www.Padasalai.Net

www.Trb Tnpsc.Com

S	ECOND MID-TERM TEST -	2024	Reg. No	o.	4 4				
XI - MATHEMATICS									
Til	me Allowed : 1.30 Hrs.		,	Ma,	ximum	Marks	s: 45		
I.	Choose the correct answer:		200 201			10 x	1 = 10		
1.	If $A = \begin{bmatrix} a & x \\ y & a \end{bmatrix}$ and if xy = 1, then det(AA ^T) is	s equal to	D						
•	a) $(a-1)^2$ b) $(a^2+1)^2$ c	:) a ² – 1		d) (a ²	² – 1) ²				
2.	If the square of the matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the	ie unit m	atrix of o	rder 2	, then	α, β	and		
	should satisfy the relation a) $1 + \alpha^2 + \beta\gamma = 0$ b) $1 - \alpha^2 - \beta\gamma = 0$ c) 1 – α ²	² + βγ = 0	d) 1 +	α ² –	βγ = (D		
3.	A vector \overrightarrow{OP} makes 60° and 45° with the transformation of tra	ne positiv	ve directi	on of	the x	and	y axis		
	respectively. Then the angle between \overrightarrow{OP}	and the	z-axis is	4) 900))	21 - 1 21 - 2	а - с		
	a) 45° b) 60° c	;) 90°	5 al 70	u) 30'	x ie or	+ leur	0 0		
4.	IT $a = i + j + k$, $b = 2i + xj + k$, $c = i - j + 4k$ a) 5 b) 7	anu a.(t :) 26	u×cj=70	d) 10	7 13 C(yuai t	-		
5	If $\lambda \hat{i} + 2\lambda \hat{i} + 2\lambda \hat{k}$ is a unit vector. then the v	, <u> </u>	is						
υ.	ы 1/ ы 1/) 1/	· · · ·	d) 1/					
	a) /3 ⁽⁰⁾ /4 ⁽¹⁾	יי /9 ``	1. 5	<i>~' /</i> 2					
6.	$\lim_{x \to 0} \frac{a^{x} - b^{x}}{x} = a) \log ab \qquad b) \log \left(\frac{a}{b}\right)$	c)	$\log\left(\frac{b}{a}\right)$	d) $\frac{a}{b}$					
7.	$\lim_{x \to \infty} \frac{\sin x}{x} \qquad a) \qquad 1 \qquad b) \qquad 0$	c)	00	d) – ∞					
8.	If $ \vec{a} = 13$, $ \vec{b} = 5$ and $\vec{a} \cdot \vec{b} = 60$ then $ \vec{a} \times \vec{b} = 60$	b∣ is			с. Э				
	a) 15 b) 35 c) 45		d) 25)		
9.	If $BA = 3i + 2j + k$ and the position vector of	Bis i + 3	3j-k , the	n the p	ositio	n vect	orAis		
	a) $4\hat{i} + 2\hat{j} + \hat{k}$ b) $4\hat{i} + 5\hat{j}$ c) 4î		d) -4	Ĩ,	مرقب ال	out		
10.	Let A and B be two symmetric matrices of sa	ame orde	er. I nen wi	nich or	ie of th	ie foll	owing		
	a) A + B is a symmetric matrix b) AB is	symmetri	c matr	·ix				
ц	c) $AB = (BA)^T$ d Answer any 3 questions (O No 15 is co) A'B= moulsor	АВ' ТV)			3	x 2 = 6		
n. 11.	If (k, 2), (2, 4) and (3, 2) are vertices of the determine the value of k.	the trian	gle of are	a 4 so	uare	units	, then		
12	Without expanding, evaluate the following	determin	nants :	6	8				
13	Find the value λ for which the vectors \vec{a} and	\vec{b} are pe	rpendicula	ar, whe	re ā =	= 2î + :	$\lambda \hat{j} + \hat{k}$		
	and $\vec{h} = \hat{i} - 2\hat{i} + 3\hat{k}$	·			v				
14	Calculate $\lim_{x \to \infty} (x^3 - 2x + 6)$					-			
15 15	Find the angle between the vectors $2\hat{i} \perp \hat{i}$.	-ƙand i		usina	vector	prod	uct.		
10.		.,	 ,		11 -	Math	s - 1		

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Padasalai.Net

www.Trb Tnpsc.Com

 $3 \times 3 = 9$

III. Answer any 3 questions. (Q.No.20 is compulsory)

- 16. Verify that |AB| = |A| |B| if $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ 17. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{bmatrix}$, show that A^2 is a unit matrix.
- 18. Show that the points whose position vectors are $2\hat{i} + 3\hat{j} 5\hat{k}$, $3\hat{i} + \hat{j} 2\hat{k}$ and $6\hat{i} - 5\hat{j} + 7\hat{k}$ are collinear.
- 19. Show that the vectors $-\hat{i}-2\hat{j}-6\hat{k}$, $2\hat{i}-\hat{j}+\hat{k}$ and $-\hat{i}+3\hat{j}+5\hat{k}$ form a right angled triangle.
- 20. Find the relation between a and b if $\lim_{x\to 3} f(x)$ exists where

 $f(x) = \begin{cases} ax + b & \text{if } x > 3\\ 3ax - 4b + 1 & \text{if } x < 3 \end{cases}$

IV. Answer all the questions.

 $4 \times 5 = 20$

21. a) Prove that altitudes of the triangle are concurrent by vector method. (OR) b) If a, b, c are all positive and are pth, qth and rth terms of a G.P., show that

loga	р	1
logb	q	1 = 0
logc	r	1

22. a) Show that $\begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = (a+b+c)(a-b)(b-c)(c-a)$ by using Factor Theorem. (OR) b) Show that $\begin{vmatrix} 2bc-a^2 & c^2 & b^2 \\ c^2 & 2ca-b^2 & a^2 \\ b^2 & a^2 & 2ab-c^2 \end{vmatrix} = \begin{vmatrix} a & b & c \end{vmatrix}^2$

- 23. a) Show that the following vectors are coplanar : $\hat{i} 2\hat{j} + 3\hat{k}$, $-2\hat{i} + 3\hat{j} 4\hat{k}$, $-\hat{j} + 2\hat{k}$ (OR)
 - b) Three vectors \vec{a} , \vec{b} and \vec{c} are such that $|\vec{a}|=2$, $|\vec{b}|=3$, $|\vec{c}|=4$ and $\vec{a}+\vec{b}+\vec{c}=\vec{0}$. Find $4\vec{a}.\vec{b} + 3\vec{b}.\vec{c} + 3\vec{c}.\vec{a}$
- 24. a) If a,b,c are position vectors of the vertices A,B,C of a triangle ABC is

 $\frac{1}{2} \left[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right]$. Also deduce the condition for collinearity of the points A, B and C. (OR)

b) A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is

$$C(t) = \frac{30t}{200 + t}$$
. What happens to the concentration as $t - \infty$?

11 - Maths - 2

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com