SMM

XII - Std

SECOND MID TERM TEST - 2024

		ΤН				-	_
М.		ш	ΝЛ	Λ	-		•
w	-		IVI	-			_

 _		

Time: 1.30 Hrs

Marks: 45

PART - I

Answer	all	the	quest	ions	:-
--------	-----	-----	-------	------	----

10 X 1 = 10

1. The point on the curve $6y = x^3 + 2$ at which y - coordinate changes 8 times as fast as x - coordinate is

- a) (4, 11)
- b) (4, -11)
- c) (-4, 11)
- d) (-4, -11)

2. The value of the limit $x \xrightarrow{Llm} 0 \left(\cot x - \frac{1}{x}\right)$ is a) 0 b) 1

- 3. The curve $y = ax^4 + 6x^2$ with ab > 0
 - a) has no horizontal tangent
- b) is concave up

c) is concave down

d) has no points of inflection

4. If $f(x, y) = e^{xy}$, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to

- a) xyen
- b) (1 + xy)e^{xy}
- c) (1 + y)exy
- d) $(1 + x)e^{xy}$

5. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is

- a) $x + \frac{\pi}{2}$
- b) $-x + \frac{\pi}{2}$
- c) $x \frac{\pi}{2}$
- d) $-x \frac{\pi}{2}$

6. Subtraction is not a binary operation is

- a) R
- b) Z

- c) N
- d) Q

7. If a compound statement involves 3 simple statements, then the number of rows in the truth table is

a)

b) 8

- c) 6
- d) 3

8. L - Hopital's Rule is not applicable for

- a) $\frac{0}{0}$
- b) ∞ −∞
- c) $\frac{\infty}{2}$
- d) 1º

9. If f and g are differentiable functions then d(fg) is

- a) fdg + dgf
- b) fdf gdg
- c) fdf + gdg
- d) fdg gdf

10. Which of the following is not a binary operating of R?

- a) +
- h) -

- c) ÷
- d) X

PART - II

Answer any 3 questions. Q.No. 15 is Compulsory:-

3 4 2 - 6

11. If the volume of a cube of side length x is $V = x^3$. Find the rate of change of the volume with respect to x when x = 5 units.

12. Prove that the function $f(x) = x^2 - 2x - 3$ is strictly increasing in $(2, \infty)$.

13. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 2 and dx = 0.1.

14. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ by any two boolean matrices of the same type. Find $A \cup B$ and $A \cap B$.

15. Prove that in an algebraic structure the identity element (if exists) must be unique

PART - III

Answer any 3 questions. Q.No. 20 is compulsory:-

3X3=9

16. Establish the equivalence property : $p \rightarrow q \equiv \neg P \lor q$

- 17. Define an operation * on Q as follows ; $a*b = \left(\frac{a+b}{2}\right)$; $a,b \in Q$. Examine the closure commutative and associative properties satisfied by * in Q.
- 18. Evaluate: $x \to o^+ x \log x$
- 19. Show that $f(x,y) = \frac{x^2 y^2}{y^2 + 1}$ is continuous at every $(x,y) \in \mathbb{R}^2$.
- 20. Use the linear approximation to find approximate values of (123)^{2/3}

PART - IV

Answer all the questions :-

 $4 \times 5 = 20$

- 21. a) Establish the equivalence property connecting the bi conditional with conditional : $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$. (OR)
 - b) Prove that among all the rectangles of the given perimeter, the square has the maximum area.
- 22. a) If $\sqrt{(x,y)} = e^x(x\cos y y\sin y)$, then prove that $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$. (OR)
 - b) Verify (i) closer property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation x_{11} on a subset $A = \{1, 3, 4, 5, 9\}$ of the set of remainder $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
- 23. a) Expand $\log(1 + x)$ as a Maclaurin's series upto 4 non zero terms for $-1 < x \le 1$. (OR)
 - b) Prove that $f(x, y) = x^3 2x^2y + 3xy^2 + y^3$ is homogeneous; what is the degree? Verify Euler's theorem for f.
- 24. a) Find the angle between the curves $y = x^2$ and $x = y^2$ at their points of intersection (0, 0) and (1, 1) (OR)
 - b) (i) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix}; x \in R \{0\} \right\}$ and let * be the matrix multiplication. Determine

whether M is closed under *. If so. Examine the commutative and associative properties satisfied by * on M.

(ii) If so, examine the existence of identity, existence of inverse properties for the operation * on M.