SECOND MID TERM TEST - 2024

	♦ Standa	rd	XI	Reg.No.	
PHYSICS					
Tit	me: 1.30 hrs Part	-1	200		Marks:50
L	Choose the correct answer:				10 x 1 = 10
1.					
	a) an ellipse b) a circle				
2.	When you exercise in the morning, by cons	ider	ring your body a	s thermodynan	nic system,
	which of the following is true?	-		e di-0 11	1
2	a) ΔU < 0, W > 0 b) ΔU > 0, W > 0	C)	$\Delta U < 0, W < 0$	a) AU = U, W	20
٥.	In an isochoric process, we have a) W = 0 b) Q = 0	-	ΔU = 0	d) $\Delta T = 0$	
4	With an increase in temperature, the visc				=fiv will
30			increase and o		-
		320	decrease and		
5.	If the temperature of the wire is increased	-			
			decrease		
	c) increase rapidly	d)	increase by ve	ery a small am	ount
6.					
	cross sections of the first and the second	wire	es are A and 2 A	A respectively.	If the length
of the first wire is increased by \(\Delta \) on applying a force F. How much force is needed to					
	stretched the second wire by the same a				-
	a) 2 F b) 4 F			d) 16 F	
7.	Consider two wires X and Y. The radius of			the radius of	Y. If they are
	structured by the same load, then the str	ress	s on Y is		
	a) Equal to trial of the	1000	thrice that on		
	c) nine times that on X	d)	half that on X		
8. If the mass and radius of the Earth are both doubled, then the acceleration due to					
	gravity 'g'			51-	
	a) remains same b) g/2	C)	2 g	d) 4 g	Cun nuncee
9.	According to Kepler's second law, the ra	adia	al vector to a p	lanet from the	e Juli Sweeps
\$	and agual areas in equal intervals of time	nsequence or			
	a) conservation of linear momentum	b)	conservation	of angular m	OHERMAN
	and the second second	d)	conservation	Of Killenc en	all a
10	An object of mass 10 kg is hanging on a	spr	ring scale whic	h is attached	to the root of a
lift If the lift is in free fall, the reading in the spring scale is					
	a) 98 N b) zero	C)	49 N	d) 9.8 N	

Part - II

II. Answer any 5 questions. (Q.No.18 is compulsory)

5 x 2 = 10

XI Physics

- 11. Define the gravitational field. Give its unit.
- 12. What is meant by escape speed in the case of the Earth?
- 13. State Newton's Universal law of gravitation.
- 14. Which one of these is more elastic, steel or rubber? Why?
- 15. State the law of Flotation.
- 16. State Stefan-Boltzmann law.
- 17. What is PV diagram?
- 18. A wire of length 2 m with the area of cross-section $10^{-6} \, \text{m}^2$ is used to suspend a load of 980 N. Calculate the stress developed.

III. Answer any 5 questions. (Q.No.26 is compulsory)

 $5 \times 3 = 15$

- 19. What are geostationary and polar satellites?
- 20. Why is there no lunar eclipse and solar eclipse every month?
- 21. Distinguish between streamlined flow and turbulent flow.
- 22. State the principle and usage of Venturi meter.
- 23. What are the factors affecting the surface tension of a liquid?
- 24. Define specific heat capacity and give its unit.
- 25. Why does heat flow from a hot object to a cold object?
- 26. A refrigerator has COP of 4. How much work must be supplied to the refrigerator in order to remove 200 J of heat from its interion?

IV. Answer all the questions.

 $3 \times 5 = 15$

27. a) Explain the variation of g with depth from the Earth's surface.

- b) Explain in detail Newton's law of cooling.
- 28. a) Explain the different types of moduli of elasticity.

(OR)

- b) Discuss various modes of heat transfer.
- a) Derive an expression for energy of satellite.

(OR)

b) State and prove Bernoulli's theorem for a flow of incompressible non-viscous and streamlined flow of fluid.