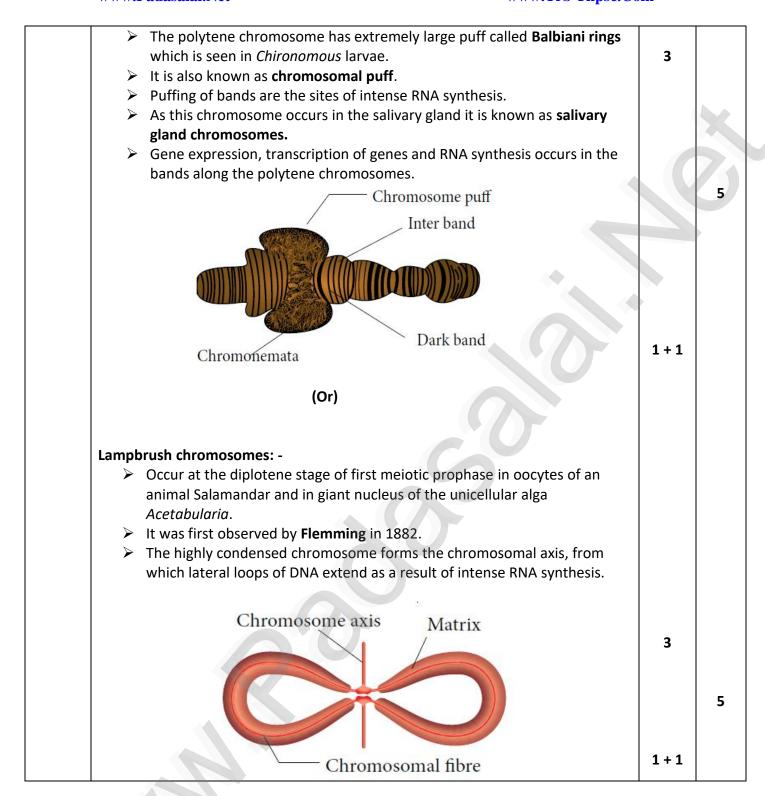
DIRECTORATE OF GOVERNMENT EXAMINATION, CHENNAI-6 CHENGALPATTU DISTRICT

HALFYEARLY EXAMINATION. DEC-2024

XI. BIOLOGY

I. BIO- BOTANY – KEY ANSWER

Max. Marks: 35


			Max. M	aiks. 33	
			TION - 1		
	· · · · · · · · · · · · · · · · · · ·	wer all the questions.	8)	(1=8	
Q. No	Options		Answer		
1.BB	В	Before fertilization			
2. B.IN	Α	IAA			
3. B.IN	D	Phellem, phellogen and p	phelloderm		
4. BB	С	Syncarpous			
5. B.IN	В	1-(iii), 2-(v), 3-(iv), 4-(i)			
6. BB	С	Serotaxonomy			
7. B.IN	D	Statement I is incorrect b	out statement II is correct		
8.BB	D	В			
		SEC	TION – 2		
	Answer any 4 o	questions:	43	X 2 = 8	
Q. No		Ansv	ver	Ma	rks
9.	Nucleoside and	l Nucleotide:			
BB				_	
		Nucleoside	Nucleotide		
	It is a combina	ation of	It is a combination of nucleoside		
	base and suga	r (or)	and phosphoric acid. (or)	1	
	A nitrogenous	base is linked to pentose	When a phosphate group is		
	sugar through	n-glycosidic linkage	attached to a nucleoside it is called a		2
	and forms a n	ucleoside	nucleotide		
		uanosine, Cytidine and	Adenylic acid, Guanylic acid,	1	
	Deoxythymidi	ne	Cytidylic acid and Uridylic acid		
10.	Importance of	Studying Growth Rings:	(any two)		
B.IN					
	_	vood can be calculated.		2 X 1	2
	•	lity of timber can be ascert			
		arbon dating can be verifie			
		nate and archaeological da	_		
44		s evidence in forensic inves	stigation.		
11.	Kreps cycle - Al	mphibolic pathway:			
B.IN	A It is suite	narily a catabolic natheres		2 X 1	2
		narily a catabolic pathway.	us biosynthetic nathways there by an	2 X 1	2
		c pathway too.	ous biosynthetic pathways there by an		
12.		ency of Plant A and B:			
	iviirierai deficie	incy of Plant A and B:			
ВВ	≥ il Dofic	ionay of Plant A Malyhda	num	1	
	· ·	iency of Plant A Molybde ciency of Plant B Zinc	mum	1 1	2
	ii). Delic	deficy of Flattic B Allic		1	

13.	Cyath	ium inflorescence: -				
B.IN	>	It consists of small unisexual flower	ers enclosed by a com	imon involucre		
		which mimics a single flower.	•			
	>	Male flowers are organised in a so	corpioid manner.			
		Female flower is solitary and cent	=	g pedicel.		
		Male flower is represented only b	•			
		Female flower is represented only	•			
		Cyathium may be actinomorphic				//4
		Nectar is present in involucre.	7.5		4 X ½	2
		(or)				
	>	Special type of inflorescence cons	ists of small unisexua	I flowers.		>
		Centrally located single female flo				
	>	Male flower represented by only	stamen			
	>	Female flower represented only b	y pistil.			
		Involucre protect flowers and con		(practical portion))	
14.		photosynthetic parts of a plant that				
ВВ	-	Roots	11 /		1/2	
	>	Tubers			1/2	2
	>	Stems of older plants, flowers and	fruits.		1	
			CTION - 3			
Answe	r any thre	ee of the following including Q.No.		ory	3 X 3 =	9
15.		ological effects of Auxin:		(any three)		
B.IN	-	Promote cell elongation in stem a	nd coleoptile.	, ,		
		At higher concentrations auxins in	•	of roots but		
		extremely lower concentrations p				
	>	Suppression of growth in lateral b				
		by apical bud is termed as apical of		•	3 X 1	3
	>	Prevents abscission.				
	>	Used to eradicate weeds. Example	e: 2,4-D and 2,4,5-T.			
		Synthetic auxins are used in the fo		ruits		
		(Parthenocarpic fruit).				
	>	Used to break the dormancy in se	eds.			
16.	Go ph					
BB	-	A quiescent stage called Go , wher	e the cell remains me	tabolically active		
		without proliferation.		,		
	>	Cells can exist for long periods in	Go phase.			
		In Go, cells cease growth with red	•	protein synthesis.		
		The Go phase is not permanent. N			6 X ½	3
		remain permanently in Go.			/ -	-
	>	Many cells in animals remains in C	30 unless called on to	proliferate by		
		appropriate growth factors or oth		· · · · · · · · · · · · · · · · · · ·		
		Go cells are not dormant.				
17.		climbers differ from Stem climbers	<u> </u>			
ВВ		Root climbers	Stem cli	mbers		
	1	Plants climbing with the help of	Climbers lack specia			
		adventitious roots.	climbing and the ste		2	
		daventidas 100ts.	around the support.		-	3
	2	Piper betel, Piper nigrum,	Ipomoea, Clitoral, Q			-
			•	•	1	
		Pothos. (any one e.g)	1	any one e.g)	_	

18. BB	Нар	lontic and Diplontic life cycle:	(any three)		
		Haplontic life cycle	Diplontic life cycle		
	1	Gametophytic phase is dominant, photosynthetic and independent.	Sporophytic phase (2n) is dominant, photosynthetic and independent.		
	2	Sporophytic phase is represented by the zygote.	The gametophytic phase is represented by the single to few celled gametophytes.	3 X 1	3
	3	Zygote undergoes meiosis to restore haploid condition	The gametes fuse to form zygote which develops into sporophyte.		
	4	(E.g).Volvox, Spirogyra. (any one)	(E.g) Fucus, gymnosperms and angiosperms. (any one)		
19. B.IN	T.S	of Monocot leaf:	(Draw & label)		
			Upper epidemis Sub-stomatal chamber Mesophyll Bundle sheath Xylem Phloem Lower epidemis Stoma	2+1	3
,	Answe	er the following	CTION - 4	2 X 5 = 1	0
21. (a) B.IN	Pho	(2) Ribulose 1,5 bis phosphate	(2) Glycolate	5	5
		(or)			

	 C2 Cycle takes place in chloroplast, peroxisome and mitochondria. RUBP is converted into PGA and a 2C-compound phosphoglycolate by 		
	Rubisco enzyme in chloroplast.		
	 Since the first product is a 2C-compound, this cycle is known as C2 Cycle. 		
	 Phosphoglycolate by loss of phosphate becomes glycolate. 		6.0
	 Glycolate formed in chloroplast enters into peroxisome to form glyoxylate 		
	and hydrogen peroxide.		
	 Glyoxylate is converted into glycine and transferred into mitochondria. 	10 X½	5
	In mitochondria, two molecules of glycine combine to form serine.		
	Serine enters into peroxisome to form hydroxy pyruvate.		
	Hydroxy pyruvate with help of NADH+ H+ becomes glyceric acid.		
	Glyceric acid is cycled back to chloroplast utilising ATP and becomes		
	Phosphoglyceric acid (PGA) and enters into the Calvin cycle (PCR cycle).		
	(Or)		
(b). B.IN	Economic importance of fungi:		
	Provide delicious and nutritious food called mushrooms.		
	Recycle the minerals by decomposing the litter thus adding fertility to the		
	soil.	5 X 1	5
	Dairy industry is based on a single celled fungus called yeast.		
	They deteriorate the timber.		
	Cause food poisoning due the production of toxins. (or)		
	1. Beneficial activities: (any five with one example in each)		
	1). Food		
	Mushrooms like Lentinus edodes, Agaricus bisporus, Volvariella		
	volvaceae are consumed for their high nutritive value		
	Yeasts provide vitamin B and <i>Eremothecium ashbyii</i> is a rich source		
	of Vitamin B12.		
	2). Medicine		
	Some of the antibiotics produced by fungi include Penicillin (Penicillium notatum)		
	Cephalosporins (Acremonium chrysogenum)		
	Griseofulvin (Penicillium griseofulvum).		
	 Ergot alkaloids (Ergotamine) produced by Claviceps purpurea is 		
	used as vasoconstrictors.		
	3). Production of Organic acid		
	 Some of the organic acids and fungi which help in the 		
	production of organic acids are		
	Citric acid and gluconic acid – Aspergillus niger,	5 X 1	5
	Itaconic acid – Aspergillus terreus,		
	Kojic acid – Aspergillus oryzae.		
	4). Bakery and Brewery		
	Yeast (Saccharomyces cerevisiae) is used for fermentation of sugars to yield alcohol.		
	Bakeries utilize yeast for the production of Bakery products		
	like Bread, buns, rolls etc.,		
1	Penicillium roquefortii and Penicillium camemberti were		
	employed in cheese production.		

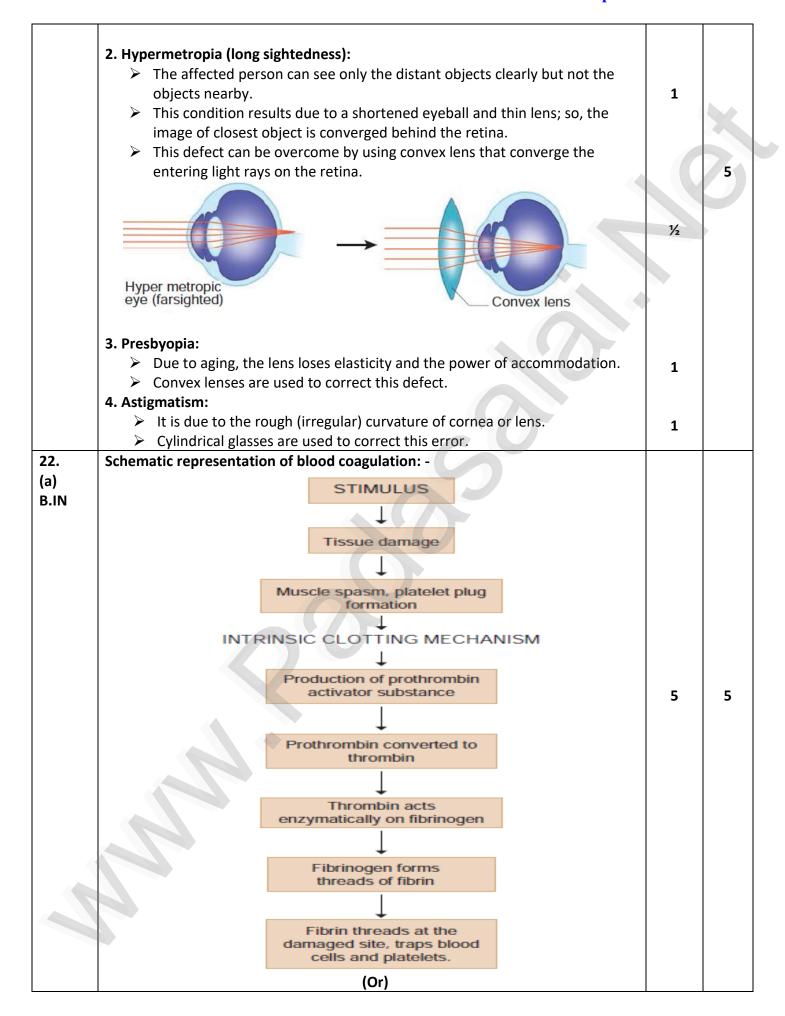
	5). Production of enzymes		
	 Aspergillus oryzae, Aspergillus niger were employed in the production of enzymes like amylase, protease, lactase etc. Rennet which helps in the coagulation of milk in cheese manufacturing is derived from Mucor sp. 		
	 Fungi like Rhizoctonia, Phallus, Scleroderma helps in absorption of water and minerals. Fungi like Beauveria bassiana, Metarhizium anisopliae are used as Biopesticides to eradicate the pests of crops. Harmful activities Aspergillus, Rhizopus, Mucor and Penicilium are involved in spoilage of food materials. Fungi like Amanita phalloides, Amanita verna, Boletus satanus are highly poisonous due to the production of Toxins (Toad stools) Aspergillus flavus infest dried foods and produce carcinogenic 		
	toxin (aflatoxin)		
22. (a). BB	Economic importance of the family Fabaceae: (any five)		
	 i). Pulses – The seeds of Cajanus cajan are sources of protein and starch of our food. ii). Food plants Tender fruits of Lablab purpureus are used as Vegetables. iii). Oil Plants Oil extracted from the seeds of Arachis hypogeais is edible and used for cooking. iv). Timber Plants – Timber of Dalbergia latifoliais is used for making furniture, cabinet articles and as building materials. v). Medicinal Plants – Roots of Crotalaria albida is used as purgative Seeds of Psoralea corylifolia is used in leprosy and leukoderma. vi). Fibre Plants – Stem fibres of Crotalaria juncea is used for making ropes. Vii). Pith Plant – Stem pith of Aeschynomene aspera is used for packing, handicraft and fishing floats. Viii). Dye Plants – Leaves of Indigofera tinctoria -Indigo dye obtained from leaves is used to colour printing and in paints. Flowers and seeds of Clitoria ternatea - Blue dye is Obtained. 	5 X 1	5
(b).	Polytene chromosomes: -		
B.IN	 Observed in the salivary glands of <i>Drosophila</i> (fruit fly) by E.G. Balbiani in 1881. A single chromosome which is present in multiple copies form a structure called polytene chromosome which can be seen in light microscope. They are genetically active. 		
	 There is a distinct alternating dark bands and light inter-bands. 		
	About 95% of DNA are present in bands and 5% in inter-bands.		

B. LOGANATHAN GHSS, MAMBAKKAM, CHENGALPATTU DIST.

DIRECTORATE OF GOVERNMENT EXAMINATION, CHENNAI-6 CHENGALPATTU DISTRICT

HALFYEARLY EXAMINATION. DEC-2024

XI. BIOLOGY


II. BIO- ZOOLOGY – KEY ANSWER

Max. Marks: 35

			larks: 35	
		SECTION - 1		
			X 1 = 8	
Q. No	Options	Answer		
1. BB	Α	Physalia – Portugese man of war		
2. B.IN	С	1 – iii, 2 – iv, 3 – i, 4 – ii		
3. B.IN	С	Both the statements 1 and 2 are correct		
4.BB	Α	Greater than the hydrostatic pressure		
5. B.IN	Α	In the liver but eliminated mostly through kidneys		
6. BB	D	Amoeboid		
7.B.IN	Α	Movement of head		
8. BB	С	ii and iv are not correct		
		SECTION – 2		
Aı	nswer any 4 que	estions:	4 X 2 =	8
Q. No		Answer	Ma	rks
9.	Role of Charles	Darwin in relation to concept of species: -		
BB	> In his boo	ok Origin of species explains the evolutionary connection of	2	2
	species b	by the process of natural selection.		
10.	Functions of air	bladder in fishes: -		
ВВ	> It helps in	n gaseous exchange in lung fishes	1	2
	Maintain	ning buoyancy in most of the ray finned fishes	1	
11.	Distinguish Male	e frog from Female frog: -		
B.IN	The male	e frog has a pair of vocal sacs and a copulatory or nuptial pad on	1	
	the venti	ral side of the first digit of each forelimb.		2
	Vocal sad	cs and nuptial pads are absent in the female frogs.	1	
12.	Oxygenhaemog	lobin dissociation curve is obtain: -		
B.IN	It is obta	ined when percentage saturation of haemoglobin with oxygen is	1 ½	
	plotted a	against pO2.		2
	This curv	ve is called sigmoid curve (S-shaped)	1/2	
13.	Structure of hur	man kidney		
B.IN				
		Capsule		
		- Cortical nephron		
	Cortex -	Minor calyx		
	Medulla –	Juxtamedullary		
	Renal Artery -	nephron		2
	Renal Vein –	Major calyx		
	Kidney pelvis –	Renal pyramid		
		Renal column		
	Ureter –	of Bertini		
	Draw & label			
			1+1	

14.	Symptoms of acromegaly: - (any four)		
ВВ	 Over growth of hand bones, feet bones, jaw bones, 		
	Malfunctioning of gonads,	4 X ½	2
	Enlargement of viscera, tongue, lungs, heart, liver, spleen and		
	Endocrine gland like thyroid, adrenal etc.,		
	SECTION - 3		
	wer any three of the following including Q.No.19 which is compulsory	3 X 3	= 9
15 .	Characters of bony fishes: - (any three)		
ВВ	Dath maying and freehouster fish as with heavy and advalates		
	Both marine and freshwater fishes with bony endoskeleton.		
	Spindle shaped body.		
	Skin is covered by ganoid, cycloid or ctenoid scales.	2 V 1	2
	Respiration is by filamentous gills and covered by an operculum.	3 X 1	3
	Ventrally placed two chambered hearts. Transfer of the second place and are appropriately a second place.	•	
	Excretory organs are mesonephric kidneys and are ammonotelic.		
	 Presence of well-developed lateral line sense organ. 		
	Sexes are separate. External fortilization is soon and most forms are evinarous.		
16.	 External fertilization is seen and most forms are oviparous Bile juice contains no digestive enzymes: - 		
BB	blie juice contains no digestive enzymes: -		
ъъ	The bile contains bile pigments, bile salts, cholesterol and phospholipids	1	
	but has no enzymes.	_	3
	Helps in emulsification of fats.	1	3
	 Bile salts reduce the surface tension of fat droplets and break them into 	1	
	small globules.	_	
	 Bile also activates lipases to digest lipids. 		
17.	Functions of skeletal system: - (any three)		
BB	(may mass)		
	Support –Forms a rigid framework and supports the weight of the body		
	against gravity.		
	> Shape - Provides and maintains the shape of the body.		
	Protection – Protects the delicate internal organs of the body.	3 X 1	3
	Acts as reservoir – Stores minerals such as calcium and phosphate.		
	Locomotion – Acts as lever along with the muscles attached to it.		
	Strength – Can withstand heavy weight and absorbs mechanical shock.		
	> As a haemopoietic tissue – Red and White blood cells are produced in the		
	bone marrow of the ribs, spongy bones of vertebrae and long bones.		
18.	Advantages of Artificial insemination: -		
BB	Increases the rate of conception		
	Avoids genital diseases	3 X 1	3
	Semen can be collected from injured bulls which have desirable traits.		
	Superior animals located apart can be bred successfully		
19.	Role of Pineal gland: - (any three)		
BB	 Secretes the hormone melatonin 		
	Which plays a central role in the regulation of circadian rhythm of our		
	body and maintains the normal sleep wake cycle.	3 X 1	3
	Regulates the timing of sexual maturation of gonads.		
	Melatonin also influences metabolism, pigmentation, menstrual cycle and		
	defence mechanism of our body.		

	SECTION - 4	<u> </u>	_
	Answer the following	2 X 5 = 10)
20. (a). B.IN	Structure of the Digestive system of Frog: - > The alimentary canal consists of the buccal cavity, pharynx, oesophagus, duodenum, ileum and the rectum which leads to the cloaca. > The wide mouth opens into the buccal cavity. > The tongue is attached in front and free behind. > A row of small and pointed maxillary teeth is found on the inner region of the upper jaw. > The lower jaw is devoid of teeth. > The buccal cavity that leads to the oesophagus through the pharynx. > Oesophagus is a short tube that opens into the stomach and continues as the intestine, rectum and finally opens outside by the cloaca. > Liver secretes bile which is stored in the gall bladder. > Pancreas, a digestive gland produces pancreatic juice containing digestive enzymes. Oesophagus Buccal cavity Pharynx Liver Gall-bladder Bileduct Bileduct Pancreas Pancreas Pancreas Pancreas Pancreas Pancreas Pancreas Pancreas Cloaca	1+1	5
(b)	Refractive errors of Eye: -		
	 1. Myopia (near sightedness): - The affected person can see the nearby objects but not the distant objects. This condition may result due to an elongated eyeball or thickened lens; so that the image of distant object is formed in front of the yellow spot. This error can be corrected using concave lens that diverge the entering light rays and focuses it on the retina. 	1	
	Concave lens Myopic eye (nearsighted)	1 /2	

(b).	Multiple ovulation embryo transfer technology: -		
B.IN			
	Method of propagation of animals with desirable traits.		
	This method is applied when the success rate of crossing is low even after artificial insemination.		b
	In this method Follicle stimulating hormone (FSH) is administered to cows for inducing follicular maturation and super ovulation.		
	Instead of one egg per cycle, 6-8 eggs can be produced by this technology.	8 X ½	
	The eggs are carefully recovered non-surgically from the genetic mother and fertilized artificially		5
	The embryos at 8-32 celled stages are recovered and transferred to a surrogate mother.		
	For another round of ovulation, the same genetic mother is utilized.		
	This technology can be applied to cattle, sheep and buffaloes.		
	Advantage Produce high milk yielding females and high-quality meat		
	yielding bulls in a short time.	1	

B. LOGANATHAN, GHSS, MAMBAKKAM, CHENGALPATTU DIST.