

DALMIA HIGHER SECONDARY SCHOOL DALMIAPURAM – 621651

Std : 12

MATHEMATICS

TIME: 1.50HRS

CHAPTER - 6

TEST -1

MARKS: 50

2 MARKS: ANSWER ALL QUESTIONS 10X 2 = 20

1.Show that the vectors $\hat{i} + 2\hat{j} - 3\hat{k}$, $2\hat{i} - \hat{j} + 2\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ are coplanar.

2.If $2\hat{\imath} - \hat{\jmath} + 3\hat{k}$, $3\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\hat{\imath} + m\hat{\jmath} + 4\hat{k}$ are coplanar, find the value of m.

3.If
$$\vec{a}$$
, \vec{b} , \vec{c} are three vectors, prove that
$$[\vec{a} + \vec{c}, \vec{a} + \vec{b}, \vec{a} + \vec{b} + \vec{c}] = [\vec{a}, \vec{b}, \vec{c}].$$

- **4.**A straight line passes through the point (1,2,-3) and parallel to $4\hat{\imath} + 5\hat{\jmath} 7\hat{k}$. Find (i) vector equation in parametric form (ii) vector equation in non-parametric form (iii) Cartesian equations of the straight line. **5.**Find the direction cosines of the normal to the plane and length of the perpendicular from the origin to the plane $\vec{r} \cdot (3\hat{\imath} 4\hat{\jmath} + 12\hat{k}) = 5$ **6.**Find the acute angle between the planes $\vec{r} \cdot (2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) = 11$ and 4x 2y + 2z = 15.
- **7.** Prove by vector method that if a line is drawn from the centre of circle to the midpoint of a chord, then the line is perpendicular to the chord.

8. If
$$\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$$
, $\vec{b} = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$, $\vec{c} = 3\hat{\imath} + 2\hat{\jmath} + \hat{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$.

9. Find the volume of the parallelepiped whose coterminous edges are represented by the vectors

$$-6\hat{i} + 14\hat{j} + 10\hat{k}$$
, $14\hat{i} - 10\hat{j} - 6\hat{k}$ and $2\hat{i} + 4\hat{j} - 2\hat{k}$.

10. Determine whether the three vectors $2\hat{\imath} + 3\hat{\jmath} + \hat{k}$, $\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$ and $3\hat{\imath} + \hat{\jmath} + 3\hat{k}$ are coplanar.

3 MARKS: ANSWER ANY 10 QUESTIONS 10 X 3 = 30

- 11. With usual notations, in any triangle ABC, prove the by vector method. $a^2 = b^2 + c^2 2bc \cos AC$
- 12. With usual notations, in any triangle ABC, prove by vector method that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- **13.** Find the magnitude and the direction cosines of the torque about the point (2,0,-1) of a force $2\hat{\imath} + \hat{\jmath} \hat{k}$ whose line of action passes through the origin.
- **14.** Show that the four points (6,-7,0), (16,-19,-4), (0,3,-6), (2,-5,10) lie on a same plane.
- **15.** Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$
- **16.** Find the angle made by the straight line $\frac{x+3}{2} = \frac{y-1}{2} = -z$ with coordinate axes.
- **17**. Find the acute angle between the straight lines $\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{-2}$ and $\frac{x-1}{4} = \frac{y+1}{-4} = \frac{z-2}{2}$ and state whether they are parallel or perpendicular.
- **18.** Find the parametric form of vector equation of a straight line passing through the point of intersection of the straight lines $\vec{r} = (\hat{\imath} + 3\hat{\jmath} \hat{k}) + t(2\hat{\imath} + 3\hat{\jmath} + 2\hat{k})$ and $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z+3}{4}$ and perpendicular to both straight lines.
- **19.** Determine whether the pair of straight lines $\vec{r} = (2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}) + t(2\hat{\imath} + 3\hat{\jmath} + 4\hat{k})$
- $\vec{r} = (2\hat{\jmath} 3\hat{k}) + s(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ are parallel. Find the shortest distance between them.
- **20.** Find the shortest distance between the two given straight lines

$$\vec{r} = (2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}) + t(-2\hat{\imath} + \hat{\jmath} - 2\hat{k})$$
 and $\frac{x-3}{2} = \frac{y}{-1} = \frac{z+2}{2}$.

21. Verify whether the line $\frac{x-3}{-4} = \frac{y-4}{-7} = \frac{z+3}{12}$ lies in the plane 5x - y + z = 8.

DALMIA HIGHER SECONDARY SCHOOL DALMIAPURAM – 621651

Std: 12

MATHEMATICS

TIME: 1.50HRS

CHAPTER – 6

TEST - 2

MARKS: 50

2 MARKS : ANSWERS ANY 8 Q

 $8 \times 2 = 16$

2 MARKS: ANSWER ALL QUESTIONS

 $10 \times 2 = 20$

- **1.** Prove that $[\vec{a} \vec{b}, \vec{b} \vec{c}, \vec{c} \vec{a}] = 0$.
- **2.** If \vec{a} , \vec{b} , \vec{c} , \vec{d} are coplanar vectors, show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$.
- **3.** If $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = 2\hat{\imath} \hat{\jmath} + \hat{k}$, $\vec{c} = 3\hat{\imath} + 2\hat{\jmath} + \hat{k}$, and $\vec{a} \times (\vec{b} \times \vec{c}) = 1\vec{a} + m\vec{b} + n\vec{c}$.

find the values of 1,m,n

- **4.** The vertices of $\triangle ABC$ are A(7, 2,1), B(6,0,3) , and C(4, 2, 4) C. Find $\angle ABC$.
- **5.** Show that the points (2,3,4), (-1,4,5) and (8,1,2) are collinear.
- **6.** If the two lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-m}{2} = z$ intersect at a point, find the value of m.
- 7. Show that the lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{3}$ and $\frac{x-1}{-3} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar. Also, find the plane containing these lines.
- **8.** Find the angle between the line $\vec{r} = (2\hat{\imath} \hat{\jmath} + \hat{k}) + t(\hat{\imath} + 2\hat{\jmath} 2\hat{k})$ and the plane $\vec{r} \cdot (6\hat{\imath} + 3\hat{\jmath} + 2\hat{k}) = 8$.
- **9.** Find the angle between the planes

$$\vec{r} \cdot (\hat{\imath} + \hat{\jmath} - 2\hat{k}) = 3$$
 and $2x - 2y + z = 2$

10. Find the length of the perpendicular from the point (1,-2,3) to the plane x-y+z=5.

<u>3 MARKS</u>: ANSWER ANY 10 QUESTIONS $10 \times 3 = 30$

- **11.** Find the angle between the straight lines $\vec{r} = (2\hat{\imath} + 3\hat{\jmath} + \hat{k}) + t(\hat{\imath} \hat{\jmath} + \hat{k})$ and the plane 2x y + z = 5.
- **12.** Find the distance between the parallel planes x + 2y 2z + 1 = 0 and 2x + 4y 4z + 5 = 0.
- **13.** Find the coordinates of the point where the straight line $\vec{r} = (2\hat{\imath} \hat{\jmath} + 2\hat{k}) + t(3\hat{\imath} + 4\hat{\jmath} + 2\hat{k})$ intersects the plane x y + z 5 = 0.
- **14.**Prove by vector method that an angle in a semi-circle is a right angle.
- **15.** Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is $\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$
- **16.** Find the torque of the resultant of the three forces represented by $-3\hat{\imath} + 6\hat{\jmath} 3\hat{k}$, $4\hat{\imath} 10\hat{\jmath} + 12\hat{k}$ and $4\hat{\imath} + 7\hat{\jmath}$ acting at the point with position vector $8\hat{\imath} 6\hat{\jmath} 4\hat{k}$ about the point with position vector $18\hat{\imath} + 3\hat{\jmath} 9\hat{k}$.
- **17.** For any vector \vec{a} prove that $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$.
- 18. Find the acute angle between the lines.

$$\vec{r} = (4\hat{\imath} - \hat{\jmath}) + t(\hat{\imath} + 2\hat{\jmath} - 2\hat{k}), \vec{r} = (\hat{\imath} - 2\hat{\jmath} + 4\hat{k}) + s(-\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$$

- 19. Find the acute angle between the lines 2x = 3y = -z and 6x = -y = -4z
- **20.** If the straight lines $\frac{x-5}{5m+2} = \frac{2-y}{5} = \frac{1-z}{-3}$ and $x = \frac{2y+1}{4m} = \frac{1-z}{-3}$ are perpendicular to each other, find the value of m.
- **21.** If the straight lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{m^2}$ and $\frac{x-3}{1} = \frac{y-2}{m^2} = \frac{z-1}{2}$ are coplanar, find the distinct real values of m.

www.Trb Tnpsc.Com

DALMIA HIGHER SECONDARY SCHOOL DALMIAPURAM – 621651

Std : 12

MATHEMATICS

TIME: 1.50HRS

CHAPTER – 6

TEST -3

MARKS: 50

5 MARKS: ANSWERS ANY 20 Q

 $20 \times 5 = 100$

1. By vector method, prove that $cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$

2. With usual notations, in any triangle ABC, prove by vector method that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

3.Prove by vector method that $sin(\alpha - \beta) = sin\alpha cos\beta - cos\alpha sin\beta$.

4.(Apollonius's theorem)

If D is the midpoint of the side BC of a triangle

ABC, then show by vector method that

$$\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{AC}\right|^2 = 2\left(\left|\overrightarrow{AD}\right|^2 + \left|\overrightarrow{BD}\right|^2\right)$$

5.Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.

6. Using vector method, prove that $cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$.

7. Prove by vector method that $sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$.

8.If
$$\vec{a} = -2\hat{\imath} + 3\hat{\jmath} - 2\hat{k}$$
, $\vec{b} = 3\hat{\imath} - \hat{\jmath} + 3\hat{k}$, $\vec{c} = 2\hat{\imath} - 5\hat{\jmath} + \hat{k}$, find

 $(\vec{a} \times \vec{b}) \times \vec{c}$ and $\vec{a} \times (\vec{b} \times \vec{c})$. State whether they are equal.

9.If $\vec{a} = \hat{\imath} - \hat{\jmath}$, $\vec{b} = \hat{\imath} - \hat{\jmath} - 4\hat{k}$, $\vec{c} = 3\hat{\jmath} - \hat{k}$, and $\vec{c} = 2\hat{\imath} + 5\hat{\jmath} + \hat{k}$, verify that

(i)
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}]\vec{c} - [\vec{a}, \vec{b}, \vec{c}]\vec{d}$$

$$(ii)(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{c}, \vec{d}]\vec{b} - [\vec{b}, \vec{c}, \vec{d}]\vec{a}$$

10.If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} + 5\hat{j} + 2\hat{k}$, $\vec{c} = -\hat{i} - 2\hat{j} + 3\hat{k}$, verify that

(i)
$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a}.\vec{c})\vec{b} - (\vec{b}.\vec{c})\vec{a}$$

(ii)
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$$

11.Find the vector equation in parametric form and Cartesian equations of a straight passing through the points (-5,7,-4) and (13,-5, 2). Find the point where the straight line crosses the xy-plane.

12.Find the points where the straight line passes through (6,7,4) and (8,4,9) cuts the xz and yz planes.

13. Find the point of intersection of the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and

$$\frac{x-4}{5} = \frac{y-1}{2} = z$$

14.Find the parametric form of vector equation of a straight line passing through the point of intersection of the straight lines

$$\vec{\mathbf{r}} = (\hat{\imath} + 3\hat{\jmath} - \hat{\mathbf{k}}) + \mathbf{t}(2\hat{\imath} + 3\hat{\jmath} + 2\hat{\mathbf{k}})$$

and $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z+3}{4}$, and perpendicular to both straight lines.

15.Determine whether the pair of straight lines

$$\vec{r} = (2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}) + t(2\hat{\imath} + 3\hat{\jmath} + 4\hat{k})$$

 $\vec{r} = (2\hat{j} - 3\hat{k}) + s(\hat{i} + 2\hat{j} + 3\hat{k})$ are parallel. Find the shortest distance between them.

16.Find the shortest distance between the two given straight lines

$$\vec{r} = (2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}) + t(-2\hat{\imath} + \hat{\jmath} - 2\hat{k})$$
 and $\frac{x-3}{2} = \frac{y}{-1} = \frac{z+2}{2}$.

17. Find the coordinate of the foot of the perpendicular drawn from the point (-1, 2, 3) to the straight line $\vec{r} = (\hat{\imath} - 4\hat{\jmath} + 3\hat{k}) + t(2\hat{\imath} + 3\hat{\jmath} + \hat{k})$.

Also, find the shortest distance from the given point to the straight line.

18. Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points

$$(-1,2,0)$$
, $(2,2,-1)$ and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$.

19. Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$

20. Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x + 6y + 6z = 9.

21. Find parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2,1),

(1,-2,3) and parallel to the straight line passing

through the points (2,1,-3) and (-1,5,-8).

22. Find the non-parametric form of vector equation of the plane passing through the point (1,-2, 4) and perpendicular to the plane x+2y-3z=11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}$.