DALMIA HIGHER SECONDARY SCHOOL

DALMIAPURAM - 621651

MATHEMATICS TIME: 1.50HRS

MARKS: 50

2 MARKS: ANSWERS ANY 15 Q

Std: 12

$$15 \times 2 = 30$$

1. Simplify
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$$
 into rectangular form

2.If
$$z_1 = 3 - 2i$$
 and $z_2 = 6 + 4i$ find $\frac{z_1}{z_2}$ in the rectangular form

3. Find
$$z^{-1}$$
, if $z = (2+3i)(1-i)$

4.Show that (i)
$$(2 + i\sqrt{3})^{10} + (2 - i\sqrt{3})^{10}$$
 is real

5.Find the following (i)
$$\left| \frac{2+i}{-1+2i} \right|$$

6.Show that
$$|z + 2 - i| < 2$$
 represents interior points of a circle. Find its centre and radius

.7. Represent the complex number (i)
$$-1-i$$
 (ii) $1+i\sqrt{3}$ in polar form.

8. Simplify
$$\sum_{n=1}^{12} i^n$$

9. Simplify
$$i^{59} + \frac{1}{i^{59}}$$

10. Simplify
$$ii^2i^3...i^{2000}$$

11.Simplify
$$\sum_{n=1}^{10} i^{n+50}$$

12. Evaluate
$$(z + w)^2$$
 if $z = 5-2i$ and $w = -1+3i$

13. Find the least value of the positive integer n for which
$$(\sqrt{3} + i)^n$$
 (i) real (ii) purely imaginary.

14. Show that (i)
$$(2 + i\sqrt{3})^n - (2 - i\sqrt{3})^n$$
 is purely imaginary

15. Which one of the points
$$10 - 8i$$
, $11 + 6i$ is closest to $1+i$.

16. Find the square roots of
$$4 + 3i$$

17. Show that the following equations represent a circle, and, find its centre and radius.
$$|z - 2 - i| = 3$$

18. Write in polar form of the following complex numbers
$$2 + i2\sqrt{3}$$

www.Trb Tnpsc.Com

19. Find the rectangular form of the complex numbers $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$

20. Find the value of
$$\left(\frac{1+\sin\frac{\pi}{10}+i\cos\frac{\pi}{10}}{1+\sin\frac{\pi}{10}-i\cos\frac{\pi}{10}}\right)^{10}$$

3 MARKS: ANSWERS ANY 5 Q 5 X 3 = 15

21. Write $\frac{3+4i}{5-12i}$ in the x +iy form, hence find its real and imaginary parts.

22.If
$$\frac{z+3}{z-5i} = \frac{1+4i}{2}$$
, find the complex number z in the rectangular form $\left(\frac{19+9i}{5-3i}\right)^{15} - \left(\frac{8+i}{1-2i}\right)^{15}$ is purely imaginary.

23.Which one of the points i, -2+i, and 3 is farthest from the origin?

24.If |z|=2 show that $3 \le |z+3+4i| \le 7$

25.Show that the points $1, \frac{-1}{2} + i \frac{\sqrt{3}}{2}$ and $\frac{-1}{2} - i \frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle.

26.Show that the equation $z^2 = \overline{z}$ has four solutions

27.Find the square root of 6 - 8i.

5 MARKS: ANSWERS ANY 1 Q 1X5 = 5

28. If z = x + iy is a complex number such that $Im(\frac{2z+1}{iz+1}) = 0$, show that the locus of z is $2x^2+2y^2+x-2y=0$

29. If
$$(x_1 + iy_1)(x_2 + iy_2)(x_3 + iy_3)...(x_n + iy_n) = a + ib$$
, show that

(i)
$$(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2)...(x_n^2 + y_n^2) = a^2 + b^2$$

(ii)
$$\sum_{r=1}^{n} tan^{-1} \left(\frac{y_r}{x_r} \right) = tan^{-1} \frac{b}{a} + 2k\pi, k \in \mathbb{Z}.$$

DALMIA HIGHER SECONDARY SCHOOL DALMIAPURAM – 621651

Std: 12

MATHEMATICS

TIME: 1.50HRS

CHAPTER - 2

TEST -2

MARKS: 50

3 MARKS: ANSWERS ANY 10 Q

$$10 \times 3 = 30$$

- **1.**Obtain the Cartesian form of the locus of z in each of the following cases. (i) |z| = |z i|
- **2.**If $z = (\cos\theta + i\sin\theta)$, show that $z^n + \frac{1}{z^n} = 2\cos n\theta$ and
- $z^{n} \frac{1}{z^{n}} = 2i \sin n\theta$
- **3.**Simplify $\left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)^{18}$
- **4.**Find the cube roots of unity.
- **5.**Find the fourth roots of unity.
- 6. Find the values of the real numbers x and y, if the complex numbers (3-i)x (2-i)y + 2i + 5 and 2x + (-1+2i)y + 3 + 2i are equal.
- **7.** If $z_1=3, z_2=7i$ and $z_3=5+4i$, show that (z_1+z_2) $z_3=z_1z_3+z_2z_3$
- **8.** The complex numbers u ,vand w are related by $\frac{1}{u} = \frac{1}{v} + \frac{1}{w}$ If v = 3-4i and w = 4+3i, find u in rectangular form.
- **9.** Prove the following properties: $Re(z) = \frac{z + \overline{z}}{2}$ and $Im(z) = \frac{z \overline{z}}{2i}$
- **10.** Find the modulus of the following complex numbers $\frac{2-i}{1+i} + \frac{1-2i}{1-i}$
- 11. If |z| = 3, show that $7 \le |z + 6 8i| \le 13$.
- **12.** If z_1, z_2 and z_3 are three complex numbers such that $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|z_1 + z_{2+}z_3| = 1$ show that $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 6$
- 13. Obtain the Cartesian equation for the locus of z = x + iy in the cases: $|z 4|^2 |z 1|^2 = 16$
- **14**. If $\omega \neq 1$ is a cube root of unity, show that

$$\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2} + \frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} = -1.$$

- 15. Find the value of $\sum_{k=1}^{8} \left(\cos\frac{2k\pi}{9} + i\sin\frac{2k\pi}{9}\right)$.
- **16.** If $\omega \neq 1$ is a cube root of unity, show that

$$(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)...(1+\omega^{2^{11}})=1$$

$5 \text{ MARKS}: \text{ ANSWERS ANY 4 Q} \qquad 4 \text{ X 5} = 20$

- 17. If $\frac{1+z}{1-z} = \cos 2\theta + i \sin 2\theta$, show that $z = i \tan \theta$.
- **18**.If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$ show that
- (i) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ and
- (ii) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$
- **19**.If z= x + iy and arg $\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, show that x²+y²+3x-3y+2=0
- If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$ show that

$$(i)\frac{x}{y} + \frac{y}{x} = 2\cos(\alpha - \beta)(ii) \text{ xy} - \frac{1}{xy} = 2i\sin(\alpha + \beta)$$

- (iii) $\frac{x^m}{y^n} \frac{y^n}{x^m} = 2i\sin(m\alpha n\beta)$ (iv) $x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$
- **20.** Obtain the Cartesian form of the locus of z = x + iy in the cases: $[Re(iz)]^2 = 3$
- 21. Let z_1, z_2 and z_3 be complex numbers such that $|z_1| = |z_2| = |z_3| = r > 0$ and $z_1 + z_2 + z_3 \neq 0$ then prove that $\left| \frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3} \right| = r$
- **22.** Show that (i) $\left(2 + i\sqrt{3}\right)^n \left(2 i\sqrt{3}\right)^n$ is purely imaginary (ii) $\left(\frac{19-7i}{9+i}\right)^{12} + \left(\frac{20-5i}{7-6i}\right)^{12}$ is real
- 23. If z = x + iy is a complex number such that $\left| \frac{z-4i}{z+4i} \right|$ show that the locus of z is real axis.
- **24.** If z = x + iy is a complex number such that $Im\left(\frac{2z+1}{iz+1}\right) = 0$, show that the locus of z is $2x^2+2y^2+x-2y=0$
- **25.** If $\omega \neq 1$ is a cube root of unity, show that the roots of equation $(z-1)^3 + 8 = 0$ are -1, $1-2\omega$, $1-2\omega^2$.
- **26.** Find the value of $\sum_{k=1}^{8} \left(\cos \frac{2k\pi}{9} + i \sin \frac{2k\pi}{9}\right)$.
- **27.** If $\omega \neq 1$ is a cube root of unity, show that
- (i) $(1 \omega + \omega^2)^6 + (1 + \omega \omega^2)^6 = 128$
- (ii) $(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)...(1+\omega^{2^{11}})=1$