2024-2025

### 1.Differentiate coulomb force and gravitational force.

| S. No. | Coulomb Force                                                                                                 | Gravitational Force                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1      | It acts between two charges                                                                                   | It acts between two masses                                                            |
| 2      | It can be attractive or repulsive                                                                             | It is always attractive                                                               |
| 3      | It is always <b>greater in magnitude</b>                                                                      | It is <b>always lesser</b> in magnitude                                               |
| 4      | It <b>depends</b> on the nature of the medium                                                                 | It is <b>independent</b> of the medium                                                |
| 5      | If charges are in motion, another force called Lorentz force come in to play in addition to Coulomb force     | Gravitational force is the same whether two masses are at rest or in motion           |
| 6      | The value of the constant <b>k</b> in Coulomb law <b>k = 9 x 10<sup>9</sup> Nm<sup>2</sup> C<sup>-2</sup></b> | The value of the gravitational constant <b>G = 6.67 x 10</b> -11 Nm <sup>2</sup> kg-2 |

### 2.Differetiate electrical energy and power.

| S. No. | Electric Energy                                                                                                                               | Electric Power                                                                                                     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Pr     | Work has to be done to move the charge from One end to other end of the conductor and this work-done is called electric energy. dW = dU = VdQ | The rate at which the electrical potential energy is delivered is called electric power. $P = \frac{dU}{dt}; = VI$ |
| 2      | Its SI Unit is joule (J)                                                                                                                      | Its SI Unit is watt (W)                                                                                            |
| 3      | Its practical unit is kilowatt hour (kwh) 1 kwh = 3.6 x 10°J                                                                                  | Its practical unit is horse power(HP)1 HP = 746 W                                                                  |

**CLICK TO GET OUR FREE MATERIALS (2024-25):** 





#### 3. Distinguish between peltier effect and joule's effect

| S. No. | Peltier Effect                         | Joule's Effect                 |
|--------|----------------------------------------|--------------------------------|
| 1      | Both heat liberated and absorbed occur | Heat liberated only occur      |
| 2      | Occurs at junctions                    | Occurs all along the conductor |
| 3      | Reversible effect                      | Irreversible effect            |

### 4. Give the differences between uniform and non uniform magnetic field.

| S. No. | Uniform Magnetic field                  | Non – Uniform Magnetic field             |
|--------|-----------------------------------------|------------------------------------------|
|        | Magnetic field is said to be uniform If | Magnetic field is said to be <b>non-</b> |
| 4      | it has the <b>same magnitude and</b>    | uniform If the magnitude or              |
| 1      | direction at all the points in a        | direction or both varies at all its      |
|        | given region.                           | points.                                  |
| 2      | (e.g) LocallyEarth's magnetic field     | (e.g) Magnetic field of a bar            |
|        | is uniform                              | magnet                                   |

# 5. Differentiate coulomb's law and biot-savart's laws.

| S. No. | Coulomb's law                                                                                               | Biot- savart's law                                                                                |
|--------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1      | Electric field is calculated                                                                                | Magnetic field is calculated                                                                      |
| 2      | Produced by a scalar source (i.e) charge 'q'                                                                | Produced be vector source (i.e.) current element $\overrightarrow{\mathrm{Id}l}$                  |
| 3      | It is directed along the position vector joining the source and the point at which the field is calculated. | It is directed perpendicular to the position vector and the current element                       |
| 4      | Does not depends on angle                                                                                   | Depends on the angle between and $\overrightarrow{\operatorname{Id}l}$ and $\widehat{\mathbf{r}}$ |

## 12th PHYSICS - DIFFERENCE BETWEEN QNS

### **SS PRITHVI (XII-STD)**

#### 6.Differentiate step up transformer from step down transformer.

| Step up transformer                                                                                                                               | Step down transformer                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| If the transformer converts an alternating current with low voltage in to an alternating current with high voltage is called step up transformer. | If the transformer converts an alternating current with high voltage in to an alternating current with low voltage is called step down transformer. |

### 7. Distinguish between electromagnetic and mechanical oscillations.

| Electromagnetic Oscillation                                                              | Mechanical Oscillation                                                            |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| This circuit consists inductor and capacitor                                             | This circuit consists spring and block                                            |
| Charge "q"                                                                               | Displacement "x"                                                                  |
| Current $i = \frac{dq}{dt}$                                                              | $Velocity v = \frac{dx}{dt}$                                                      |
| Inductance "L"                                                                           | Mass "m"                                                                          |
| Reciprocal in capacitance $\frac{1}{c}$                                                  | Force constant "k"                                                                |
| Electrical Energy = $\frac{1}{2} \left[ \frac{1}{c} \right] q^2$                         | Potential Energy = $\frac{1}{2}$ kx <sup>2</sup>                                  |
| Mechanical Energy = $\frac{1}{2}$ Li <sup>2</sup>                                        | Kinetic Energy = $\frac{1}{2}$ mv <sup>2</sup>                                    |
| Electromagnetic energy = $\frac{1}{2} \left[ \frac{1}{c} \right] q^2 + \frac{1}{2} Li^2$ | Mechanical Energy = $\frac{1}{2}$ kx <sup>2</sup> + $\frac{1}{2}$ mv <sup>2</sup> |

**CLICK TO GET OUR FREE MATERIALS (2024-25):** 





## 12th PHYSICS - DIFFERENCE BETWEEN QNS

#### **SS PRITHVI (XII-STD)**

## 8. Conditions for nature of objects.

| Nature of Object / Image | Condition                             |
|--------------------------|---------------------------------------|
| Real Image               | Rays actually converge at the image   |
| Virtual Image            | Rays appear to diverge from the image |
| Real Object              | Rays actually diverge from the object |
| Virtual Object           | Rays appear to diverge at the object  |

#### 9. Differentiate between covex mirror and concave mirror.

| Convex Mirror                     | Concave Mirror                    |
|-----------------------------------|-----------------------------------|
| It is a spherical mirror in which | It is a spherical mirror in which |
| reflection takes place at         | reflection takes place at         |
| the convex surface and            | the concave surface and           |
| other surface is silvered         | other surface is silvered         |

#### 10. What are the differences between frensel and fraunhofer diffractions?

| Fresnel diffraction                                       | Fraunhofer diffraction                                 |
|-----------------------------------------------------------|--------------------------------------------------------|
| Spherical or cylindrical wave front undergoes diffraction | Plane wave front undergoes diffraction                 |
| Light wave is from a source at <b>finite distance</b>     | Light wave is from a source at <b>infinity</b>         |
| For laboratory conditions, convex lenses need not be used | In laboratory conditions, convex lenses are to be used |
| difficult to observe and analyze                          | Easy to observe and analyze                            |

**CLICK TO GET OUR FREE MATERIALS (2024-25):** 





### 11. Differentiate ordinary ray and extraordinary ray.

| Ordinary Ray                                                                     | Extraordinary Ray                                                                       |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| They obey the laws of refraction                                                 | They do not obey the laws of refraction                                                 |
| Inside the crystal, they travel with same velocity in all directions             | Inside the crystal, they travel with different velocities along different directions    |
| A point source inside the crystal produces spherical wave front for ordinary ray | A point source inside the crystal produces elliptical wave front for extra ordinary ray |

### 12. What is near point and normal focusing?

| Near Point Focusing                          | Normal Focusing                                             |
|----------------------------------------------|-------------------------------------------------------------|
| The image is formed at <b>near point</b>     | The image is formed at infinity                             |
| In this position, the eye feel little strain | In this position, the eye is most relaxed to view the image |
| Magnification is high $m = 1 + \frac{D}{f}$  | Magnification is low $m = \frac{D}{f}$                      |

## 13.Differentiate analog signal from digital signal.

| Analog Signal                                                                       | Digital Signal                                                                         |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| It <b>is continuously varying voltage</b> or current with respect to time           | It contains only <b>two discrete values</b> of voltages (i.e.) low (OFF) and high (ON) |
| These signals are employed in rectifying circuits and transistor Amplifier circuits | These signals are employed in signal processing. communication etc.,                   |

# 12th PHYSICS - DIFFERENCE BETWEEN QNS

### **SS PRITHVI (XII-STD)**

### 14. what are positive and negative logics?

| Positive logic           | Negative logic           |
|--------------------------|--------------------------|
| Binary 1 stands for +5 V | Binary 1 stands for OV   |
| Binary 0 stands for 0 V  | Binary 0 stands for +5 V |

### Working of half wave rectifier

| During positive half cycle of input AC                                                                                                                     | During negative half cycle of input AC                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminal A becomes positive with respect to terminal B                                                                                                     | Terminal B becomes positive with respect to terminal A.                                                                                                     |
| The diode is <b>forward biased</b> and hence it <b>conducts</b>                                                                                            | The diode is reverse biased and hence it does not conduct                                                                                                   |
| The current flows through the load resistor $\mathbf{R}_{\rm L}$ and AC voltage developed across $\mathbf{R}_{\rm L}$ constitutes the output voltage $v_0$ | No current passes through R <sub>L</sub> and there is no voltage the drop across R <sub>L</sub> . (The reverse saturation current in a diode is negligible) |

## Working of full wave rectifier

| During positive half cycle of input<br>AC                                                     | During negative half cycle of input AC                                                       |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Terminal <b>M</b> is positive, C is at zero potential and <b>N</b> is at negative potential.  | Terminal <b>M</b> is negative, C is at zero potential and <b>N</b> is at positive potential. |
| Diode <b>D</b> <sub>1</sub> is forward biased. Diode <b>D</b> <sub>2</sub> is reverse biased. | Diode $\mathbf{D}_1$ is reverse biased.<br>Diode $\mathbf{D}_2$ is forward biased.           |
| D <sub>1</sub> conducts and current flows along the path MD <sub>1</sub> ABC                  | D <sub>2</sub> conducts and current flows along the path ND <sub>2</sub> ABC                 |

**CLICK TO GET OUR FREE MATERIALS (2024-25):** 





fect