				~
\sim 1	222		1	•)
	ass	•		

2. 4.			
Register		1	
Number			: .

SECOND MID TERM TEST - 2024

Time Allowed: 1.30 Hours]

MATHEMATICS

[Max. Marks: 50

PART - I

10x1=10

Answer all the Questions.

 $s(t) = 3t^2 -$

1. The position of a particle moving along a horizontal line of any time t is given by 2t - 8. The time at which the particle is at rest is

(1) t = 0 (2) $t = \frac{1}{3}(3) t = 1$

2. If $u(x,y) = e^{x^2+y^2}$, then $\frac{\partial u}{\partial x}$ is equal to

(1) $e^{x^2+y^2}$ (2) 2xuThe value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$ is

 $(1)\frac{3}{2}$ $(2)\frac{1}{2}$

4. The function $\sin^4 x + \cos^4 x$ is increasing in the interval

 $(1) \left[\frac{5\pi}{8}, \frac{3\pi}{4} \right] \qquad (2) \left[\frac{\pi}{2}, \frac{5\pi}{8} \right] \qquad (3) \left[\frac{\pi}{4}, \frac{\pi}{2} \right]$

5. The approximate change in the volume V of a cube of side x metres caused by increasing the side by

(1) $0.3xdx m^3$ (2) $0.03x m^3$ (3) $0.03x^2 m^3$ (4) $0.03x^3 m^3$

6. The minimum value of the function |3 - x| + 9 is

(1)0:

7. If $g(x,y) = 3x^2 - 5y + 2y^2$, $x(t) = e^t$ and $y(t) = \cos t$, then $\frac{dg}{dt}$ is equal to

(1) $6e^{2t} + 5\sin t - 4\cos t \sin t$ (2) $6e^{2t} - 5\sin t + 4\cos t \sin t$

(3) $3e^{2t} + 5\sin t + 4\cos t \sin t$ (4) $3e^{2t} - 5\sin t + 4\cos t \sin t$

The value of $\int_{0}^{a} (\sqrt{a^2 - x^2})^3 dx$ is

 $(1)\frac{\pi a^3}{16} \qquad (2)\frac{3\pi a^4}{16} \qquad (3)\frac{3\pi a^2}{8}$

9. If $f(x,y) = e^{xy}$, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to

(1) xye^{xy} (2) $(1 + xy)e^{xy}$ (3) $(1 + y)e^{xy}$

10. Angle between $y^2 = x$ and $x^2 = y$ at the origin is

(1) $\tan^{-1} \left(\frac{3}{4}\right)$ (2) $\tan^{-1} \left(\frac{4}{3}\right)$ (3) $\frac{\pi}{2}$

Answer any 4 questions. Question No: 16 is Compulsory.

Find the slope of the tangent to the curves at the respective given points. $y = x^4 + 2x^2 - x$ at x = 1.

Explain why Rolle's theorem is not applicable to the following functions in the respective intervals.

 $f(x) = \tan x, x \in [0, \pi]$

KKI/12/Mat/1

- 13. Show that $F(x,y) = \frac{x^2 + 5xy 10y^2}{3x + 7y}$ is a homogeneous function of degree 1.
- 14. Evaluate $\int_0^{\frac{\pi}{2}} \cos^7 x \, dx$
- 15. Evaluate: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \ dx.$
- 16. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 2 and dx = 0.1

PART - III

Answer any 4 questions. Question No: 22 is Compulsory.

4x3=12

- 17. Find the smallest possible value of $x^2 + y^2$ given that x + y = 10.
- 18. The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation $T = 2\pi \sqrt{\frac{1}{g}}$, where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of t.
- 19. Write the Maclaurin series expansion of the following functions: log(1-x); $-1 \le x < 1$
- 20. If $u(x,y) = log(x^3 + y^3 + z^3)$, find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.
- 21. If $\lim_{\theta \to 0} \left(\frac{1 \cos m\theta}{1 \cos n\theta} \right) = 1$, then prove that $m = \pm n$.
- 22. Evaluate: $\int_0^a \frac{f(x)}{f(x) + f(a x)} dx.$

PART - IV

Answer all the questions

4x5=20

23. A) Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile with a circular base whose height and diameter of base are always equal. How fast is the height of the pile increasing when the pile is 10 metre high?

(OR)

- B) Show that the two curves $x^2 y^2 = r^2$ and $xy = c^2$ where c, r are constants, cut orthogonally.
- A) For each of the following functions find the f_x , f_y , and show that $f_{xy} = f_{yx}$. $f(x,y) = tan^{-1} \left(\frac{x}{y}\right)$

(OK)

- B) If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$.
- 25. A) Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10 cm.

(OR)

- B) Find the area of the region bounded by the curve $2 + x x^2 + y = 0$, x-axis, x = -3 and x = 3.
- 26. A) Let $z(x,y) = x^3 3x^2y^3$, where $x = se^t$, $y = se^{-t}$, $s,t \in \mathbb{R}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

(OR

B) Evaluate $\int_{\frac{\pi}{6}}^{\frac{3\pi}{6}} \frac{1}{1+\sqrt{\tan x}} dx$

KKI/12/Mat/2