Tirupathur District – Halfyearly Examination – Dec - 2024 11th Std Chemistry – Answer Key

Part – I

 $15 \times 1 = 15$

Q. No	Answer	Q. No	Answer	
1	c) both (a) and (b)	9	d) both (a) and (c)	
2	c) 2	10	b) square plannar	
3	a) $s > p > d > f$	11	d) both (a) and (c)	
4	c) amphoteric oxide	12	b) ROR	
5	d) Both assertion and reason are false	13	a) Nitro benzene	
6	c) 10 ⁻⁴ K	14	c) Benzene	
7	b) q = 0	15	c) Bio magnification	
8	d) (RT) ²			

Part – II

	Part – II		
Answ	ver any 6 questions and question No. 24 is compulsory. 6 x	2 = 12	2
16	Explain Aufbau principle?		
	In the ground state of the atoms, the orbitals are filled in the order of their	2	2
	increasing energies. That is the electrons first occupy the lowest energy orbital	2	2
	available to them.		
17	How do you convert para hydrogen into ortho hydrogen?		
	The para-form can be catalytically transformed into ortho-form by,		
	Adding platinum or iron catalyst.		
	By passing an electric discharge.	2x1	2
	Heating above 800°C.		
	 Mixing with paramagnetic molecules such as O₂, NO, NO₂. 		
	By adding nascent/atomic hydrogen.		
18	Write Graham' s Law of Diffusion?		
	The rate of diffusion or effusion is inversely proportional to the square root of		
	molar mass.	2	2
	(or) Poto of diffusion $\propto \frac{1}{1}$		
	(0) Nate of ultrasion $\propto \frac{1}{\sqrt{M}}$		
19	Define molar heat capacity. Give its unit.	1	
	It is defined as "The amount of heat absorbed by one mole of the substance		2
	to raise its temperature by 1 kelvin".	1	-
	SI unit: JK ⁻¹ mol ⁻¹		
20	Draw the Lewis structures for the following species.		
	Sulphate ion Nitric acid		
	2-		
	:0:	2x1	2
	$\ddot{\mathbf{n}} = \mathbf{s} = \ddot{\mathbf{n}}$ $\mathbf{H} - \ddot{\mathbf{n}} = \ddot{\mathbf{n}}$		
	· · · · · · · · · · · · · · · · · · ·		
21	Identify the functional group in the following compounds.		
	i) di methyl ether = $-O-$	2	2
	ii) 2 – methyl butanal = –CHO		

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

Oxidation Reduction Addition of oxygen Addition of hydrogen 1 Removal of hydrogen Removal of oxygen 2 3x1 3 Reaction in which oxidation number of Reaction in which oxidation number of 3 the element increases the element decreases 4 Loss of electron Gain of electron 26 How many radial nodes for 2s, 5d, 4f orbitals exhibit? How many angular nodes? radial nodes angular nodes orbitals l n n - l - 1 l 3x1 3 1 0 2s 2 0 5d 5 2 2 2 4f 4 3 0 3 Explain the diagonal relationship. 27 On moving diagonally across the periodic table, the second and third period elements show certain similarities. Even though the similarity is not same as we see in a group, it is quite pronounced in the following pair of elements. 3 3 Be С Ŀi В Na AI Si Mg The similarity in properties existing between the diagonally placed elements is called 'diagonal relationship'.

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

28	How is plaster of paris prepared? Write its one use?					
	 It is a hemihydrate of calcium sulphate. 					
	 It is obtained when gypsum, CaSO₄·2H₂O, is heated to 393 K. 					
	$2CaSO_{4.}2H_{2}O_{(S)} \longrightarrow 2CaSO_{4.}\frac{1}{2}H_{2}O + 3H_{2}O$	2	2			
	Uses: (any one)		3			
	 Building industries (plasters) 					
	Immobilising (bone fracture or sprain)	1				
	 Dentistry, in ornamental work and for making casts of statues and busts. 					
29	The equilibrium concentrations of NH ₃ . N ₂ and H ₂ are 1.8×10^{-2} M. 1.2×10^{-2} M					
	and 3×10^{-2} M respectively. Calculate the equilibrium constant for the					
	formation of NH ₃ from N ₂ and H ₂ .					
	$[N]H]^2$	1				
	$K_{\rm C} = \frac{[1 \times 1_3]}{(1 \times 1)^3}$					
			3			
	$1.8 \times 10^{-2} \times 1.8 \times 10^{-2}$	1				
	$=\frac{1.2 \times 10^{-2} \times 3 \times 10^{-2} \times 3 \times 10^{-2} \times 3 \times 10^{-2}}{1.2 \times 10^{-2} \times 3 \times 10^{-2} \times 3 \times 10^{-2}}$					
	$K_c = 1 \times 10^3 L^2 \text{ mol}^{-2}$	1				
30	Define (i) osmosis (ii) osmotic pressure.					
	Osmosis is a spontaneous process by which the solvent molecules pass	1½				
	through a semi permeable membrane from a solution of lower concentration to a					
	solution of higher concentration.					
	The pressure that must be applied to the solution to stop the influx of the					
	solvent (to stop osmosis) through the semipermeable membrane is called osmotic	1½				
	pressure.					
31	Explain electromeric effect.					
	Electromeric is a temporary effect which operates in unsaturated compounds (containing Q Q and Q attaining the presence of an attaching respect to					
	(containing $>C=C<$, $>C=O$, etc) In the presence of an attacking reagent.					
	• Let us consider two different compounds (i) compounds containing carbonyl group (c.C. Q) and (ii) upgeturated compounds such as all appendix (c.C. Q. A)					
	group (>C=O) and (ii) unsaturated compounds such as alkenes (>C=C<).					
	• When a nucleophile approaches the carbonyl compound, the in electrons					
	This makes the carbon electron deficient and thus facilitating the formation of a					
	• This makes the carbon election dencient and thus facilitating the formation of a new bond between the incoming nucleonbile and the carbonyl carbon atom					
	new bond between the meening nucleophile and the carbony carbon atom.					
	$c_{\rm NL}$ $c_{\rm C}$ $c_{\rm C}$ \bar{c}					
		3	3			
	• On the other hand, when an electrophile such as H ⁺ approaches an alkene					
	molecule, the π electrons are instantaneously shifted to the electrophile and a					
	new bond is formed between carbon and hydrogen.					
	This makes the other carbon electron deficient and hence it acquires a positive					
	charge.					
	$H_{A}C \longrightarrow CH_{A} + H \longrightarrow H_{A}C \longrightarrow CH_{A} + H_{A}$					
	$\prod_{2} \bigcup_{n=1}^{n} \bigcup_{n=1}^{n$					
	+					
	$H_2C - CH_3$					
		1				

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

32	How do react ethylene with Baeyer's Reagent.		
	$CH_2=CH_2 + H_2O \xrightarrow[H_20+[0]]{Cold dilute alkaline KMnO_4} CH_2 - CH_2 + MnO_2$ $OH OH$ $OH OH$ $Ethylene glycol$	3	3
33	A hydrocarbon C_3H_8 (A) reacts with HBr to form compound (B). Compound (B) reacts with aqueous potassium hydroxide to give (C) of molecular formula C_3H_8O . What are (A) (B) and (C). Explain the reactions.	3	3
	Mere attempt (Reason: The hydrocarbon C ₃ H ₈ should be given as C ₃ H ₆)		
	Part – IV		
Ansv	wer all the questions. 5 x	x 5 = 2	5
	a) A Compound on analysis gave the following percentage composition $C=54.55\%$ H=0.00% $O=26.26\%$ Determine the empirical formula of the		

Er	Element C H O nperical formula	Percentage 54.55 9.09 36.36 $a = C_2H_4O$	Atomic mass 12 1 1 16	Relative number of moles $\frac{54.55}{23} = 4.55$ $\frac{9.09}{1} = 9.09$ $\frac{36.36}{16} = 2.27$	simple ratio $\frac{4.55}{2.27} = 2$ $\frac{9.09}{2.27} = 4$ $\frac{2.27}{2.27} = 1$	2	5
4 • •	 ii) Principal quantum number (2) This quantum number represents the energy level in which electron revolves around the nucleus and is denoted by the symbol 'n'. The 'n' can have the values 1, 2, 3, n=1 represents K shell; n=2 represents L shell and n = 3, 4, 5 represent the M, N, O shells, respectively. The maximum number of electrons that can be accommodated in a given shell is 2n². 'n' gives the energy of the electron, E_n = (-1312.8)Z²/n² KJ mol⁻¹ and the distance of the electron from the nucleus is given by r_n = (0.529)n²/A° 				2		
(or 1.1 2.1 3.1 4. 5. res 6.1) b) i) Discuss Both lithium and Lithium and mag Ich less soluble Both form a nitri They do not give The carbonates spective oxides Lithium and mag	any three simi I magnesium are gnesium react s and their hydro de, Li ₃ N and Mo e any superoxid of lithium and n and CO ₂ . gnesium do not	larities betw e harder than lowly with wa xides decomp g ₃ N ₂ , by direc es and form o nagnesium de form bicarboi	een lithium and Ma other elements in the ter. Their oxides and bose on heating. It combination with r only oxides, Li ₂ O an ecompose upon hea nates.	agnesium. (3) heir groups d hydroxides are hitrogen d MgO ting to form their	3x1	5

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS - Vallipattu

	7. Both LiCl and MgCl ₂ are soluble in ethanol and are deliquescent. They crystallise		
			_
	ii) Write the biological importance of sodium and potassium? (2)		
	Monovalent sodium and potassium ions are found in large proportions in		
	 These ions perform important biological functions such as maintenance of ion balance and nerve impulse conduction. 		K
	• A typical 70 kg man contains about 90 g of sodium and 170 g of potassium.		
	Sodium ions are found primarily on the outside of cells, being located in blood	0.1	
	plasma and in the interstitial fluid which surrounds the cells.	ZXI	
	 These ions participate in the transmission of nerve signals, in regulating the flow of water across cell membranes and in the transport of sugars and amino acids into cells. 		
	• potassium ions are the most abundant cations within cell fluids, where they		
	activate many enzymes, participate in the oxidation of glucose to produce ATP.		
	• Sodium–potassium pump plays an important role in transmitting nerve signals.		
	a) i) Explain the pauling method for the determination of ionic radius. (3)		
•	• Pauling assumed that ions present in a crystal lattice are perfect spheres, and they are in contact with each other. Therefore, $d = r_{c^+} + r_{s^-} + \dots + $	1	
	(or)		
	 Where d is the distance between the centre of the nucleus of cation C⁺ and anion 		
	(or)		
	• r_{C^+} , r_{A^-} are the radius of the cation and anion respectively.		
	Pauling also assumed that the radius of the ion having noble gas electronic		
	configuration is inversely proportional to the effective nuclear charge felt at the		
	periphery of the ion. (or)	1/2	
	$r \rightarrow \alpha - \frac{1}{2}$ (2)	/2	
5	$Z_{\text{eff}}(C^+)$ (2)	1/2	5
0	$r_{A^{-}} \propto \frac{1}{Z_{\text{eff}}(A^{-})}$ (3)		
	Where Z_{eff} is the effective nuclear charge and $Z_{eff} = Z - S$		
	Dividing the equation 2 by 3		
	$\frac{r_{C^+}}{Z_{eff}(A^-)} $ (4)		
	$\frac{1}{r_{A^{-}}} = \frac{1}{Z_{eff}(C^{+})} \dots (4)$	1	
	On solving equation (1) and (4) the values of r_{C^+} and r_{A^-} can be obtained.		
	ii) Mention the uses of deuterium. (2) (any two)		
	 To prepare heavy water – used as a moderator in nuclear reactors. 	1	
	Deuterium exchange reactions - deuterium can replace reversibly hydrogen in	2x1	
	compounds either partially or completely depending upon the reaction conditions	1	
	 It is commonly used as a tracer to study organic reaction mechanisms. 		

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

a) State the various statements of second law of thermodynamics. (5)
1. Entropy statement: The entropy of an isolated system increases during a spontaneous process.
• Entropy is a measure of the molecular disorder (randomness) of a system.
2. Keivin-Planck statement: It is impossible to construct a machine that absorbs heat from a hot source and converts it completely into work by a cyclic process without transferring a part of heat to a cold sink.
(or)
Efficiency = work performed
is Efficiency =
$$\begin{bmatrix} 1 - \frac{T_{e}}{T_{b}} \end{bmatrix} \times 100$$

3. Clausius statement: It is impossible to transfer heat from a cold reservoir to a hot source and converts it completely into work by a cyclic process without transferring a part of heat to a cold sink.
(or)
Efficiency = work performed
is the subsorbed is Efficiency = $\begin{bmatrix} 1 - \frac{T_{e}}{T_{b}} \end{bmatrix} \times 100$
3. Clausius statement: It is impossible to transfer heat from a cold reservoir to a hot reservoir without doing some work.
a) i) Derive the values of critical constants in terms of van der Waals constants. (Mar-23)
The van der Waals equation for n moles is
 $\left(P + \frac{a}{\sqrt{2}}\right)$ (V - b) = RT(1)
For 1 mole,
 $\left(P + \frac{a}{\sqrt{2}}\right)$ (V - b) = RT(2)
From the equation we can derive the values of critical constants Pc, Vc and Tc in terms of a and b, the van der Waals constants. (An - 23)
Multiply equation (3) by $\frac{V^{2}}{p}$
 $\frac{V^{2}}{p}$ (Pv + $\frac{a}{v}$ - Pb - $\frac{ab}{v^{2}}$ - RT) = 0
 $V^{3} + \frac{W}{p} - bV^{2} - \frac{ab}{p} - \frac{RTV^{2}}{p} = 0$ (5)
The equation (5) is a cubic equation in powers of 'V'
 $V^{3} - \left|\frac{W^{2}}{p} + \frac{W}{p} - \frac{W^{2}}{p} - \frac{RTV}{p} = 0$ (6)
As equation (5) is a cubic equation of V are equal to the critical volume V/c. The presure and temperature become Pc and Tc respectively.
i.e. $V = V_{c} = 0$
 $(V - V_{c})^{2} = 0$ ($V - V_{c}^{2} + \frac{W}{P_{c}} + \frac{W}{P_{c}} = 0$
 $V^{2} - 3V_{c}V^{2} + 3V_{c}^{2} + V_{c}^{2} = 0$ (6)
As equation (6) is identical with equation (6) we can equate the coefficients of V2, V and co

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

$3V_{\rm C}^2 = \frac{a}{P_{\rm C}}$ (8)							
$V_{\rm C}^3 = \frac{{\rm ab}}{{\rm P}_{\rm c}}$ (9)							
Divide equation (9) by equation (8),	Divide equation (9) by equation (8),						
$\frac{V_{C}^{3'}}{3V_{C}^{2}} = \frac{\frac{2}{P_{C}}}{\frac{2}{P_{C}}}$ $\frac{V_{C}}{\frac{2}{P_{C}}} = b$							
i.e. $V_c = 3b$ (10)				1			
the value of V_c is substituted in equation (8),							
$3V_{C}^{2} = \frac{a}{P_{C}}$							
$P_{C} = \frac{a}{3 V_{C}^{2}} = \frac{a}{3(3b^{2})} = \frac{a}{3 \times 9b^{2}} = \frac{a}{27b^{2}}$							
$P_{c} = \frac{a}{a - 1}$							
substituting the values of Vc and Pc in equation	(7)			1			
$3 V_{C} = b + \frac{RT_{C}}{P_{C}}$							
3 (3b) = b + $\frac{RT_{C}}{\left(\frac{a}{27 b^{2}}\right)}$		0					
$9b - b = \left(\frac{RT_C}{a}\right) 27b^2$	$9b - b = \left(\frac{RT_C}{a}\right) 27b^2$						
$8b = \frac{T_C R 27b^2}{a}$							
:. $T_{\rm C} = \frac{8 {\rm ab}}{27 {\rm R} {\rm b}^2} = \frac{8 {\rm a}}{27 {\rm R} {\rm b}}$	\therefore T _c = $\frac{8ab}{27 \text{ R b}^2} = \frac{8 a}{27 \text{ R b}}$						
$T_{\rm C} = \frac{8 a}{27 R b}$ (12)				1			
The critical constants can be calculated using the values of van der waals constant of a gas and vice versa.							
$a = 3 V_c^2 P_c$ and $b = \frac{V_c}{3}$							
(or) b) i) Derive a general expression for the	equilibrium	constant K _P	and $\mathbf{K}_{\mathbf{C}}$ for				
the reaction (3) $H_{2(q)} + I_{2(q)} \Rightarrow 2$	HI _(a)						
	H ₂	I 2	HI				
Initial number of moles	а	b	0				
Number of moles reacted	Х	Х	0				
Number of moles at equilibrium	a - x	b - x	2x				
Molar concentration at equilibrium	$\frac{a-x}{v}$	$\frac{b-x}{w}$	$\frac{2x}{x}$				
Applying law of mass action,	ı v	U V	V				
$K_{C} = \frac{[HI]^2}{[H_2][I_2]} \qquad = \frac{\left(\frac{2x}{V}\right)^2}{\left(\frac{a-x}{V}\right)\left(\frac{b-x}{V}\right)} =$	$=\frac{4x^2}{v^2} \times \frac{1}{(a-x)^2}$	V ²) (b-x)		1			

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS - Vallipattu

www.Trb Tnpsc.Com

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS - Vallipattu