Perambalur District SECOND MID TERM EXAMINATION - 2024

12 - STD **TIME: 1.30 Hrs**

MATHS

MARKS: 45

D	T	787	
PA	11.6	8 B	

I.	Answer al	I the	following	questions

1. The position of a particle moving along a horizontal line of any time t is given by $s(t) = 3t^2 - 2t - 8$. The time at which the particle is at rest is

(a)
$$t = 0$$

(a)
$$t = 0$$
 (b) $t = \frac{1}{3}$

(c)
$$t=1$$
 (d) $t=3$

d)
$$t=3$$

2. The slope of the line normal to the curve $f(x) = 2\cos 4x$ at $x = \frac{\pi}{12}$ is

(a)
$$-4\sqrt{3}$$
 (b) -4 (c) $\frac{\sqrt{3}}{12}$ (d) $4\sqrt{3}$

(c)
$$\frac{\sqrt{3}}{12}$$

(d)
$$4\sqrt{3}$$

3. The number given by the Rolle's theorem for the function $x^3 - 3x^2, x \in [0,3]$ is

(a) 1

4. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?

(a) $\frac{1}{21}$ (b) $\frac{1}{5}$ (c) 5 (d) 31

(b)
$$\frac{1}{5}$$

5. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is

(b)
$$-x + \frac{\pi}{2}$$

(a) $x + \frac{\pi}{2}$ (b) $-x + \frac{\pi}{2}$ (c) $x - \frac{\pi}{2}$ (d) $-x - \frac{\pi}{2}$

6. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is

(a) 0.4 cu.cm

(b) 0.45 cu.cm

(c) 2 cu.cm

(d) 4.8 cu.cm

7. The area between $y^2 = 4x$ and its latus rectum is (a) $\frac{2}{3}$

(b) $\frac{4}{2}$ (c) $\frac{8}{2}$ (d) $\frac{5}{2}$

8. In the set R of real numbers '*' is defined as follows. Which one of the following is not a binary operation on R? (a) $a*b = \min(a \times b)$ (b) $a*b = \max(a,b)$ (c) a*b = a(d) $a*b=a^b$

9. If a compound statement involves 3 simple statements, then the number of rows in the truth table is (a) 9 (b) 8 (c) 6

10. The dual of $\neg (p \lor q) \lor [p \lor p(\land \neg r)]$ is

(a) $\neg (p \land q) \land [p \lor (p \land \neg r)]$ (b) $(p \land q) \land [p \land (p \lor \neg r)]$

(c) $\neg (p \land) \land [p \land (p \land r)]$

(d) $\neg (p \land q) \lor [p \land (p \lor \neg r)]$

K. Muruganandham. M. Sc. M. Ed. M. Phil

9843151302

PART-II

II. ANSWER ANY 4 QUESTIONS. (Q.NO 16 is compulsory)

4x2 = 8

- 11. Evaluate: $\lim_{x\to\infty} \left(\frac{e^x}{x^m}\right), m\in N$.
- 12. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 2 and dx = 0.1
- 13. Find the partial derivatives of the following functions at the indicated points $f(x, y) = 3x^2 2xy + y^2 + 5x + 2, (2, -5)$
- 14. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two boolean matrices of the same type. Find $A \vee B$ and
- 15. Determine whether * is a binary operation on $(a*b) = a\sqrt{b}$ is binary on R
- 16. A point moves along a line in such a way that after t seconds its distance from the origin is $s = 2t^2 + 3t$ metres. Find the average velocity of the points between t = 3 and t = 6 seconds.

PART-III

III. ANSWER ANY 7 QUESTIONS. (Q.NO 22 is compulsory)

4x3=12

- 17. Find the values in the interval (1,2) of the mean value theorem satisfied by the function $f(x) = x x^2$ for $1 \le x \le 2$.
- 18. If the radius of a sphere, with radius 10 cm, were to decrease by 0.1 cm, approximately how much would its volume decrease?
- 19. $w(x, y, z) = x^2y + y^2z + z^2x$, $x, y, z \in R$ find the differential dw
- 20. Prove that the function $f(x) = x^2 2x 3$ is strictly increasing in $(2, \infty)$.
- 21. state and prove involution law using truth table
- 22. Prove $p \to (q \to r) \equiv (p \land q) \to r$ using truth table.

PART-IV

IV. ANSWER ALL THE FOLLOWING QUESTIONS.

3×5=15

23. a) Find the acute angle between $y = x^2$ and $y = (x-3)^2$. (OR)

b) If
$$w(x, yz) = x^2 + y^2 + z^2$$
, $x = e^t$, $y = e^t \sin t$ and $z = e^t \cos t$, find $\frac{dw}{dt}$.

- 24.a) Find the volume of a sphere of radius a. (OR)
 - b) Let A be $Q-\{1\}$. Define * on A by x*y=x+y-xy. Is * a binary on A. If so, examine the closure, commutative, associative, the existence of identity and existence of inverse properties.

25.a) If
$$u = \sin^{-1} \left(\frac{x+y}{\sqrt{x+\sqrt{y}}} \right)$$
, Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$. (OR)

b) Prove that among all the rectangles of the given area square has the least perimeter.