-}$ 17. The equivalent mass of ferrous oxalate is (a)  $\frac{\text{molar mass of ferrous oxalate}}{1}$  (b)  $\frac{\text{molar mass of ferrous oxalate}}{2}$ (c)  $\frac{\text{molar mass of ferrous oxalate}}{3}$  (d) none of these 18. If Avagadro number were changed from  $6.022 \times 10^{23}$  to  $6.022 \times 10^{20}$ , this would change (a) the ratio of chemical species to each other in a balanced equation (b) the ratio of elements to each other in a compound (c) the definition of mass in units of grams (d) the mass of one mole of carbon 19. Two 22.4 litre containers A and B contains 8 g of O<sub>2</sub> and 8 g of SO<sub>2</sub> respectively at 273 K and 1 atm pressure, then (a) Number of molecules in A and B are same (b) Number of molecules in B is more than that in A (c) The ratio between the number of molecules in A to number of molecules in B is 2:1 (d) Number of molecules in B is three times greater than the number of molecules in A 20.What is the mass of precipitate formed when 50 ml of 8.5% solution of AgNO<sub>3</sub> is mixed with 100 ml of 1.865% potassium chloride solution? (a) 3.59 g (b) 7 g (c) 14 g (d) 28 g 21. The mass of a gas that occupies a volume of 612.5 ml at room temperature and pressure  $(25^{\circ}C \text{ and } 1 \text{ atm pressure}) \text{ is } 1.1 \text{ g}$ . The molar mass of the gas is (a)  $66.25 \text{ g mol}^{-1}$  (b)  $44 \text{ g mol}^{-1}$  (c)  $24.5 \text{ g mol}^{-1}$  (d)  $662.5 \text{ g mol}^{-1}$ 22. Which of the following contain same number of carbon atoms as in 6 g of carbon-12 (a) 7.5 g ethane (b) 8 g methane (c) both (a) and (b) (d) none of these 23. Which of the following compound(s) has/have percentage of carbon same as that in ethylene  $(C_2H_4)$ (MAR 19, SEP 21, MAR 23) (a) propene (b) ethyne (c) benzene (d) ethane

(SEP

(d) 46g

24. Which of the following is/are true with respect to carbon-12 (a) relative atomic mass is 12 u (b) oxidation number of carbon is +4 in all its compounds (c) 1 mole of carbon-12 contain  $6.022 \times 10^{22}$  carbon atoms (d) all of these 25. Which of the following is used as a standard for atomic mass? (d)  ${}_{6}C^{14}$ (a)  ${}_{6}C^{12}$ (b)  $_{7}C^{12}$ (c)  $_{6}C^{13}$ **ADDITIONAL QUESTIONS** 26. Which has maximum number of molecules? (a) 7 g N<sub>2</sub> (b) 2 g H<sub>2</sub> (c)  $18 \text{ g NO}_2$  (d)  $16 \text{ g O}_2$ 27. The number of atoms in 0.1 mole of a triatomic gas is: (a)  $1.8 \times 10^{22}$  (b)  $6.02 \times 10^{23}$  (c)  $1.806 \times 10^{23}$ (d)  $3.6 \times 10^{23}$ 28.  $6.02 \times 10^{20}$  molecules of urea are present in 100 ml of its solution. The concentration of 29. T

|     | solution is:             |               |                         |                           |              |           |
|-----|--------------------------|---------------|-------------------------|---------------------------|--------------|-----------|
|     | (a) 0.01 M               | (b)           | 0.001 M                 | (c) 0.1 M                 | (d) 0.02 M   |           |
| 29. | The Number of            | water molecu  | les is max              | imum in:                  |              |           |
|     | (a) 1.8 g H <sub>2</sub> | 0             |                         | (b) 18 g H <sub>2</sub> O |              |           |
|     | (c) 18 moles             | s of water    |                         | (d) 18 molecu             | ile of water |           |
| 30. | The oxidation nu         | umber of Carb | on in CH <sub>2</sub> F | F <sub>2</sub> is         |              | (JUNE 19) |
|     | (a) +4                   | (b) – 4       | (c) 0                   |                           | (d) +2       |           |

31. The relative molecular mass of ethanol is (a) 0.46g (b) 4.6g (c) 460 g

#### **UNIT-2: QUANTUM MECHANICAL MODEL OF ATOM**

#### **Choose the Best Answer**

#### **EVALUATION**

- 1. Electronic configuration of species  $M^{2+}$  is  $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$  and its atomic weight is 56. The number of neutrons in the nucleus of species M is
- (a) 26 (b) 22 (c) 30 (d) 24 2. The energy of light of wavelength 45 nm is
  - (a)  $6.67 \times 10^{15}$  J (b)  $6.67 \times 10^{11}$  J (c)  $4.42 \times 10^{-18}$  J (d)  $4.42 \times 10^{-15}$  J
- 3. The energies  $E_1$  and  $E_2$  of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths i.e.  $\lambda_1$  and  $\lambda_2$  will be

(a) 
$$\frac{\lambda_1}{\lambda_2} = 1$$
 (b)  $\lambda_1 = 2\lambda_2$  (c)  $\lambda_1 = \sqrt{25 \times 50}\lambda_2$  (d)  $2\lambda_1 = \lambda_2$ 

4. Splitting of spectral lines in an electric field is called

- (a) Zeeman effect
- (c) Compton effect (d) Stark effect
- 5. Based on equation  $E = -2.178 \times 10^{-18} J\left(\frac{z^2}{n^2}\right)$ , certain conclusions are written. Which of them is

not correct?

- (a) Equation can be used to calculate the change in energy when the electron changes orbit
- (b)For n = 1, the electron has a more negative energy than it does for n = 6, which means that the electron is more loosely bound in the smallest allowed orbit
- (c)The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus
- (d)Larger the values of n, the larger is the orbit radius
- 6. According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon?

| (a) $n = 6$ to $n = 1$ | (b) $n = 5$ to $n = 4$ |
|------------------------|------------------------|
| (c) $n = 5$ to $n = 3$ | (d) $n = 6$ to $n = 5$ |

7. Assertion : The spectrum of He<sup>+</sup> is expected to be similar to that of hydrogen.

**Reason** :  $He^+$  is also one electron system.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion
- (c) If assertion is true but reason is false
- (d) If both assertion and reason are false
- 8. Which of the following pairs of d-orbitals will have electron density along the axes?

(a) 
$$d_{z^2}, d_{xz}$$
 (b)  $d_{xz}, d_{yz}$  (c)

(c)  $d_{z^2}, d_{x^2-y^2}$ 



9. Two electrons occupying the same orbital are distinguished by

(a) azimuthal quantum number

(c) magnetic quantum number

(b) spin quantum number(d) orbital quantum number

field is called  $(0, n_1 - \sqrt{20 \times 0.0 n_2})$ 

(b) Shielding effect

(NEET)

(MAR 19.22)

10. The electronic configuration of Eu (Atomic No. 63) Gd (Atomic No. 64) and Tb (Atomic No. 65) are (NEET Phase II)

(a) [Xe]  $4f^6 5d^1 6s^2$ , [Xe]  $4f^7 5d^1 6s^2$  and [Xe]  $4f^8 5d^1 6s^2$ 

(b) [Xe] 
$$4f'$$
,  $6s^2$ , [Xe]  $4f' 5d^1 6s^2$  and [Xe]  $4f' 6s^2$ 

- (c) [Xe]  $4f^7$ ,  $6s^2$ , [Xe]  $4f^8 6s^2$  and [Xe]  $4f^8 5d^1 6s^2$
- (d) [Xe]  $4f^6 5d^1 6s^2$ , [Xe]  $4f^7 5d^1 6s^2$  and [Xe]  $4f^9 6s^2$

11. The maximum number of electrons in a sub shell is given by the expression (*MAR 24*) (a)  $2n^2$  (b) 2l + 1 (c) 4l + 2 (d) none of these

12. For d-electron, the orbital angular momentum is

(a) 
$$\frac{\sqrt{2h}}{2\pi}$$
 (b)  $\frac{\sqrt{2h}}{2\pi}$  (c)  $\frac{\sqrt{2\times 4h}}{2\pi}$  (d)  $\frac{\sqrt{6h}}{2\pi}$ 

13. What is the maximum numbers of electrons that can be associated with the following set of quantum numbers? n = 3, l = 1 and m = -1.

(a) 4 (b) 6 (c) 2 (d) = 
$$10$$

14. Assertion : Number of radial and angular nodes for 3p orbital are 1, 1 respectively.

**Reason** : Number of radial and angular nodes depends only on principal quantum number.

- (a) both assertion and reason are true and reason is the correct explanation of assertion
- (b) both assertion and reason are true but reason is not the correct explanation of assertion
- (c) Assertion is true but reason is false
- (d) both assertion and reason are false

15. The total number of orbitals associated with the principal quantum number n = 3 is

|          |           |                      |                       |                    |                      |                        |                                     | (JUL 22, MAR 23) |
|----------|-----------|----------------------|-----------------------|--------------------|----------------------|------------------------|-------------------------------------|------------------|
|          | (a) 9     |                      |                       | (b) 8              |                      | (c) 5                  |                                     | (d) 7            |
| 16. If 1 | n = 6, th | ne corre             | ct seque              | nce for            | filling of           | of electrons w         | vill be,                            |                  |
|          | (a) ns -  | $\rightarrow$ (n – 2 | 2) f $\rightarrow$ (n | - 1) d -           | $\rightarrow$ np (b) | $ns \rightarrow (n-1)$ | $d \rightarrow (n-2) f \rightarrow$ | np               |
|          | (c) ns    | $\rightarrow$ (n –   | 2) f $\rightarrow$ 1  | $n \rightarrow (n$ | (1 - 1) d            | (d) none of the        | hese are correct                    | •                |
| 17. Co   | nsider    | the follo            | wing se               | ets of qu          | antum 1              | numbers:               |                                     |                  |
|          |           | n                    | 1                     | m                  | S                    |                        |                                     |                  |
|          | i)        | 3                    | 0                     | 0                  | $+\frac{1}{2}$       |                        |                                     |                  |
|          | ii)       | 2                    | 2                     | 1                  | $-\frac{1}{2}$       |                        |                                     |                  |
|          | iii)      | 4                    | 3                     | -2                 | $+\frac{1}{2}$       |                        |                                     |                  |
|          | iv)       | 1                    | 0                     | -1                 | $+\frac{1}{2}$       |                        |                                     |                  |
|          | v)        | 3                    | 4                     | 3                  | $-\frac{1}{2}$       |                        |                                     |                  |
| 18.Wh    | ich of t  | he follo             | wing se               | ts of qu           | antum r              | number is not          | possible?                           |                  |
|          | (a) (i),  | (ii), (iii           | i) and (i             | v)                 |                      | (b) (i                 | i), (iv) and (v)                    |                  |
|          | (c) (i)   | and (iii)            | )                     |                    |                      | (d) (ii), (iii) a      | and (iv)                            |                  |
| 19. Ho   | w man     | y electro            | ons in a              | n atom v           | with ato             | mic number 1           | 105 can have (1                     | (n + 1) = 8?     |
|          | (a) 30    | -                    |                       | (b) 17             |                      | (c) 15                 | (d) unpredict                       | able             |
| 20. Ele  | ectron d  | lensity i            | n the yz              | plane o            | of $3d_{x^2}$        | $-y^2$ orbital is      |                                     |                  |
|          | (a) zer   | 0                    |                       | (b) 0.5            | 0                    | (c) 0.                 | .75                                 | (d) 0.90         |

(d) -9E

21. If uncertainty in position and momentum are equal, then minimum uncertainty in velocity is

(a) 
$$\frac{1}{m}\sqrt{\frac{h}{\pi}}$$
 (b)  $\sqrt{\frac{h}{\pi}}$  (c)  $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$  (d)  $\frac{h}{4\pi}$ 

22. A macroscopic particle of mass 100 g and moving at a velocity of 100 cm s<sup>-1</sup> will have a de Broglie wavelength of

(a)  $6.6 \times 10^{-29}$  cm (b)  $6.6 \times 10^{-30}$  cm (c)  $6.6 \times 10^{-31}$  cm (d)  $6.6 \times 10^{-32}$  cm

- 23. The ratio of de Broglie wavelengths of a deuterium atom to that of an  $\alpha$ -particle, when the velocity of the former is five times greater than that of later, is (a) 4 (b) 0.2 (c) 2.5 (d) 0.4
- 24. The energy of an electron in the 3rd orbit of hydrogen atom is –E. The energy of an electron in the first orbit will be (JUNE 19)

(a) -3E (b) 
$$\frac{-E}{3}$$
 (c)  $\frac{-E}{9}$ 

25. Time independent Schrodinger wave equation is

(a)  $\hat{H}\psi = E\psi$ 

(b) 
$$\nabla^2 \psi + \frac{8\pi^2 m}{h^2} (E+V)\psi = 0$$

(c) 
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{2m}{h^2} (E - V)\psi = 0$$
 (d) all of these

26. Which of the following does not represent the mathematical expression for the Heisenberg uncertainty principle?

(a) 
$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$$
  
(b)  $\Delta x \cdot \Delta v \ge \frac{h}{4\pi m}$   
(c)  $\Delta E \cdot \Delta t \ge \frac{h}{4\pi}$   
(d)  $\Delta E \cdot \Delta x \ge \frac{h}{4\pi}$ 

#### **ADDITIONAL QUESTIONS**

- 26. The orientation of an atomic orbital is governed by
  - (a) Magnetic quantum number (b) Principal quantum number
  - (c) Azimuthal quantum number (d) Spin quantum number

27. Which of the following is not permissible arrangement of electrons in an atom?

(a) 
$$n = 5$$
,  $\ell = 3$ ,  $m = 0$ ,  $s = +1/2$  (b)  $n = 3$ ,  $\ell = 2$ ,  $m = -2$ ,  $s = -1/2$ 

(c) 
$$n = 3$$
,  $\ell = 2$ ,  $m = -3$ ,  $s = -1/2$  (d)  $n = 4$ ,  $\ell = 0$ ,  $m = 0$ ,  $s = -1/2$ 

28. The orbital angular momentum of a p-electron is given as

(a) 
$$\sqrt{3} \frac{h}{2\pi}$$
 (b)  $\frac{\sqrt{3}}{2} \frac{h}{\pi}$  (c)  $\sqrt{6} \sqrt{\frac{h}{2\pi}}$  (d)  $\frac{h}{2\pi}$   
29. How many electrons can fit in the orbital for which n = 3 and l = 1?

(a) 2 (b) 6 (c) 10 (d) 14 30. The maximum number of electrons that can be accommodated in L orbit is. (a) 8 (b) 2 (c) 4 (d) 6

# (SEP 20)

1. Basic Concepts of Chemistry and Chemical Calculations u understand by the term mole? (June-19, June-23) (Gem guide O.No: 27)

| 1. What do you understand by the term mole? (June-19, June-23) (Gem guide Q.No: 27) |       |  |  |  |
|-------------------------------------------------------------------------------------|-------|--|--|--|
| Answer Key                                                                          | Marks |  |  |  |
| Correct Explanation                                                                 | 3     |  |  |  |

2. Define Equivalent Mass(or) Define Gram equivalent mass? (May-22,May-24)

|                                                                                        |                                                   | Gem gu                    | ide Q.No: 28    |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|-----------------|--|--|
| Answer Key                                                                             |                                                   |                           | Marks           |  |  |
| Correct definition (or)                                                                |                                                   |                           | 2               |  |  |
| Crow Equivalent mass                                                                   | $mass(gmol^{-1})$                                 |                           |                 |  |  |
| Gram Equivalent mass = $\frac{1}{Ea}$                                                  | quivalent Factor                                  |                           |                 |  |  |
| 3. Distinguish between oxi                                                             | dation and reduction? (Se                         | p-21, Mar-23) Gem gui     | de Q.No: 30     |  |  |
| Answer Ke                                                                              | ey                                                | Marks                     |                 |  |  |
| Any three points                                                                       | 3                                                 |                           |                 |  |  |
| 4. What is the empirical for                                                           | ormula of the following? (S                       | Sep-21) Gem guide         | e Q.No: 38      |  |  |
| i) Fructose(C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> )                            | Found in honey                                    |                           |                 |  |  |
| ii) Caffeine (C <sub>8</sub> H <sub>10</sub> N <sub>4</sub> C                          | <b>D</b> <sub>2</sub> ) a substance found in te   | a and coffee.             |                 |  |  |
| Compound                                                                               | Molecular Formula                                 | Empirical Formul          | a Marks         |  |  |
| Fructose                                                                               | $C_{6}H_{12}O_{6}$                                | CH <sub>2</sub> O         | 1               |  |  |
| Caffenine                                                                              | $C_8H_{10}N_4O_2$                                 | $C_4H_5N_2O$              | 1               |  |  |
| 5. Calculate the empirica                                                              | al and molecular formula                          | of a compound conta       | ining 76.6%     |  |  |
| carbon, 6.38% hydrogen a                                                               | and rest oxygen. It's vapou                       | r density is 47. (Sep 20, | Jul 22)         |  |  |
|                                                                                        |                                                   | Gem gu                    | ide Q.No: 42    |  |  |
| Answer Ke                                                                              | ey                                                | Marks                     | -               |  |  |
| Tabular column with                                                                    | simple ratio 2                                    |                           |                 |  |  |
| Empirical Formula = $C_6 H_0$<br>n=1                                                   |                                                   |                           |                 |  |  |
| Molecular Formula = $C_6 H_6$                                                          | O 1                                               |                           |                 |  |  |
| 6. A Compound on ana                                                                   | lysis gave Na=14.31%, S                           | S=9.97%, H=6.22%, H       | =6.22% and      |  |  |
| O=69.5%. Calculate the r                                                               | nolecular formula of the o                        | compound if all the hyd   | rogen in the    |  |  |
| compound is present in combination with oxygen as water of crystallization. (molecular |                                                   |                           |                 |  |  |
| mass of the compound is 3                                                              | 322) (Mar-23)                                     | Gem guide (               | <b>D.No: 43</b> |  |  |
|                                                                                        | Answer Key                                        |                           | Mark            |  |  |
| Tabular column with simple                                                             | e ratio                                           |                           | 2               |  |  |
| Empirical formula = $Na_2$ SI                                                          | $H_{20} O_{14}$                                   |                           | 1               |  |  |
| -                                                                                      | n = 1                                             |                           | 1               |  |  |
| Molecular Formula = $Na_2 S$                                                           | $O_4$ 10H <sub>2</sub> O                          |                           | 1               |  |  |
| 7. Balance the following equations by oxidation number method.                         |                                                   |                           |                 |  |  |
| 0                                                                                      |                                                   | (Mar 23) Gem guid         | e Q.No: 45      |  |  |
| <b>a</b> ) $Cu + HNO_3 \rightarrow Cu(NO_3)_2$                                         | $_2 + NO_2 + H_2O$                                |                           | -               |  |  |
| Α                                                                                      | nswer Key                                         | Ma                        | ark             |  |  |
| 0 +5 +2<br>Cu + H NO $\rightarrow$ Cu (N                                               | $\frac{+4}{10}$                                   | 1/2                       |                 |  |  |
| $Cu+III O \rightarrow Cu(I)$                                                           | $(O_3)_2 + (O_2 + O_2)_2$                         | 1                         |                 |  |  |
| $1 \qquad \downarrow \qquad 2e \qquad 1e$                                              |                                                   |                           |                 |  |  |
| $Cu + 2HNO_3 \longrightarrow$                                                          | $Cu(NO_{2})_{a} + NO_{2} + H_{2}O$                |                           |                 |  |  |
| $Cu + 2HNO_3 + 2HN$                                                                    | $IO_{2} \longrightarrow Cu(NO_{2})_{2} + 2NO_{2}$ | $+2H_{0}$                 |                 |  |  |
|                                                                                        | <b>5</b>                                          | 2 <b>2</b> =              |                 |  |  |
| $Cu + 4HNO_{2} \longrightarrow 0$                                                      | $Cu(NO_2)_2 + 2NO_2 + 2H_2O_2$                    |                           |                 |  |  |

| Answer Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | Mark           |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------|------------------------------------------|
| $K \overset{+7}{M} \overset{+7}{nO_4} + Na_2 \overset{+4}{S} O_3 \longrightarrow \overset{+4}{M} \overset{+4}{O_2} + Na_2 \overset{+6}{S} O_4 + KOH$ $\uparrow \qquad \downarrow \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                | <sup>1</sup> /2<br>1                     |
| $2KMnO_4 + 3Na_2SO_3 \rightarrow MnO_2 + Na_2SO_3 \rightarrow 2MnO_2 + 3Na_2SO_3 \rightarrow 3MnO_2 + 3MnO_2 +$ | $O_4 + KOH$<br>$SO_4 + KOH$<br>$+ 3N_{22}SO_4 + 2K($ | ЛЦ             |                                          |
| <b>2 A I I I I I I I I I I</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+ 510a_250_4 + 2K0$<br>(Mar-10)                     | <u>л</u><br>Се | m guide () No: 62                        |
| Answer Kev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (10101-17)                                           | <u>U</u>       | Mark                                     |
| $\mathbf{L}_{-}$ Molarmass of the acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                | 1                                        |
| $E = \frac{1}{Basicity of the acid}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                | 1                                        |
| Gram equivalent mass of $H_2SO_4 = \frac{98}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                | 1                                        |
| Gram equivalent mass of $H_2SO_4 = 49^{\circ} \text{ g eq}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                |                                          |
| 9. Define Basicity. Find the basicity of ortho-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hosphoric acid. (S                                   | ep-20          | ) Gem guide Q.No: 55                     |
| Answer Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | Ma             | rks                                      |
| Correct Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                | 1                                        |
| Basicity = $3 \text{ equ mol}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                | 1                                        |
| <b>10.</b> What is meant by limiting agent? (July-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22)                                                  | Ge             | em guide Q.No: 58                        |
| Answer Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | -              | Marks                                    |
| Correct definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | 2              |                                          |
| 11. Calculate oxidation number of oxygen in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $H_2O_2$ . (Mar-19)                                  | Ge             | m guide Q.No: 63                         |
| $\begin{array}{ c c c c c } \hline Answer Key \\ \hline H O & 2(+1) + 2y = 0  y = -1 \\ \hline 1 + 1 \\ \hline 1 + 1 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Ma             | irks                                     |
| $11_{2} \cup_{2}, \lambda_{(+1)+\lambda} = 0, \lambda_{-1} \qquad 1 + 1$ $12  Calculate the evidetion number of underlined elements (May 22) Com guide O No: 66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                |                                          |
| a) $\underline{CO}_2$ b)H <sub>2</sub> $\underline{SO4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ieu elements. (Ivia                                  | y-22)          | Gem guide Q.No: 00                       |
| Answer Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | Ma             | arks                                     |
| i)C+2(-2) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | 1              | 1/2                                      |
| C=+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                |                                          |
| ii) 2(+1)+S+4(-2)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | 1              | 1/2                                      |
| S=+6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                |                                          |
| 13. A Compound having the empirical formula (Mar-19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ula C <sub>6</sub> H <sub>6</sub> O has th           | e vap<br>Gei   | our density 47. Find<br>m guide O No: 68 |
| Answer Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | Gu             | Marks                                    |
| Mass of empirical formula= $6(12)+6(1)+16 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94                                                   |                | 1/2                                      |
| Molar mass = $2 \times V$ apour density= $2 \times 47 = 94$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                | 1/2                                      |
| molecular mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                | 1/2                                      |
| $n = \frac{1}{Calculated empirical formula mass}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                |                                          |
| -94/94 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                | 1/2                                      |
| $\int -\frac{1}{\sqrt{1-1}} = 1$ Molecular formula = n× empirical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                | 1/2                                      |
| Molecular formula $= 1 \times (C_2 H_2 \Omega) = C_2 H_2 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                | 1/2                                      |
| 14 An organic compound present in the vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | negar has 40% c                                      | arhon          | 6.6% hydrogen and                        |
| 53.4% oxygen. Find its Empirical formula (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mar-24)                                              | Gei            | m onide O No. 72                         |

| 55.4 % oxygen. Find its Empirical formula. (Mai-24) | em guide Q.No. 72 |
|-----------------------------------------------------|-------------------|
| Answer Key                                          | Marks             |
| Tabular column with simple ratio for three elements | 2                 |
| Empirical formula = $CH_2O$                         | 1                 |

#### 2. Quantum Mechanical Model of Atom

# 1. Calculate the total number of angular nodes and radial nodes present in 3d and 4f Orbitals. (Sep-20) (Gem Guide Q.No – 4)

| Answer Key                                      | Marks |
|-------------------------------------------------|-------|
| $3d \Rightarrow$ Radial node=0, Angular node=2  | 1     |
| $4f \Rightarrow Radial node=0$ . Angular node=3 | 1     |

#### 2. How many orbitals are possible for n=4? (May-22) (Gem Guide Q.No -27)

| Answer Key           | Marks |
|----------------------|-------|
| Possible orbitals-16 | 2     |

#### 3. State and explain Pauli's exclusion principle. (Mar-19, Mar-23) (Gem Guide Q.No – 31)

| Answer Key                                                              | Marks |  |  |  |
|-------------------------------------------------------------------------|-------|--|--|--|
| No two electrons in an atom can have the same set of values of all four | 3     |  |  |  |
| quantum numbers                                                         |       |  |  |  |

## **4.** Define orbital. What are the n and *l* values for $3p_x$ and $4d_x^2 - y^2$ electrons?

| (June-19                                                 | <b>)</b> , June-23, Mar-24) (Gem Guide Q.No– 32)   |
|----------------------------------------------------------|----------------------------------------------------|
| Answer Key                                               | Mark                                               |
| Correct definition                                       | 1                                                  |
| $3p_x \Longrightarrow n=3, l=1$                          | 1                                                  |
| $4d_{x}^{2} \xrightarrow{2}{\Rightarrow} n=4, l=2$       | 1                                                  |
| 5. Give the electronic configuration of Mn <sup>2+</sup> | and Cr <sup>3+</sup> (Aug-22) (Gem Guide Q.No: 39) |
| Answer Key                                               | Mark                                               |
| $Mn^{2+} - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^0$           | 1                                                  |
| $Cr^{3+} - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^0$           | 1                                                  |
|                                                          |                                                    |

#### 6. Describe the Aufbau principle. (Sep-21) (Gem Guide Q.No: 40)

| o. Deseribe the Huibuu principie. (Sep 21) |       |
|--------------------------------------------|-------|
| Answer Key                                 | Marks |
| Correct Explanation                        | 2     |
| Figure Only                                | 1     |
|                                            |       |

#### 7. State Heisenberg's uncertainity principle. (Sep-20, Aug-22, Mar-23)

(Gem Guide Q.No: 52)

| Answer Key                                            | Marks |
|-------------------------------------------------------|-------|
| Correct Definition (or)                               | 3     |
| $\Delta x. \Delta p \ge h/4\pi$                       | 2     |
| $\Delta x$ – uncertainity in determining the position | 1⁄2   |
| $\Delta p$ – uncertainity in determining the momentum | 1/2   |

| 8. Define exchange energy. (Sep-21) | (Gem Guide Q.No: 57) |
|-------------------------------------|----------------------|
| Answer Key                          | Marks                |
| Correct Explanation                 | 2                    |

#### 9. Calculate the orbital angular momentum for d and f orbital.(June-19)

|                                                               | Gem Guide Q.No: 59) |
|---------------------------------------------------------------|---------------------|
| Answer Key                                                    | Marks               |
| Angular momentum of electron in $d = \frac{\sqrt{6}h}{2\pi}$  | 1                   |
| Angular momentum of electron in $f = \frac{\sqrt{12}h}{2\pi}$ | 1                   |

10. In degenerate orbitals, why do the completely filled and half filled configuration are more stable than the partially filled configuration? (Sep-20) (Gem Guide Q.No: 60)

| Answer Key          | Marks |
|---------------------|-------|
| Correct Explanation | 2     |

#### 11. Calculate the maximum number of electron that can be accommodated in L shell.

| (Mav-22) | (Gem | Guide | O.No: | <b>61</b> ) |
|----------|------|-------|-------|-------------|

| Answer Key                               | Mark |
|------------------------------------------|------|
| The maximum number of electrons = $2n^2$ | 1    |
| The maximum number of electrons $= 8$    | 1    |

# 12. Write the electronic configuration and orbital diagram for nitrogen.(May-22)

|                   |                  |                 |         |            |             |        | (Geni Guide Q. | INO: 02) |
|-------------------|------------------|-----------------|---------|------------|-------------|--------|----------------|----------|
| Answer Key        |                  |                 |         |            |             |        |                | Marks    |
| Electronic config | gurati           | on for n        | itrogen | $= 1s^2 2$ | $2s^2 2p^3$ | 3      |                | 1        |
| Orbital diagram   | for ni           | trogen          |         |            |             |        |                |          |
| 41                |                  |                 |         |            |             | 4      | 7              | 2        |
|                   |                  |                 |         | 1          | 1           | 1      |                |          |
| 1                 | 2                | 2-2             |         | 2.1        | 2.1         | 2.1    |                |          |
| 1                 | . S <sup>-</sup> | 2s <sup>-</sup> |         | $2p_x$     | $2p_y$      | $2p_z$ |                |          |
|                   |                  |                 |         |            |             |        |                |          |

#### 13. Derive the de-Brogile equation. (Mar-19) (Gem Guide Q.No: 66)

| Answer Key               | Marks      |
|--------------------------|------------|
| E = hv                   | 1/2        |
| $E = mc^2$               | 1/2        |
| $hv = mc^2$              | 1/2<br>1/2 |
| $v = \frac{c}{\lambda}$  | 1⁄2        |
| $\lambda = \frac{h}{mv}$ | 1          |

#### 14. Write a short note on Quantum numbers.

| (Sep-21, Mar-23, Jun-23) (Gem Guide Q.No: 68) |       |  |  |
|-----------------------------------------------|-------|--|--|
| Answer Key                                    | Marks |  |  |
| Principal Quantum Number – Explanation        | 2     |  |  |
| Azimuthal Quantum Number – Explanation        | 1     |  |  |
| Magnetic Quantum Number – Explanation         | 1     |  |  |
| Spin Quantum Number – Explanation             | 1     |  |  |
| (or) Heading only                             | 1     |  |  |

|               | <b>3. PERIODI</b> | C CLASSIFICA  | <b>TION OF</b> | ELEMENTS |
|---------------|-------------------|---------------|----------------|----------|
| State: Modern | Periodic law.     | (Mar-23) (Gem | Guide Q.       | No -24)  |

| 1. State: Modern Periodic law. (Mar-23) (Gem Guide Q. No –24)                         |                       |  |  |
|---------------------------------------------------------------------------------------|-----------------------|--|--|
| Key Answer                                                                            | Mark                  |  |  |
| Correct statement                                                                     | 2                     |  |  |
| 2. Define: Electro negativity. (Sep-21, Mar-24) (Gem Guide Q. No -                    | 29)                   |  |  |
| Key Answer                                                                            | Mark                  |  |  |
| Correct definition                                                                    | 2                     |  |  |
| 3. How would you explain the fact that the second ionization potentia                 | al is always higher   |  |  |
| than first ionization potential? (June-23) (Gem Guide Q. No – 30)                     |                       |  |  |
| Key Answer                                                                            | Mark                  |  |  |
| Correct explanation                                                                   | 3                     |  |  |
| 4. Give the general electronic configuration of lanthanides and actini                | des? (June-19, Mar24) |  |  |
| (Gem Guide                                                                            | e Q. No – 36)         |  |  |
| Key Answer                                                                            | Mark                  |  |  |
| Lanthanides: $4f^{1.14}5d^{0.1}6s^2$ Actinides: $5f^{0.14}6d^{0.2}7s^2$               | 2                     |  |  |
| 5. Explain the diagonal relationship. (Mar-19, Sep-21, Mar-23) (Gem Guide Q. No - 41) |                       |  |  |
| Key Answer                                                                            | Mark                  |  |  |
| Correct definition                                                                    | 2                     |  |  |
| Suitable example (any one pair)                                                       | 1                     |  |  |
| 6. Explain the periodic trend of ionization potential. (Mar-24) (Gen                  | n Guide Q. No – 40)   |  |  |
| Key Answer                                                                            | Mark                  |  |  |
| IE decreases down a group (or top to bottom)                                          | 1 1/2                 |  |  |
| IE increases along a period (or left to right)                                        | 1 1/2                 |  |  |
| 7. Explain the Pauling Method for the determination of ionic radius (Sep-20, May-22)  |                       |  |  |
| (Gen                                                                                  | n Guide Q. No – 39)   |  |  |
| Key Answer                                                                            | Mark                  |  |  |
| $\mathbf{d} = \mathbf{r}_{\mathbf{C}^+} + \mathbf{r}_{\mathbf{A}^-} \qquad \dots (1)$ | I                     |  |  |
| $\mathbf{r}_{C^+} = $ radius of the cation                                            |                       |  |  |
| $r_{A^{-}} = radius of the anion$                                                     |                       |  |  |
|                                                                                       | 1                     |  |  |

| $r_{C^+}$ = radius of the cation                                                                                         |          |
|--------------------------------------------------------------------------------------------------------------------------|----------|
| $r_{A^{-}}$ = radius of the anion                                                                                        |          |
| $r_{C^{+}} \alpha \frac{1}{(Z_{eff})_{C^{+}}} \qquad \dots (2)$                                                          | 1        |
| $r_{A^{-}} \alpha \frac{1}{(Z_{-r})} \qquad \dots (3)$                                                                   | 1        |
| $Z_{eff} = effective nuclear charge (Z_{eff} = Z - S)$                                                                   | 1/2      |
| $\frac{(2)}{(3)} \Rightarrow \frac{r_{C^{+}}}{r_{A^{-}}} = \frac{(Z_{eff})_{A^{-}}}{(Z_{eff})_{C^{+}}} \qquad \dots (4)$ | 1<br>1⁄2 |
| Using equation (1) and (4) $\mathbf{r}$ and $\mathbf{r}$ can be determined.                                              |          |

Using equation (1) and (4),  $r_{C^+}$  and  $r_{A^-}$  can be determined. 8. Explain the following, give appropriate reasons. (June -19) (Gem Guide Q. No – 44) i) Ionisation potential of N is greater than that of O.

|                          | Key Answer                                  | Mark  |
|--------------------------|---------------------------------------------|-------|
| $N = 1s^2 2s^2 2p^3$     | $O = 1s^2 2s^2 2p^4$                        | 1     |
| Correct Explanation      |                                             | 1     |
| ii) Electron affinity of | of Be and N have zero. Give reason (Sep-20) |       |
|                          | Answer Key                                  | Marks |
| D 1202                   | $1^{2}$                                     | 4     |

| $Be = 1s^2 2s^2$    | $N = 1s^2 2s^2 2p^3$ | 1 |
|---------------------|----------------------|---|
| Correct Explanation |                      | 1 |

| 9. | State 1 | the | trends | in | the | variat | ion | of | electro | negati | vity | in | gr | ouj | p | and | pe | ric | ods. | , |
|----|---------|-----|--------|----|-----|--------|-----|----|---------|--------|------|----|----|-----|---|-----|----|-----|------|---|
|    |         |     |        |    |     |        |     |    |         |        |      |    |    |     |   |     |    |     |      |   |

| (Sep-21, Aug-22) (Ge                                                                                             | m Guide Q. No – 47)                  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Key Answer                                                                                                       | Marks                                |
| The electro negativity increases across a period from left to right                                              | 1                                    |
| The electro negativity decreases down a group                                                                    | 1                                    |
| 10. State: Law of triads (or) State and explain Dobereiner's "Triad"                                             | •                                    |
| (Mar 19) (Gem Gu                                                                                                 | ide Q. No – 48)                      |
| Key Answer                                                                                                       | Mark                                 |
| Correct definition                                                                                               | 2                                    |
| Example                                                                                                          | 1                                    |
| 11. Define – atomic radius (Sep-21) (Gem Guide Q. No – 52)                                                       |                                      |
| Key Answer                                                                                                       | Mark                                 |
| Correct definition                                                                                               | 2                                    |
| 12. Define Metallic radius (Sep-21) (Gem Guide Q. No – 54)                                                       |                                      |
| Answer Key                                                                                                       | Mark                                 |
| Correct definition                                                                                               | 2                                    |
| 13. Define: Ionic radius (Sep-21) (Gem Guide Q. No – 57)                                                         |                                      |
| Key Answer                                                                                                       | Mark                                 |
| Correct definition                                                                                               | 3                                    |
| 14. Define: Electron Gain enthalpy/Electron affinity. (Mar-22) (Gen                                              | n Guide Q. No – 59)                  |
| Key Answer                                                                                                       | Mark                                 |
| Correct definition                                                                                               | 3                                    |
| 15. Compare the ionisation energy of Beryllium and Boron? (Sep-22                                                | ()<br>m Cuida O. Na. (4)             |
| Koy Answor                                                                                                       | Mork                                 |
| $\frac{\text{Key Allswer}}{\text{Ro} - 1c^2 2c^2} = \frac{\text{R} - 1c^2 2c^2 2n^1}{\text{R} - 1c^2 2c^2 2n^1}$ | 1 IVIAI K                            |
| $\mathbf{D}\mathbf{c} = 15 25 \qquad \mathbf{D} = 15 25  \mathbf{2p}$                                            | 1                                    |
| ionisation energy of Beryllium is greater than Boron                                                             |                                      |
| Reason : Fully filled 2S orbital in Beryllium                                                                    |                                      |
| 16. What are inner transition elements? (or) What are f-block eleme                                              | ents? (Aug-22)<br>n Guide O-No – 62) |
| Key Answer                                                                                                       | Mark                                 |
| Correct explanation                                                                                              | 2                                    |
| 1 Lanthanide 2 Actinide                                                                                          | 1                                    |
| 17. Define valency. How is it determined? (Mar-19) (Gem Guide O.                                                 | $N_0 - 63)$                          |
| Key Answer                                                                                                       | Mark                                 |
| It is equal to the total number of electrons in the valence shell                                                | 2                                    |
| 18. Calculate the effective nuclear charge on 4s electron and 3d elect                                           | ron in Scandium.                     |
| (Jul -23) (Ge                                                                                                    | m Guide Q. No – 65)                  |
| Key Answer                                                                                                       | Mark                                 |
| Calculation of effective nuclear charge on 4s electron                                                           | 1                                    |
| $Z_{eff} = Z - S = 21 - 18 = 3$                                                                                  |                                      |
| Calculation of effective nuclear charge on 3d electron                                                           | 1                                    |
| $Z_{eff} = Z - S = 21 - 18 = 3$                                                                                  |                                      |
|                                                                                                                  |                                      |

#### 4. HYDROGEN

## 1. Discuss the three types of covalent hydrides. (or) What are covalent hydrides? (May-22)

| (Gem Guide                                                                            | e Q. No – 23)         |
|---------------------------------------------------------------------------------------|-----------------------|
| Answer key                                                                            | Mark                  |
| (i) Electron precise – CH <sub>4</sub>                                                |                       |
| (ii) Electron-deficient – $B_2H_6$                                                    | 2                     |
| (iii) Electron-rich hydrides – NH <sub>3</sub>                                        |                       |
| 2. What is water-gas shift reaction? (June-23) (Gem Guide                             | e Q. No – 30)         |
| Answer key                                                                            | Mark                  |
| $CO + H_2O \xrightarrow{Fe/Cu}{400^\circ} CO_2 + H_2$                                 | 2                     |
| 3. What are isotopes? Write the names of isotopes of hydrogen. (Mar-23)               |                       |
| (Gem Guide                                                                            | e Q. No – 32)         |
| Answer key                                                                            | Mark                  |
| Correct definition                                                                    | 1 1/2                 |
| Protium $- {}_{1}H^{1}$ , Deuterium $- {}_{1}H^{2}$ , Tritium $- {}_{1}H^{3}$         | 1/2+1/2+1/2           |
| 4. Give the uses of heavy water. (June-23) (Gem Guide                                 | e Q. No – 33)         |
| Answer key                                                                            | Mark                  |
| Any three uses                                                                        | 3                     |
| 5. Explain the exchange reactions of deuterium. (Sep-20) (Gem Guide                   | e Q. No – 34)         |
| Answer key                                                                            | Mark                  |
| Any one correct equation                                                              | 2                     |
| 6. How do you convert para hydrogen into ortho hydrogen? (Mar-23)                     |                       |
| (Gem Guide                                                                            | e Q. No – 35)         |
| Answer key                                                                            | Mark                  |
| Any three methods                                                                     | 3                     |
| 7. Mention the uses of deuterium. (Sep-20) (Gem Guide                                 | e Q. No – 36)         |
| Answer key                                                                            | Mark                  |
| Any three Uses                                                                        | 3                     |
| 8. Complete the following reactions. (i) $Na_2O_2 + \rightarrow Na_2SO_4 + H_2O_2$ (M | [ar-19)               |
| (Gem Guide                                                                            | e Q. No – 45)         |
| Answer kev                                                                            | Mark                  |
| $Na_{2}O_{2}+H_{2}SO_{4} \longrightarrow Na_{2}SO_{4}+H_{2}O_{2}$                     | 2                     |
| 9 Write the laboratory method of preparation of hydrogen (Sep. 20)                    |                       |
| (Gem Guide                                                                            | $P O N_0 - 47$        |
| Answer key                                                                            | Mark                  |
| $7n \pm 2HC1 \rightarrow 7nC1 \pm H.\uparrow$                                         | 2                     |
| 2n + 2n + 2n + 2n + 12 + 12 + 12 + 12 +                                               | -                     |
| 10. Why $H_2O_2$ is stored in plastic bottles? Give reason. (or) Why hydroge          | n peroxide is         |
| stored in plastic containers, not in glass container? (JUNE-19) (Gem Guide            | <u>Q. No - 59)</u>    |
| Answer key                                                                            | Mark                  |
| It dissolves alkali metals in glass                                                   | 3                     |
| 11. How is tritium prepared ? (Mar-19, June-23) (Gem Guide                            |                       |
|                                                                                       | e Q. No – 60)         |
| Answer key                                                                            | e Q. No – 60)<br>Mark |

#### 12. What are syngas? How is prepared? (June -19) (Gem Guide Q. No – 61)

| Answer Key                                                                      | Mark |
|---------------------------------------------------------------------------------|------|
| $C + H_2 O \xrightarrow{1000^\circ} \underbrace{CO + H_2}_{water \ gas/syngas}$ | 2    |

13. Give an example for ionic hydride and covalent hydride.

## (June-22) (Gem Guide Q. No – 62)

| Answer key                                                                           | Mark |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|------|--|--|--|--|--|--|
| Any one example for ionic hydride                                                    | 1    |  |  |  |  |  |  |
| Any one example for covalent hydride                                                 | 1    |  |  |  |  |  |  |
| 14. What are Metallic hydrides (or) interstitial hydrides? Give the Example. (Mar-24 |      |  |  |  |  |  |  |
| (Gem Guide O. No – 65)                                                               |      |  |  |  |  |  |  |

|                                        | (Othi Othia |               |
|----------------------------------------|-------------|---------------|
| Answer key                             |             | Mark          |
| Correct definition                     |             | 2             |
| Any one example                        |             | 1             |
| 15. Give the uses of hydrogen (Mar-24) | (Gem Guid   | e Q. No – 66) |
| Answer key                             |             | Mark          |
| Any three uses                         |             | 3             |

#### 5. ALKALI AND ALKALINE EARTH METALS

# **1.** Discuss briefly the similarities between beryllium and aluminium.

#### (June-19, Sep-21, June-23, Mar-24) (Gem Guide O. No -30)

|                                                                       | ((                            |
|-----------------------------------------------------------------------|-------------------------------|
| Answer Key                                                            | Marks                         |
| Any five similarities                                                 | 5                             |
| 2. Mention the uses of plaster of Paris (Mar-23) (Gem Guide           | e Q. No -33)                  |
| Answer Key                                                            | Marks                         |
| Any two uses                                                          | 2                             |
| 3. Write balanced chemical equation for the following proce           | esses                         |
| Heating calcium carbonate (Mar-24) (Gem Guide Q. N                    | <b>(o -36)</b>                |
| Answer Key                                                            | Marks                         |
| $CaCO_{3} \xrightarrow{\Delta} CaO + CO_{2}$                          | 2                             |
| 4 Discuss briefly the similarities between beryllium and alu          | minium                        |
| (Jun-19, Sen-21, Jun-23, Mar-24)                                      | 4) (Gem Guide O. No –38)      |
| Answer Kev                                                            | Marks                         |
| Any five similarities                                                 | 5                             |
| 5 Among the alkaline earth metals BeO and MgO is insolul              | ble in water but other oxides |
| are soluble. Why? (Mar-2019) (Gem Guide O. No –44)                    | one in water but other oxides |
| Answer Key                                                            | Marks                         |
| BeO is covalent due to the small size of $Be^{2+}$ ion.               | 1                             |
| while other oxides are ionic in nature.                               | 1                             |
| 6. Why blue colour appears during the dissolution of alkali           | metals in liquid ammonia?     |
| (June-19)                                                             | (Gem Guide Q. No –57)         |
| Answer Key                                                            | Marks                         |
| The blue colour of the solution is due to the ammoniated              |                               |
| electron which absorbs energy in the visible region of light          | 2                             |
| and thus imparts blue colour to the solution.                         |                               |
| 7. Among the alkali metal halides, which is covalent? Explai          | in with reason.               |
| (June-19)(                                                            | Gem Guide Q. No –56)          |
| Answer Key                                                            | Marks                         |
| Lithium halides shows covalent character, as it is the smallest       |                               |
| cation that exerts high polarising power on the halides.              | 2                             |
| 8. Explain why Ca(OH) <sub>2</sub> is used in white washing. (Mar-201 | 9) (Gem Guide Q. No –59)      |
| Answer Key                                                            | Marks                         |
| due to its disinfectant nature                                        | 3                             |
| 9. How is Bleaching powder prepared? (sep-20) (Gem Guide              | e Q. No -60)                  |
| Answer Key                                                            | Marks                         |
| Milk of lime reacts with chlorine gives bleaching powder.             |                               |
| $Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$                          | 2                             |
| 10. Discuss distinctive behavior of beryllium (or) Me                 | ention any two anomalous      |
| properties of second period elements. (or) What are                   | the reasons for anomalous     |
| properties of Beryllium? (May-22) (Gem Guide Q. No –61)               |                               |
| Answer Key                                                            | Marks                         |
| Any two reasons for anomalous behaviors of beryllium                  | 2x1=2                         |
| 11. What are the uses of magnesium? (Sep-20) (Gem Guide               | Q. No -63)                    |
| Answer Key                                                            | Marks                         |
| Any three uses                                                        | 3                             |

#### 12. Mention the uses of calcium (Mar-23) (Gem Guide Q. No -64)

| Answer Key                                                      | Marks                         |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|--|
| Any three uses                                                  | 2                             |  |  |  |  |  |  |  |  |
| 13. Write the chemical name of baking soda. Give the uses s     | sodium bicarbonate            |  |  |  |  |  |  |  |  |
| (June-23) (                                                     | (Gem Guide Q. No –70)         |  |  |  |  |  |  |  |  |
| Answer Key                                                      | Marks                         |  |  |  |  |  |  |  |  |
| Chemical Name: Sodium bi carbonate                              | 1                             |  |  |  |  |  |  |  |  |
| Any two uses                                                    | 2                             |  |  |  |  |  |  |  |  |
| 14. Compare the properties of Beryllium with other element      | nts of group 2. (or) Give the |  |  |  |  |  |  |  |  |
| properties of Beryllium that are different from other element   | nts of the group.             |  |  |  |  |  |  |  |  |
| (May-22)(                                                       | Gem Guide Q. No –71)          |  |  |  |  |  |  |  |  |
| Answer Key                                                      | Marks                         |  |  |  |  |  |  |  |  |
| Any three properties of Beryllium that are different from other | 3                             |  |  |  |  |  |  |  |  |
| elements                                                        |                               |  |  |  |  |  |  |  |  |
| 15. Discuss the similarities between lithium and magnesium.     |                               |  |  |  |  |  |  |  |  |
| (June-22) (Gem Guide Q. No –73)                                 |                               |  |  |  |  |  |  |  |  |
| Answer Key                                                      | Marks                         |  |  |  |  |  |  |  |  |
| Any five similarities                                           | 5                             |  |  |  |  |  |  |  |  |

# To get complete Question Bank and Answer Key Contact 9080228421 / 9488890842

# **Discount Price : Rs. 25/-**

| Gem  | +1 வேதியியல் தன் மதிப்பீடு பகுதி ஒரு மதிப்பெண் விடைகள்<br>(+1 Chemistry - Book back - One Mark Answer Key) For Copies : 🗸 9080228421 |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|--------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| L-1  | 14 a                                                                                                                                 | L-2  | 14 c | L-3  | 14 c | 4 d  | 18 a | 10 a | 24 b | 12 c | L-7  | 14 c | L-8  | 14 a |
| 1 a  | 15 a                                                                                                                                 | 1 c  | 15 a | 1 d  | 15 a | 5 c  | 19 b | 11 c | 25 d | 13 d | 1 b  | 15 a | 1 a  | 15 d |
| 2 d  | 16 c                                                                                                                                 | 2 c  | 16 a | 2 b  | 16 c | 6 a  | 20 c | 12 a | L-6  | 14 c | 2 d  | 16 b | 2 b  | 16 c |
| 3 c  | 17 c                                                                                                                                 | 3 b  | 17 b | 3 d  | 17 c | 7 a  | 21 c | 13 a | 1 d  | 15 c | 3 b  | 17 d | 3 a  | 17 a |
| 4 b  | 18 d                                                                                                                                 | 4 d  | 18 b | 4 a  | 18 a | 8 a  | L-5  | 14 d | 2 d  | 16 b | 4 d  | 18 d | 4 c  | 18 b |
| 5 a  | 19 c                                                                                                                                 | 5 b  | 19 a | 5 d  | 19 d | 9 d  | 1 c  | 15 a | 3 c  | 17 c | 5 a  | 19 c | 5 a  | 19 c |
| 6 c  | 20 a                                                                                                                                 | 6 d  | 20 c | 6 c  | 20 b | 10 c | 2 a  | 16 b | 4 b  | 18 b | 6 d  | 20 a | 6 a  | 20 c |
| 7 c  | 21 b                                                                                                                                 | 7 a  | 21 c | 7 b  | 21 a | 11 a | 3 d  | 17 c | 5 a  | 19 a | 7 a  | 21 c | 7 a  | 21 b |
| 8 c  | 22 c                                                                                                                                 | 8 c  | 22 d | 8 a  | 22 a | 12 a | 4 b  | 18 c | 6 b  | 20 b | 8 b  | 22 d | 8 a  | 22 d |
| 9 d  | 23 a                                                                                                                                 | 9 b  | 23 d | 9 d  | 23 d | 13 c | 5 c  | 19 b | 7 c  | 21 c | 9 b  | 23 b | 9 b  | 23 a |
| 10 c | 24 a                                                                                                                                 | 10 b | 24 a | 10 c | L-4  | 14 c | 6 a  | 20 b | 8 b  | 22 d | 10 a | 24 d | 10 d | 24 c |
| 11 b | 25 a                                                                                                                                 | 11 c | 25 d | 11 d | 1 c  | 15 d | 7 c  | 21 a | 9 d  | 23 c | 11 d | 25 a | 11 a | 25 b |
| 12 b |                                                                                                                                      | 12 d |      | 12 c | 2 c  | 16 d | 8 b  | 22 b | 10 c | 24 c | 12 d |      | 12 d |      |
| 13 d |                                                                                                                                      | 13 c |      | 13 a | 3 b  | 17 c | 9 b  | 23 a | 11 a | 25 d | 13 d |      | 13 b |      |

For Copies Contact : Ø 9080228421, 9488890842

| L-9       14 d       28 a       11 d       25 c       8 c       22 d       5 d       3 d       17 c       L-14       14 b       L-15       14 b         1 d       15 b       29 d       12 c       26 c       9 a       23 c       6 c       4 a       18 d       1 b       15 c       1 d       15 d         2 d       16 c       30 a       13 b       27 d       10 a       24 b       7 d       5 c       19 d       2 a       16 b       2 a       16 a         3 b       17 c       L-10       14 b       28 c       11 b       25 b       8 d       6 d       20 a       3 a       17 d       3 b       17 d         4 d       18 d       1 d       15 a       29 a       12 c       26 a       9 c       7 c       21 d       4 b       18 b       4 c         5 d       19 d       2 d       16 c       30 d       13 c       27 c       10 a       8 b       22 d       5 a       19 a       5 c          5 d       19 d       2 d       16 c       30 d       13 c       27 c       10 a       8 b       22 d       5 a       19 a       5 c                                                                                                                                                                                                                                                                                | + <b>1 வேதீயியல் தன் மதீப்பீடு பகுதி ஒரு மதீப்பெண் விடைகள்</b><br>(+1 Chemistry - Book back - One Mark Answer Key) For Copies : 🕻 9080228421 |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 1 d       15b       29 d       12 c       26 c       9 a       23 c       6 c       4 a       18 d       1 b       15 c       1 d       15 d         2 d       16 c       30 a       13 b       27 d       10 a       24 b       7 d       5 c       19 d       2 a       16 b       2 a       16 a         3 b       17 c       L-10       14 b       28 c       11 b       25 b       8 d       6 d       20 a       3 a       17 d       3 b       17 d         4 d       18 d       1 d       15 a       29 a       12 c       26 a       9 c       7 c       21 d       4 b       18 b       4 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L-9                                                                                                                                          | 14 d | 28 a | 11 d | 25 c | 8 c  | 22 d | 5 d  | 3 d  | 17 c | L-14 | 14 b | L-15 | 14 b |  |
| 2 d       16 c       30 a       13 b       27 d       10 a       24 b       7 d       5 c       19 d       2 a       16 b       2 a       16 a         3 b       17 c       L-10       14 b       28 c       11 b       25 b       8 d       6 d       20 a       3 a       17 d       3 b       17 d         4 d       18 d       1 d       15 a       29 a       12 c       26 a       9 c       7 c       21 d       4 b       18 b       4 c       17 d         5 d       19 d       2 d       16 c       30 d       13 c       27 c       10 a       8 b       22 d       5 a       19 a       5 c       19 a       5 c       19 a       5 c       10 a       10 a       20 d       3 a       17 d       17 d       17 d       17 d       10 a       10 a       10 a       20 d       3 a       17 d       17 d       17 d       10 a       20 d       3 a       17 d       10 a       10 a       10 a       10 a       20 d       10 a                                                                                                                                                                                                                      | 1 d                                                                                                                                          | 15 b | 29 d | 12 c | 26 c | 9 a  | 23 c | 6 c  | 4 a  | 18 d | 1 b  | 15 c | 1 d  | 15 d |  |
| 3b       17 c       L-10       14 b       28 c       11 b       25 b       8 d       6 d       20 a       3 a       17 d       3 b       17 d         4d       18 d       1 d       15 a       29 a       12 c       26 a       9 c       7 c       21 d       4 b       18 b       4 c       18 b       4 c       16 c       30 d       13 c       27 c       10 a       8 b       22 d       5 a       19 a       5 c       19 a       5 c       16 d       20 d       3 c       17 c       L-11       14 c       28 d       11 a       9 a       23 a       6 d       20 d       6 b       10 c       24 b       7 b       21 a       7 c       10 a       25 d       8 c       22 d       5 a       19 a       5 c       10 c       24 b       7 b       21 a       7 c       10 a       24 b       7 b       21 a       7 c       10 a       24 b       7 c       10 a       24 b       10 c       24 c       10 c <td>2 d</td> <td>16 c</td> <td>30 a</td> <td>13 b</td> <td>27 d</td> <td>10 a</td> <td>24 b</td> <td>7 d</td> <td>5 c</td> <td>19 d</td> <td>2 a</td> <td>16 b</td> <td>2 a</td> <td>16 a</td> <td></td> | 2 d                                                                                                                                          | 16 c | 30 a | 13 b | 27 d | 10 a | 24 b | 7 d  | 5 c  | 19 d | 2 a  | 16 b | 2 a  | 16 a |  |
| 4d       18d       1d       15a       29a       12c       26a       9c       7c       21d       4b       18b       4c       18b         5d       19d       2d       16c       30d       13c       27c       10a       8b       22d       5a       19a       5c         6d       20d       3c       17c       L-11       14c       28d       11a       9a       23a       6d       20d       6b         7c       21c       4d       18a       1a       15d       29b       12d       10c       24b       7b       21a       7c         8c       22a       5a       19c       2a       16b       30a       13c       11d       25d       8c       22c       8c         9b       23d       6d       20a       3c       17c       L-12       14d       12a       26b       9b       23c       9a         10d       24b       7c       21a       4a       18c       1d       15c       13a       27a       10a       24b       10c         11d       25c       8b       22d       5d       19b       2a       L-13       14a       <                                                                                                                                                                                                                                                                                                        | 3 b                                                                                                                                          | 17 c | L-10 | 14 b | 28 c | 11 b | 25 b | 8 d  | 6 d  | 20 a | 3 a  | 17 d | 3 b  | 17 d |  |
| 5d       19d       2d       16c       30d       13c       27c       10a       8b       22d       5a       19a       5c          6d       20d       3c       17c       L-11       14c       28d       11a       9a       23a       6d       20d       6b          7c       21c       4d       18a       1a       15d       29b       12d       10c       24b       7b       21a       7c         8c       22a       5a       19c       2a       16b       30a       13c       11d       25d       8c       22c       8c         9b       23d       6d       20a       3c       17c       L-12       14d       12a       26b       9b       23c       9a         10d       24b       7c       21a       4a       18c       1d       15c       13a       27a       10a       24b       10c         11d       25c       8b       22d       5d       19b       2a       L-13       14a       28a       11c       25c       11d         12c       26b       9d       23a       6a       20b       3b       1b       1                                                                                                                                                                                                                                                                                                                        | 4 d                                                                                                                                          | 18 d | 1 d  | 15 a | 29 a | 12 c | 26 a | 9 c  | 7 c  | 21 d | 4 b  | 18 b | 4 c  |      |  |
| 6d       20 d       3 c       17 c       L-11       14 c       28 d       11 a       9 a       23 a       6 d       20 d       6 b          7 c       21 c       4 d       18 a       1 a       15 d       29 b       12 d       10 c       24 b       7 b       21 a       7 c         8 c       22 a       5 a       19 c       2 a       16 b       30 a       13 c       11 d       25 d       8 c       22 c       8 c         9 b       23 d       6 d       20 a       3 c       17 c       L-12       14 d       12 a       26 b       9 b       23 c       9 a         10 d       24 b       7 c       21 a       4 a       18 c       1 d       15 c       13 a       27 a       10 a       24 b       10 c         11 d       25 c       8 b       22 d       5 d       19 b       2 a       L-13       14 a       28 a       11 c       25 c       11 d         12 c       26 b       9 d       23 a       6 a       20 b       3 b       1 b       15 c       29 c       12 c       11 d         12 c       26 b       9 d       23 a       6 a <td< td=""><td>5 d</td><td>19 d</td><td>2 d</td><td>16 c</td><td>30 d</td><td>13 c</td><td>27 c</td><td>10 a</td><td>8 b</td><td>22 d</td><td>5 a</td><td>19 a</td><td>5 c</td><td></td><td></td></td<>                                                                   | 5 d                                                                                                                                          | 19 d | 2 d  | 16 c | 30 d | 13 c | 27 c | 10 a | 8 b  | 22 d | 5 a  | 19 a | 5 c  |      |  |
| 7 c       21 c       4 d       18 a       1 a       15 d       29 b       12 d       10 c       24 b       7 b       21 a       7 c          8 c       22 a       5 a       19 c       2 a       16 b       30 a       13 c       11 d       25 d       8 c       22 c       8 c         9 b       23 d       6 d       20 a       3 c       17 c       L-12       14 d       12 a       26 b       9 b       23 c       9 a         10 d       24 b       7 c       21 a       4 a       18 c       1 d       15 c       13 a       27 a       10 a       24 b       10 c         11 d       25 c       8 b       22 d       5 d       19 b       2 a       L-13       14 a       28 a       11 c       25 c       11 d         12 c       26 b       9 d       23 a       6 a       20 b       3 b       1 b       15 c       29 c       12 c       11 d         11 d       25 c       8 b       22 d       5 d       19 b       2 a       L-13       14 a       28 a       11 c       25 c       11 d         12 c       26 b       9 d       23 a       6 a                                                                                                                                                                                                                                                                        | 6 d                                                                                                                                          | 20 d | 3 c  | 17 c | L-11 | 14 c | 28 d | 11 a | 9 a  | 23 a | 6 d  | 20 d | 6 b  |      |  |
| 8c       22a       5a       19c       2a       16b       30a       13c       11d       25d       8c       22c       8c         9b       23d       6d       20a       3c       17c       L-12       14d       12a       26b       9b       23c       9a         10d       24b       7c       21a       4a       18c       1d       15c       13a       27a       10a       24b       10c         11d       25c       8b       22d       5d       19b       2a       L-13       14a       28a       11c       25c       11d         12c       26b       9d       23a       6a       20b       3b       1b       15c       29c       12c       11d         12c       26b       9d       23a       6a       20b       3b       1b       15c       29c       12c       12c         13b       27a       10b       24c       7b       21c       4c       2b       16a       30d       13d       13c                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 c                                                                                                                                          | 21 c | 4 d  | 18 a | 1 a  | 15 d | 29 b | 12 d | 10 c | 24 b | 7 b  | 21 a | 7 c  |      |  |
| 9b       23 d       6 d       20 a       3 c       17 c       L-12       14 d       12 a       26 b       9 b       23 c       9 a       9 a         10 d       24 b       7 c       21 a       4 a       18 c       1 d       15 c       13 a       27 a       10 a       24 b       10 c         11 d       25 c       8 b       22 d       5 d       19 b       2 a       L-13       14 a       28 a       11 c       25 c       11 d         12 c       26 b       9 d       23 a       6 a       20 b       3 b       1 b       15 c       29 c       12 c       12 c         13 b       27 a       10 b       24 c       7 b       21 c       4 c       2 b       16 a       30 d       13 d       13 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 c                                                                                                                                          | 22 a | 5 a  | 19 c | 2 a  | 16 b | 30 a | 13 c | 11 d | 25 d | 8 c  | 22 c | 8 c  |      |  |
| 10 d       24 b       7 c       21 a       4 a       18 c       1 d       15 c       13 a       27 a       10 a       24 b       10 c         11 d       25 c       8 b       22 d       5 d       19 b       2 a       L-13       14 a       28 a       11 c       25 c       11 d         12 c       26 b       9 d       23 a       6 a       20 b       3 b       1 b       15 c       29 c       12 c       12 c         13 b       27 a       10 b       24 c       7 b       21 c       4 c       2 b       16 a       30 d       13 d       13 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 b                                                                                                                                          | 23 d | 6 d  | 20 a | 3 c  | 17 c | L-12 | 14 d | 12 a | 26 b | 9 b  | 23 c | 9 a  |      |  |
| 11 d       25 c       8 b       22 d       5 d       19 b       2 a       L-13       14 a       28 a       11 c       25 c       11 d         12 c       26 b       9 d       23 a       6 a       20 b       3 b       1 b       15 c       29 c       12 c       12 c         13 b       27 a       10 b       24 c       7 b       21 c       4 c       2 b       16 a       30 d       13 d       13 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 d                                                                                                                                         | 24 b | 7 c  | 21 a | 4 a  | 18 c | 1 d  | 15 c | 13 a | 27 a | 10 a | 24 b | 10 c |      |  |
| 12 c         26 b         9 d         23 a         6 a         20 b         3 b         1 b         15 c         29 c         12 c         12 c           13 b         27 a         10 b         24 c         7 b         21 c         4 c         2 b         16 a         30 d         13 d         13 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 d                                                                                                                                         | 25 c | 8 b  | 22 d | 5 d  | 19 b | 2 a  | L-13 | 14 a | 28 a | 11 c | 25 c | 11 d |      |  |
| 13 b 27 a 10 b 24 c 7 b 21 c 4 c 2 b 16 a 30 d 13 d 13 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 c                                                                                                                                         | 26 b | 9 d  | 23 a | 6 a  | 20 b | 3 b  | 1 b  | 15 c | 29 c | 12 c |      | 12 c |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13 b                                                                                                                                         | 27 a | 10 b | 24 c | 7 b  | 21 c | 4 c  | 2 b  | 16 a | 30 d | 13 d |      | 13 c |      |  |



For Copies Contact : Ø9080228421, 9488890842

